OKSIMO (RELOADED) SOFTWARE

eJournal: uffmm.org
ISSN 2567-6458, 15.March   2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

EXPLANATION

The oksimo (reloaded) software is since 3.January 2021 publicly visible. The usage is still restricted to selected test persons and test teams. A general accessibility of the oksimo software is scheduled for April 2022 (no guarantee!).

HMI ANALYSIS, Part 4: Tool based Actor Story Development with Testing and Gaming

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, March 3-4, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 4, 2021, 07:49h (Minor corrections; relating to the UN SDGs)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 4: Tool based Actor Story Development with Testing and Gaming

Context

This text is preceded by the following texts:

INFO GRAPH

Overview about different scenarios which will be possible for the development, simulation, testing and gaming of actor stories using the oksimo software tool

Introduction

In the preceding post it has been explained, how one can format an actor story [AS] as a theory in the  format  of  an Evaluated Theory Tε with Algorithmic Intelligence:   Tε,α=<M,∑,ε,α>.

In the following text it will be explained which kinds of different scenarios will be possible to elaborate, to simulate, to test, and to enable gaming with  an actor story theory by using the oksimo software tool.

UNIVERSAL TEAM

The classical distinctions between certain types of managers, special experts and the rest of the world is given up here in favor of a stronger generalization: everybody is a potential expert with regard to a future, which nobody knows. This is emphasized by the fact, that everybody can use its usual mother tongue, a normal language, every language. Nothing more is needed.

BASIC MODELS (S, X)

As minimal elements for all possible applications it is assumed here that the experts define at least a given situation (state) [S] and a set of change rules [X].

The given state S is  either (i)  taken as it is or (ii)  as a state which  should be improved. In both cases the initial state S is called the start state [S0].

The change rules X describe possible changes which transform a given state S into a changed successor state S’.

A pair of S and X as (S,X) is called a basic model M(S,X). One can define as many models as one wants.

A DIRECTION BY A VISION V

A vision [V] can describe a possible state SV  in an assumed future. If such a state SV is given, then this state becomes a goal state SGoal In this case  we assume V ≠ 0. If no explicit goal is given, then we assume V = 0.

DEVELOPMENT BY GOALS

If a vision is given (V ≠ 0), then the vision can be used to induce a direction which can/ shall be approached by creating a set X, which enables the generation of a sequence of states with the start state S0 as first state followed by successor state Si until the goal state SGoal has been reached or at least it holds that the goal state is a subset of the reached state: SGoalSn.

It is possible to use many basic models M(S,X) in parallel and for each model Mi one can define a different goal Vi (the typical situation in a pluralistic society).

Thus there can be many basic theories T(M,V) in parallel.

STEADY STATES (V = 0)

If no explicit visions are defined (V = 0) then every direction of change is allowed. A basic steady state theory T(M,V) with V = 0 can   be written as T(M,0). Whether such a case can be of interest is not clear at the moment.

BASIC INTERACTION PATTERNS

The following interaction modes are assumed as typical cases:

  1. N-1: Within an online session an interactive webpage with the oksimo software is active and the whole group can interact with the oksimo software tool.
  2. N-N-1: N-many participants can individually login into the interactive oksimo website and being logged in they can collaborate within the oksimo software with one project.
  3. N-N-N: N-many participants can individually login into the interactive oksimo website and there everybody can run its own process or can collaborate in various ways.

The default case is case (1). The exact dates for the availability of modes (2) – (3) depends from how fast the roadmap can be realized.

BASIC APPLICATIONS
  1. Exploring Simulation-Based Development [ESBD] (V ≠ 0): If the main goal is to find a path from a given state today S (Now) to an envisioned state V in the future then one has  to collect appropriate change rules X to approach the final goal state SGoal better and better. Activating the simulator ∑ during search and construction phase at will can be of great help, especially if the documents (S, X, V) are becoming more and more complex.
  2. Embedded Simulation-Based  Testing [ESBT] (V ≠ 0): If a basic  actor story theory T(M,) is given with a given goal (V ≠ 0) then it is of great help if the simulation is done in interactive mode where the simulator is not applying the change rules by itself but by asking different logged in users which rule they want to apply and how. These tests show not only which kinds of errors will occur but they can also show during n-many repetitions to which degree an user  can learn to behave task-conform. If the tests will not show the expected outcomes then this can point  to possible deficiencies of the software as well to specialties of the user.
  3. Embedded Simulation-Based Gaming [ESBTG] (V ≠ 0):  The case of gaming is partially  different to the case of testing.  Although it is assumed here too that at least one vision (goal) is given, it is additionally assumed that  there exists  a competition between different players or different teams. Different to testing exists in gaming according to the goal(s) the role of a winner: that player/ team which has reached a defined  goal state before the other player/ teams,  has won. As a side-effect of gaming one can also evaluate the playing environment and give some feedback to the developers.
ALGORITHMIC INTELLIGENCE
  1. Case ESBD, T(S,X,V,∑,ε,α): Because a normal simulation with the simulator always does  produce only one path from the start state to the goal state it is desirable to have an algorithm α which would run on demand as many times as wanted and thereby the algorithm α would search for all possible paths and at the same time it would look for those derivations, where the goal state satisfies with  ε certain special requirements. Thus the result from the application of α onto a given model M with the vision V would generate the set SV* of all those final states which satisfy the special requirements.
  2. Case ESBG, T(S,X,V,∑,ε,α):   The case of gaming allows at least three kinds of interesting applications for algorithmic intelligence: (i) Introduce non-biological players with learning capabilities which can act simultaneously with the biological players; (ii) Introduce non-biological players with learning capabilities which have to learn how to support, to assist, to train biological player. This second case addresses the challenging task to develop algorithmic tutors for several kinds of learning tasks. (iii) Another variant of case (ii) is to enable the development of a personal algorithmic assistant who works only with one person on a long-term basis.

The kinds of algorithmic Intelligence in (2)(i)-(iii) are different to the  mentioned algorithmic intelligence α in (1).

TYPES OF ACTORS

As the default standard case of an actor it is assumed that there are biological actors, usually human persons, which will not be analyzed with their inner structure [IS]. While the behavior of every system — and  therefore any biological system too — can be described with a behavior function φ: I x IS —> IS x O (if one has all the necessary knowledge), in the default case of biological systems  no behavior function φ is specified, φ = 0. During interactive simulations biological systems act by themselves.

If non-biological actors are used — e.g. automata with a certain machine program (an algorithm) — then one can use these only if one has a fully specified behavior function φ. From this follows that a  change rule which is associated with a non-biological actor has in its Eplus and in its Eminus part not a concrete expression but a variable, which will be computed during the simulation by the non-biological actor depending from its input and its behavior function φ: φ(input)IS=(Eplus, Eminus)IS.

FINAL COMMENT

Everybody who has read the parts (1) – (4) has now a general knowledge about the motivation to develop the oksimo software tool to support human kind to have a better communication and thinking of possible futures and a first understanding (hopefully :-)) how this tool can work. Reading the UN sustainable development goals [SDGs] [1] you will learn, that the SDG4 (Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all) is fundamental to all other SDGs. The oksimo software tool is one tool to be of help to reach these goals.

REFERENCES

[1] The 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, provides a shared blueprint for peace and prosperity for people and the planet, now and into the future. At its heart are the 17 Sustainable Development Goals (SDGs), which are an urgent call for action by all countries – developed and developing – in a global partnership. They recognize that ending poverty and other deprivations must go hand-in-hand with strategies that improve health and education, reduce inequality, and spur economic growth – all while tackling climate change and working to preserve our oceans and forests. See PDF: https://sdgs.un.org/sites/default/files/publication/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf

[2] UN, SDG4, PDF, Argumentation why the SDG4 ist fundamental for all other SDGs: https://sdgs.un.org/sites/default/files/publications/2275sdbeginswitheducation.pdf

 

 

 

 

 

 

 

 

HMI Analysis for the CM:MI paradigm. Part 3. Actor Story and Theories

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, March 2, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 2, 2021 13:59h (Minor corrections)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 3: Actor Story and  Theories

Context

This text is preceded by the following texts:

Introduction

Having a vision is that moment  where something really new in the whole universe is getting an initial status in some real brain which can enable other neural events which  can possibly be translated in bodily events which finally can change the body-external outside world. If this possibility is turned into reality than the outside world has been changed.

When human persons (groups of homo sapiens specimens) as experts — here acting as stakeholder and intended users as one but in different roles! — have stated a problem and a vision document, then they have to translate these inevitably more fuzzy than clear ideas into the concrete terms of an everyday world, into something which can really work.

To enable a real cooperation  the experts have to generate a symbolic description of their vision (called specification) — using an everyday language, possibly enhanced by special expressions —  in a way that  it can became clear to the whole group, which kind of real events, actions and processes are intended.

In the general case an engineering specification describes concrete forms of entanglements of human persons which enable  these human persons to cooperate   in a real situation. Thereby the translation of  the vision inside the brain  into the everyday body-external reality happens. This is the language of life in the universe.

WRITING A STORY

To elaborate a usable specification can metaphorically be understood  as the writing of a new story: which kinds of actors will do something in certain situations, what kinds of other objects, instruments etc. will be used, what kinds of intrinsic motivations and experiences are pushing individual actors, what are possible outcomes of situations with certain actors, which kind of cooperation is  helpful, and the like. Such a story is  called here  Actor Story [AS].

COULD BE REAL

An Actor Story must be written in a way, that all participating experts can understand the language of the specification in a way that   the content, the meaning of the specification is either decidable real or that it eventually can become real.  At least the starting point of the story should be classifiable as   being decidable actual real. What it means to be decidable actual real has to be defined and agreed between the participating experts before they start writing the Actor Story.

ACTOR STORY [AS]

An Actor Story assumes that the described reality is classifiable as a set of situations (states) and  a situation as part of the Actor Story — abbreviated: situationAS — is understood  as a set of expressions of some everyday language. Every expression being part of an situationAS can be decided as being real (= being true) in the understood real situation.

If the understood real situation is changing (by some event), then the describing situationAS has to be changed too; either some expressions have to be removed or have to be added.

Every kind of change in the real situation S* has to be represented in the actor story with the situationAS S symbolically in the format of a change rule:

X: If condition  C is satisfied in S then with probability π  add to S Eplus and remove from  S Eminus.

or as a formula:

S’π = S + Eplus – Eminus

This reads as follows: If there is an situationAS S and there is a change rule X, then you can apply this change rule X with probability π onto S if the condition of X is satisfied in S. In that case you have to add Eplus to S and you have to remove Eminus from S. The result of these operations is the new (successor) state S’.

The expression C is satisfied in S means, that all elements of C are elements of S too, written as C ⊆ S. The expression add Eplus to S means, that the set Eplus is unified with the set S, written as Eplus ∪ S (or here: Eplus + S). The expression remove Eminus from S means, that the set Eminus is subtracted from the set S, written as S – Eminus.

The concept of apply change rule X to a given state S resulting in S’ is logically a kind of a derivation. Given S,X you will derive by applicating X the new  S’. One can write this as S,X ⊢X S’. The ‘meaning’ of the sign ⊢  is explained above.

Because every successor state S’ can become again a given state S onto which change rules X can be applied — written shortly as X(S)=S’, X(S’)=S”, … — the repeated application of change rules X can generate a whole sequence of states, written as SQ(S,X) = <S’, S”, … Sgoal>.

To realize such a derivation in the real world outside of the thinking of the experts one needs a machine, a computer — formally an automaton — which can read S and X documents and can then can compute the derivation leading to S’. An automaton which is doing such a job is often called a simulator [SIM], abbreviated here as ∑. We could then write with more information:

S,X ⊢ S’

This will read: Given a set S of many states S and a set X of change rules we can derive by an actor story simulator ∑ a successor state S’.

A Model M=<S,X>

In this context of a set S and a set of change rules X we can speak of a model M which is defined by these two sets.

A Theory T=<M,>

Combining a model M with an actor story simulator enables a theory T which allows a set of derivations based on the model, written as SQ(S,X,⊢) = <S’, S”, … Sgoal>. Every derived final state Sgoal in such a derivation is called a theorem of T.

An Empirical Theory Temp

An empirical theory Temp is possible if there exists a theory T with a group of experts which are using this theory and where these experts can interpret the expressions used in theory T by their built-in meaning functions in a way that they always can decide whether the expressions are related to a real situation or not.

Evaluation [ε]

If one generates an Actor Story Theory [TAS] then it can be of practical importance to get some measure how good this theory is. Because measurement is always an operation of comparison between the subject x to be measured and some agreed standard s one has to clarify which kind of a standard for to be good is available. In the general case the only possible source of standards are the experts themselves. In the context of an Actor Story the experts have agreed to some vision [V] which they think to be a better state than a  given state S classified as a problem [P]. These assumptions allow a possible evaluation of a given state S in the ‘light’ of an agreed vision V as follows:

ε: V x S —> |V ⊆ S|[%]
ε(V,S) = |V ⊆ S|[%]

This reads as follows: the evaluation ε is a mapping from the sets V and S into the number of elements from the set V included in the set S converted in the percentage of the number of elements included. Thus if no  element of V is included in the set S then 0% of the vision is realized, if all elements are included then 100%, etc. As more ‘fine grained’ the set V is as more ‘fine grained’  the evaluation can be.

An Evaluated Theory Tε=<M,,ε>

If one combines the concept of a  theory T with the concept of evaluation ε then one can use the evaluation in combination with the derivation in the way that every  state in a derivation SQ(S,X,⊢) = <S’, S”, … Sgoal> will additionally be evaluated, thus one gets sequences of pairs as follows:

SQ(S,X,⊢∑,ε) = <(S’,ε(V,S’)), (S”,ε(V,S”)), …, (Sgoal, ε(V,Sgoal))>

In the ideal case Sgoal is evaluated to 100% ‘good’. In real cases 100% is only an ideal value which usually will only  be approximated until some threshold.

An Evaluated Theory Tε with Algorithmic Intelligence Tε,α=<M,,ε,α>

Because every theory defines a so-called problem space which is here enhanced by some evaluation function one can add an additional operation α (realized by an algorithm) which can repeat the simulator based derivations enhanced with the evaluations to identify those sets of theorems which are qualified as the best theorems according to some criteria given. This operation α is here called algorithmic intelligence of an actor story AS]. The existence of such an algorithmic intelligence of an actor story [αAS] allows the introduction of another derivation concept:

S,X ⊢∑,ε,α S* ⊆  S’

This reads as follows: Given a set S and a set X an evaluated theory with algorithmic intelligence Tε,α can derive a subset S* of all possible theorems S’ where S* matches certain given criteria within V.

WHERE WE ARE NOW

As it should have become clear now the work of HMI analysis is the elaboration of a story which can be done in the format of different kinds of theories all of which can be simulated and evaluated. Even better, the only language you have to know is your everyday language, your mother tongue (mathematics is understood here as a sub-language of the everyday language, which in some special cases can be of some help). For this theory every human person — in all ages! — can be a valuable  colleague to help you in understanding better possible futures. Because all parts of an actor story theory are plain texts, everybody ran read and understand everything. And if different groups of experts have investigated different  aspects of a common field you can merge all texts by only ‘pressing a button’ and you will immediately see how all these texts either work together or show discrepancies. The last effect is a great opportunity  to improve learning and understanding! Together we represent some of the power of life in the universe.

CONTINUATION

See here.

 

 

 

 

 

 

 

 

HMI Analysis for the CM:MI paradigm. Part 2. Problem and Vision

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, February 27-March 16, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 16, 2021 (minor corrections)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 2: Problem & Vision

Context

This text is preceded by the following texts:

Introduction

Before one starts the HMI analysis  some stakeholder  — in our case are the users stakeholder as well as  users in one role —  have to present some given situation — classifiable as a ‘problem’ — to depart from and a vision as the envisioned goal to be realized.

Here we give a short description of the problem for the CM:MI paradigm and the vision, what should be gained.

Problem: Mankind on the Planet Earth

In this project  the mankind  on the planet earth is  understood as the primary problem. ‘Mankind’ is seen here  as the  life form called homo sapiens. Based on the findings of biological evolution one can state that the homo sapiens has — besides many other wonderful capabilities — at least two extraordinary capabilities:

Outside to Inside

The whole body with the brain is  able to convert continuously body-external  events into internal, neural events. And  the brain inside the body receives many events inside the body as external events too. Thus in the brain we can observe a mixup of body-external (outside 1) and body-internal events (outside 2), realized as set of billions of neural processes, highly interrelated.  Most of these neural processes are unconscious, a small part is conscious. Nevertheless  these unconscious and conscious events are  neurally interrelated. This overall conversion from outside 1 and outside 2 into neural processes  can be seen as a mapping. As we know today from biology, psychology and brain sciences this mapping is not a 1-1 mapping. The brain does all the time a kind of filtering — mostly unconscious — sorting out only those events which are judged by the brain to be important. Furthermore the brain is time-slicing all its sensory inputs, storing these time-slices (called ‘memories’), whereby these time-slices again are no 1-1 copies. The storing of time-sclices is a complex (unconscious) process with many kinds of operations like structuring, associating, abstracting, evaluating, and more. From this one can deduce that the content of an individual brain and the surrounding reality of the own body as well as the world outside the own body can be highly different. All kinds of perceived and stored neural events which can be or can become conscious are  here called conscious cognitive substrates or cognitive objects.

Inside to Outside (to Inside)

Generally it is known that the homo sapiens can produce with its body events which have some impact on the world outside the body.  One kind of such events is the production of all kinds of movements, including gestures, running, grasping with hands, painting, writing as well as sounds by his voice. What is of special interest here are forms of communications between different humans, and even more specially those communications enabled by the spoken sounds of a language as well as the written signs of a language. Spoken sounds as well as written signs are here called expressions associated with a known language. Expressions as such have no meaning (A non-speaker of a language L can hear or see expressions of the language L but he/she/x  never will understand anything). But as everyday experience shows nearly every child  starts very soon to learn which kinds of expressions belong to a language and with what kinds of shared experiences they can be associated. This learning is related to many complex neural processes which map expressions internally onto — conscious and unconscious — cognitive objects (including expressions!). This mapping builds up an internal  meaning function from expressions into cognitive objects and vice versa. Because expressions have a dual face (being internal neural structures as well as being body-outside events by conversions from the inside to body-outside) it is possible that a homo sapiens  can transmit its internal encoding of cognitive objects into expressions from his  inside to the outside and thereby another homo sapiens can perceive the produced outside expression and  can map this outside expression into an intern expression. As far as the meaning function of of the receiving homo sapiens  is sufficiently similar to the meaning function of  the sending homo sapiens there exists some probability that the receiving homo sapiens can activate from its memory cognitive objects which have some similarity with those of  the sending  homo sapiens.

Although we know today of different kinds of animals having some form of language, there is no species known which is with regard to language comparable to  the homo sapiens. This explains to a large extend why the homo sapiens population was able to cooperate in a way, which not only can include many persons but also can stretch through long periods of time and  can include highly complex cognitive objects and associated behavior.

Negative Complexity

In 2006 I introduced the term negative complexity in my writings to describe the fact that in the world surrounding an individual person there is an amount of language-encoded meaning available which is beyond the capacity of an  individual brain to be processed. Thus whatever kind of experience or knowledge is accumulated in libraries and data bases, if the negative complexity is higher and higher than this knowledge can no longer help individual persons, whole groups, whole populations in a constructive usage of all this. What happens is that the intended well structured ‘sound’ of knowledge is turned into a noisy environment which crashes all kinds of intended structures into nothing or badly deformed somethings.

Entangled Humans

From Quantum Mechanics we know the idea of entangled states. But we must not dig into quantum mechanics to find other phenomena which manifest entangled states. Look around in your everyday world. There exist many occasions where a human person is acting in a situation, but the bodily separateness is a fake. While sitting before a laptop in a room the person is communicating within an online session with other persons. And depending from the  social role and the  membership in some social institution and being part of some project this person will talk, perceive, feel, decide etc. with regard to the known rules of these social environments which are  represented as cognitive objects in its brain. Thus by knowledge, by cognition, the individual person is in its situation completely entangled with other persons which know from these roles and rules  and following thereby  in their behavior these rules too. Sitting with the body in a certain physical location somewhere on the planet does not matter in this moment. The primary reality is this cognitive space in the brains of the participating persons.

If you continue looking around in your everyday world you will probably detect that the everyday world is full of different kinds of  cognitively induced entangled states of persons. These internalized structures are functioning like protocols, like scripts, like rules in a game, telling everybody what is expected from him/her/x, and to that extend, that people adhere to such internalized protocols, the daily life has some structure, has some stability, enables planning of behavior where cooperation between different persons  is necessary. In a cognitively enabled entangled state the individual person becomes a member of something greater, becoming a super person. Entangled persons can do things which usually are not possible as long you are working as a pure individual person.[1]

Entangled Humans and Negative Complexity

Although entangled human persons can principally enable more complex events, structures,  processes, engineering, cultural work than single persons, human entanglement is still limited by the brain capacities as well as by the limits of normal communication. Increasing the amount of meaning relevant artifacts or increasing the velocity of communication events makes things even more worse. There are objective limits for human processing, which can run into negative complexity.

Future is not Waiting

The term ‘future‘ is cognitively empty: there exists nowhere an object which can  be called ‘future’. What we have is some local actual presence (the Now), which the body is turning into internal representations of some kind (becoming the Past), but something like a future does not exist, nowhere. Our knowledge about the future is radically zero.

Nevertheless, because our bodies are part of a physical world (planet, solar system, …) and our entangled scientific work has identified some regularities of this physical world which can be bused for some predictions what could happen with some probability as assumed states where our clocks are showing a different time stamp. But because there are many processes running in parallel, composed of billions of parameters which can be tuned in many directions, a really good forecast is not simple and depends from so many presuppositions.

Since the appearance of homo sapiens some hundred thousands years ago in Africa the homo sapiens became a game changer which makes all computations nearly impossible. Not in the beginning of the appearance of the homo sapiens, but in the course of time homo sapiens enlarged its number, improved its skills in more and more areas, and meanwhile we know, that homo sapiens indeed has started to crash more and more  the conditions of its own life. And principally thinking points out, that homo sapiens could even crash more than only planet earth. Every exemplar of a homo sapiens has a built-in freedom which allows every time to decide to behave in a different way (although in everyday life we are mostly following some protocols). And this built-in freedom is guided by actual knowledge, by emotions, and by available resources. The same child can become a great musician, a great mathematician, a philosopher, a great political leader, an engineer, … but giving the child no resources, depriving it from important social contexts,  giving it the wrong knowledge, it can not manifest its freedom in full richness. As human population we need the best out of all children.

Because  the processing of the planet, the solar system etc.  is going on, we are in need of good forecasts of possible futures, beyond our classical concepts of sharing knowledge. This is where our vision enters.

VISION: DEVELOPING TOGETHER POSSIBLE FUTURES

To find possible and reliable shapes of possible futures we have to exploit all experiences, all knowledge, all ideas, all kinds of creativity by using maximal diversity. Because present knowledge can be false — as history tells us –, we should not rule out all those ideas, which seem to be too crazy at a first glance. Real innovations are always different to what we are used to at that time. Thus the following text is a first rough outline of the vision:

  1. Find a format
  2. which allows any kinds of people
  3. for any kind of given problem
  4. with at least one vision of a possible improvement
  5. together
  6. to search and to find a path leading from the given problem (Now) to the envisioned improved state (future).
  7. For all needed communication any kind of  everyday language should be enough.
  8. As needed this everyday language should be extendable with special expressions.
  9. These considerations about possible paths into the wanted envisioned future state should continuously be supported  by appropriate automatic simulations of such a path.
  10. These simulations should include automatic evaluations based on the given envisioned state.
  11. As far as possible adaptive algorithms should be available to support the search, finding and identification of the best cases (referenced by the visions)  within human planning.

REFERENCES or COMMENTS

[1] One of the most common entangled state in daily life is the usage of normal language! A normal language L works only because the rules of usage of this language L are shared by all speaker-hearer of this language, and these rules are explicit cognitive structures (not necessarily conscious, mostly unconscious!).

Continuation

Yes, it will happen 🙂 Here.

 

 

 

 

 

 

HMI Analysis for the CM:MI paradigm. Part 1

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, February 25, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Last change: March 16, 2021 (Some minor corrections)
HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 1
Introduction

Since January 2021 an intense series of posts has been published how the new ideas manifested in the new software published in this journal  can adequately be reflected in the DAAI theoretical framework. Because these ideas included in the beginning parts of philosophy, philosophy of science, philosophy of engineering, these posts have been first published in the German Blog of the author (cognitiveagent.org). This series of posts started with an online lecture for students of the University of Leipzig together with students of the ‘Hochschule für Technik, Wirtschaft und Kultur (HTWK)’ January 12, 2021.  Here is the complete list of posts:

In what follows in this text is an English version of the following 5 posts. This is not a 1-to-1 translation but rather a new version:

HMI Analysis as Part of Systems Engineering
HMI analysis as pat of systems engineering illustrated with the oksimo software
HMI analysis for the CM:MI paradigm illustrated with the oksimo software concept

As described in the original DAAI theory paper the whole topic of HMI is here understood as a job within the systems engineering paradigm.

The specification process is a kind of a ‘test’ whether the DAAI format of the HMI analysis works with this new  application too.

To remember, the main points of the integrated engineering concept are the following ones:

  1. A philosophical  framework (Philosophy of Science, Philosophy of Engineering, …), which gives the fundamentals for such a process.
  2. The engineering process as such where managers and engineers start the whole process and do it.
  3. After the clarification of the problem to be solved and a minimal vision, where to go, it is the job of the HMI analysis to clarify which requirements have to be fulfilled, to find an optimal solution for the intended product/ service. In modern versions of the HMI analysis substantial parts of the context, i.e. substantial parts of the surrounding society, have to be included in the analysis.
  4. Based on the HMI analysis  in  the logical design phase a mathematical structure has to be identified, which integrates all requirements sufficiently well. This mathematical structure has to be ‘map-able’ into a set of algorithms written in  appropriate programming languages running on  an appropriate platform (the mentioned phases Problem, Vision, HMI analysis, Logical Design are in reality highly iterative).
  5. During the implementation phase the algorithms will be translated into a real working system.
Which Kinds of Experts?

While the original version of the DAAI paper is assuming as ‘experts’ only the typical manager and engineers of an engineering process including all the typical settings, the new extended version under the label CM:MI (Collective Man-Machine Intelligence) has been generalized to any kind of human person as an expert, which allows a maximum of diversity. No one is the ‘absolute expert’.

Collective Intelligence

As ‘intelligence’ is understood here the whole of knowledge, experience, and motivations which can be the moving momentum inside of a human person. As ‘collective’  is meant  the situation, where more than one person is communicating with other persons to share it’s intelligence.

Man-Machine Symbiosis

Today there are discussions going around  about the future of man and (intelligent) machines. Most of these discussions are very weak because they are lacking clear concepts of intelligent machines as well of what is a human person. In the CM:MI paradigm the human person (together with all other biological systems)  is seen at the center of the future  (by  reasons based on modern theories of biological evolution) and the  intelligent machines are seen as supporting devices (although it is assumed here to use ‘strong’ intelligence compared to the actual ‘weak’ machine intelligence today).

CM:MI by Design

Although we know, that groups of many people are ‘in principal’ capable of sharing intelligence to define problems, visions, constructing solutions, testing the solutions etc., we know too, that the practical limits of the brains and the communication are quite narrow. For special tasks a computer can be much, much better. Thus the CM:MI paradigm provides an environment for groups of people to do the shared planning and testing in a new way, only using normal language. Thus the software is designed to enable new kinds of shared knowledge about shared common modes of future worlds. Only with such a truly general framework the vision of a sustainable society as pointed out by the United Nations since 1992 can become real.

Continuation

Look here.

OKSIMO SW – Minimal Basic Requirements

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, January 8, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI]. This includes Human Machine Intelligence [HMIntelligence]  as part of Human Machine Interaction [HMI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly dealing with python programming – and a section about a web-server with Dragon. This document is part of the Case Studies section.

CONTENT

In the long way of making the theory  as well as the software [SW] more concrete we have reached January 5, 2021 a first published version on [www.]oksimo.com.  This version contains a sub-part of the whole concept which I call here the Minimal Basic Version [MBV] of the osimo SW. This minimal basic will be tested until the end of february 2021. Then we will add stepwise all the other intended features.

THE MINIMAL BASIC VERSION

oksimo SW Minimal Basic Version Jan 3, 2021
oksimo SW Minimal Basic Version Jan 3, 2021

If one compares this figure with the figure of the Multi-Group Management from Dec 5, 2020 one can easily detect simplifications for the first modul now called Vision [V] as well as for the last modul called Evaluation [EVAL].

While the basic modules States [S], Change Rules [X] and Simulator [SIM] stayed the same the mentioned first and last module have slightly changed in the sense that they have become simplified.

During the first tests with the oksimo reloaded SW it became clear that for a simulation unified with evaluation  it is sufficient to have at least one vision V to be compared with an actual state S whether parts of the vision V are also part of the state S. This induced the requirement that a vision V has to be understood as a collection of statements where earch statement describes some aspect of a vision as a whole.

Example 1: Thus a global vision of a city to have a ‘Kindergarten’ could be extended with facts like ‘It is free for all children’, ‘I is constructed in an ecological acceptable manner’, …

Example 2: A global vision to have a system interface [SI] for the oksimo reloaded SW could include statements (facts) like: ‘The basic mode is text input in an everyday language’, ‘In an advanced mode you can use speech-recognition tools to enter a text into the system’, ‘The basic mode of the simulation output is text-based’, ‘In an advanced mode you can use text-to-speech SW to allow audio-output of the simulation’, ….

Vision V – Statement S: The citizen which will work with the oksimo reloaded SW has now only to distinguish between the vision V which points into some — as such — unknown future and the given situation S describing some part of the everyday world. The vision with all its possible different partial views (statements, facts) can then be used to a evaluate a given state S whether the vision is already part of it or not. If during a simulation a state S* has been reached and the global vision ‘The city has a Kindergarten’ is part of S*  but not the partial aspects ‘It is free for all children’, ‘I is constructed in an ecological acceptable manner’,  then only one third of the vision has been fulfilled: eval(V,S*)= 33,3 … %. As one can see the amount of vision facts determines the fineness of the evaluation.

Requirements Point of View: In Software Engineering [SWE] and — more general — in Human-Machine Interaction [HMI] as part of System Engineering [SE] the analysis phase is characterized by a list of functional and non-functional requirements [FR, NFR]. Both concepts are in the oksimo SW parts of the vision modul. Everything you think of  to be important for your vision you can write down as some aspect of the vision.  And if you want to structure your vision into several parts you can edit different vision documents which for a simulation can be united to one document again.

Change Rules [X]: In the minimal basic version only three components of a change rule X will be considered: The condition [COND] part which checks whether an actual state S satisfies (fulfills)  the condition; the Eplus part which contains facts which shall be added to the actual state S for the next turn; the Eminus part which contains facts which shall be removed from the actual state S für the next turn. Other components like Probability [PROB] or Model [MODEL] will be added in the future.

WHY THE WORLD NEEDS ANTHROPOLOGISTS – Review Part 1

eJournal: uffmm.org, ISSN 2567-6458, 1.December  2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

ANTHROPOLOGY AND ENGINEERING

The starting point of view in this blog has been and still is the point of engineering, especially the perspective of man-machine interface [MMI], later as Man-Machine Interaction, then  accompanied by   human-computer interaction [HCI] or human-machine interaction [HMI]. While MMI often is discussed in isolation, not as part of engineering, this blog emphasizes a point of view where MMI is understood as an integrated part of systems engineering. The past years have shown, that this integration makes a great difference in the overall layout as well as in the details of the used methods. This integration widened the scope of MMI to the context of engineering in a way which teared down many artificial boundaries in dealing with the subject of MMI. The analysis part of MMI can take into account not only the intended users and a limited set of tasks required for the usage of a system but it can extend the scope to the different kinds of contexts of the intended users as well as the intended service/product as such: cultural patterns, sustainable perspectives, climate relevance, political implications, and more. This triggers the question, whether there are other established scientific disciplines which are sharing this scope with MMI. Traditionally experimental and cognitive psychology has always played an important role as part of the MMI analysis.  Different special disciplines like physiology or neuro-psychology, linguistics, phonetics etc. have played some role too. More recently culture and society have been brought more into the focus of MMI. What about sociology? What about anthropology? The following text discusses a possible role of anthropology in the light of the recent book Why The World Needs Anthropologists?

INTRODUCTION AND CONCLUSION

This review has the addendum ‘Part 1’ pointing to the fact, that this text does not deal with the whole book first, but only with some parts, the introduction and the conclusion.

An Introduction

The introduction of the book is asking, why does the world needs anthropologists?, and the main pattern of the introduction looks back to the old picture of anthropology, and then seeks to identify, what could/is the new paradigm which should be followed.

The roots of anthropology are located in the colonial activities of the British Empire as well as in the federal activities of the USA, which both had a strong bias to serve the political power more than to evolve a really free science. And an enduring gap between the more theoretical anthropology and an applied one is thematised although there existed always  a strong inter-dependency  between both.

To leave the close connection with primarily  governmental interests and to see the relation  between the theory and the different Applications  more positive than negative anthropology is understood  as challenged to rebrand its appearance in the public and in their own practice.

The most vital forces for such a rebranding seem to be rooted in more engagements in societal problems of public interests and thereby challenging the theory to widen their concept and methods.

Besides the classical methods of anthropology (cultural relativism, ethnography, comparison, and contextual understanding)  anthropology has to show that it can make sense beyond pure data, deciphering ambiguity, complexity, and ambivalence, helping with  diversity, investigating the interface between culture, technology, and environment.

What Is Left Out

After the introduction the main chapters of the book  are left out in this text  until later. The chapters in the book are giving examples to the questions, why the world needs anthropology, what have been the motivations for active anthropologists to become one, how they have applied anthropology, and which five tips they would give for practicing and theorizing.

Conclusion

In the conclusion of the book not the five questions are the guiding principle but ‘five axis that matter greatly’, and these five axis are circumscribed as (i) navigate the ethics of change; (ii) own-it in the sense, that an anthropologist should have a self-esteem for his/ her/ x  profession and can co-create it with others; (iii) expand the skill-set; (iv) collaborate, co-create and study-up; (v) recommend as being advisors and consultants.

The stronger commitment with actual societal problems leads anthropology at the crossroads of many processes which require new views, new methods. To gain new knowledge and to do a new practice is  not always accompanied by  known ethical schemata. Doing this induces  ethical questions which have not been known before in this way.  While a new practice is challenging the old knowledge and induces a pressure for change, new versions of knowing can  trigger new forms of practice as well. Theory and application are a dynamic pair where each part learns from the other.

The long-lasting preference of academic anthropology, thinking predominantly  in the mind-setting of   white-western-man, is  more and more resolved  by extending anthropology from academia to application, from man into the diversity of genders, from western culture into all the other cultures, from single persons to assemblies of diverse gatherings living an ongoing discourse with a growing publicity.

This widening of anthropological subjects and methods calls naturally for more interdisciplinarity, transdisciplinarity, and of a constructive attitude  which looks ahead to  possible futures of processes.

Close to this are expressions like collaboration and co-creation with others. In the theory dimension this is reflected by multiperspectivity and a holistic view. In societal development processes — like urban planning — there are different driving forces acting working top-down or acting working bottom-up.

Recommending solutions based on anthropological thinking ending in a yes or no, can be of help and can be necessary because real world processes can not only wait of final answers (which are often not realistic), they need again and again decisions to proceed now.

REFLECTIONS FOLLOWING THE INTRODUCTION AND THE CONCLUSION

The just referred texts making a fresh impression of a discipline in a dynamic movement.

General Knowledge Architecture

For the point of view of MMI (Man-Machine Interface, later HMI Human-Machine Interaction, in my theory extended to DAAI Distributed Actor-Actor Interaction) embedded in systems engineering with an openness for the whole context of society and culture arises the question whether such a dynamic anthropology can be of help.

To clarify this question let us have a short look to the general architecture of knowledge.

Within the everyday world philosophy can be understood as the most general point of view of knowing  and thinking.  Traditionally logic and mathematics can be understood as part of philosophy although today this has been changed. But there are no real reasons for this departure: logic and mathematics are not empirical sciences and they are not engineering.

Empirical science can be understood as specialized extension of philosophical thinking with identifiable characteristics which allow to  differentiate to some extend different  disciplines.  Traditionally all the different disciplines of empirical science have a more theoretical part and a more applied part. But systematically they depend from each other. A theory is only an empirical one, if there exists a clear relationship to the everyday world, and certain aspects of the everyday world are only theoretical entities (data) if there exists a relationship to an explicit theory which gives a formal explanation.

Asking for a  systematic place for engineering it is often said, that it belongs to the applied dimension of empirical science.  But engineering has realized processes, buildings, machines long before there was a scientific framework for to do this, and engineering uses in its engineering processes lots of knowledge which is not part of science. On the other side, yes, engineering is using scientific knowledge as far as it is usable and it is also giving back many questions to science which are not yet solved sufficiently. Therefore it is sound to locate engineering besides science, but   being  part of philosophy dealing with the practical dimensions of life.

What About Anthropology?

While philosophy (with logic and mathematics) is ‘on top’ of empirical science and engineering, it is an interesting question where to place anthropology?

While empirical science as well as engineering are inheriting all what philosophy provides remains the question whether  anthropology is more an empirical science or more engineering or some kind of a hybrid system with roots in empirical science as well as in engineering?

Looking back into history it could arise the impression that anthropology is more a kind of an empirical science with strong roots in academia, but doing  fieldwork to feed the theories.

Looking to the new book it could support the image that anthropology should be more like engineering: identifying  open problems in society and trying to transform these problems — like engineers — into satisfying solutions, at least on the level of counseling.

Because in our societies the universities have traditionally a higher esteem then the engineers — although the engineers  are all  trained by highly demanding university courses — it could be a bias in the thinking of  anthropologist not to think of their discipline   as engineering.

If one looks to the real world than everything which  makes human societies livable is realized by engineers. Yes, without science many of the today solutions wouldn’t be possible, but no single scientific theory has ever enabled directly some practical stuff.  And without the engineers there would not exist any of the modern machines used for measurements and experiments for science. Thus both are intimately  interrelated: science inspires engineering and engineering inspires and enables science, but both are genuinely different and science and engineering play their own fundamental role.

Thus if I am reading the new book as engineer (attention: I am also a philosopher and I am trained in the Humanities too!) then I think there are more arguments to understand anthropology  as engineering than as a pure empirical science. In the light of my distributed actor-actor interaction paradigm, which is a ‘spinoff’ of engineering and societal thinking it seems very ‘naturally’ to think of anthropology as a kind of social engineering.

Let us discuss both perspectives a bit more, thereby not excluding the hybrid version.

1) Anthropology as Engineering

The basic idea of engineering is to enable a change process which is completely transparent in all respects: Why, Who, Where, When, How etc. The process starts with explicit preferences turning some known reality into a problem on account of some visions which have been imagined and which have become ranked higher than the given known reality. And then the engineers try to organized an appropriate change process which will lead from the given situation to a new situation until some date in the future where the then given situation — the envisioned goal state — has become real and the situation from the beginning, which has been ranked down, has disappeared, or is at least weakened in a way that one can say, yes, it has changed.

Usually engineers are known to enable change processes which enable the production of everyday things (tools, products, machines, houses, plants, ships, airplanes, …), but to the extend that the engineering is touching the everyday life deeper and deeper (e.g. the global digital revolution absorbing more and more from the real life processes by transforming them into digital realities forcing human persons to act digitally and not any more with their bodies in the everyday world) the sharp boundary between engineering products and the societal life of human persons is vanishing. In such a context engineering is becoming social engineering even if the majority of traditional engineers this doesn’t see yet in this way. As the traditional discipline MMI Man-Machine Interface and then  expanded to HMI Human-Machine Interaction and further morphed into DAAI Distributed Actor-Actor Interaction this  already manifests, that the realm of human persons, yes  the whole of society is already included in engineering.  The border between machines and human actors is already at least fuzzy and the mixing of technical devices and human actors (as well as all other biological actors) has already gained a degree which does not allow any longer a separation.

These ideas would argue for the option to see anthropology as social engineering: thematizing all the important visions which seem to be helpful or important for a good future of modern mankind, and to help to organize change processes, which will support approaching this better future. That these visions can fail, can be wrong is part of the ever lasting battle of the homo sapiens to gain the right knowledge.

2) Anthropology as  an Empirical Science

… to be continued …

3) Anthropology as a Hybrid Couple of Science and Engineering

… to be continued …

 

 

KOMEGA REQUIREMENTS: Start with a Political Program

Integrating Engineering and the Human Factor (info@uffmm.org) eJournal uffmm.org ISSN 2567-6458, Nov 23-28, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

CONTENT

Applying the original P-V-Pref Document structure to real cases it became clear that the everyday logic behind the classification of facts into problems [P] or  visions [V] follows a kind of logic hidden in the semantic space of the used expressions. This text explains this hidden logic and what this means for our application.

PDF DOCUMENT

VIDEO [DE]

REMARK

(After first presentations of this video)

(Last change: November 28, 2020)

Confusion by different meanings

While the general view of the whole process is quite clear there arose some hot debate about the everyday situation of the experts (here: citizens)  and the concepts ‘reality [R]‘, ‘vision [V] (imagination of a  state which is not yet real)’, ‘problem [P]‘, and ‘preference [Pref]‘. The members of my zevedi-working group (located at the INM (Frankfurt, Hessen, Germany) as well as a citizen from Dieburg (Hessen, Germany) associated with ‘reality’ also the different kinds of emotions being active in a person and they classified an imagination about a future state also as being real in a concrete person. With such a setting of the concepts it became difficult to motivate the logic illustrated in the video. The video — based on the preceding paper — talks about  a vision v, which can turn a reality r into a problem p, and thereby generating a preference Pref = (v,r). A preference can possibly become a trigger of  some change process.

Looking ahead

Before clarifying this discussion let as have a look ahead to the overall change process which constitutes the heart of the komega-software.  Beginning with October 18, 2020 the idea of this overall change process has been described in this blog. Having some given situation S, the komega software allows the construction of change rules X,  which can be applied onto a given situation S and a builtin simulator [sim] will generate a follow up situation S’ like sim(X,S)=S’ — or short: X(S) = S’ –, a process which can be repeated by using the output S’ as new input for a new cycle. At any time of this cyclic process one can ask whether the actual output S’ can be classified as successful. What is called ‘successful’ depends from the applied criteria. For the komega software at least two criteria are used. The most basic one looks to the ectual end state S’ of the simulation and computes the difference between the occurences of vision statements V in S’ and the occurrences of real statements R having been declared at the beginning as problems P as part of the  start situation S. Ideally the real statements classified as problems should have been disappeared and the vision statements should be present.  If the difference is bigger than some before agreed threshold theta  than the actual end state S’ will be classified as a success, as a goal state in the light of the visions of the preferences, which triggered the change process.

Vision statement

In the context of the whole change process a vision statement is an expression e associated with some everyday language L and which describes in the understanding of the experts a state, which is in our mindes conceivable, imaginable, which is not given as a real state, but can eventually  become a real state in some future. This disctinction presupposes that the expert can distinguish between an idea in his consciousness which is associated with some real state outside his consciousness — associated with a real state — and an idea, which is only inside his consciousness — associated with an imaginated state –.  Looking from a second person to the expert this second person can observe the body of the expert and the world surrounding the body and can speak of the real world and the real body of the expert, but the inner states of the expert are hidden for this second person. Thus from the point of view of this second person there are no real imaginations, no real future states. But the expert can utter some expression e which has a meaning describing some state, which as such is not yet real, but which possibly could become real if one would change the actual reality (the actual everyday life, the actual city …) accordingly.  Thus a vision statement is understood here as an expression e from the everyday language L uttered by some expert having a meaning which can be understood by the other persons describing some imginated state, which is not yet real but could eventually become real in some future ahead.

Creating problems, composing preferences

If at least one vision statement v is known by some experts, then it can happen, that an expert does relate this vision with some given reality r as part of the everyday life or with some absent reality r. Example: if an expert classifies some part of the city as having too much traffic (r1) and he has the vision of changing this into a situation where the traffic is lowered down by X% (v1), then this vision statement v1 can help to understand other experts to interpret the reality r1 in the light of the visiin v1 as a problem v1(r1) = p1. Classifying some reality r1 into a problem p1 is understood in the context of the komega software as making the reality r1 a candidate for a possible change in the sense that r1 should be replaced by v1. Having taken this stance — seeing the reality r1 as a problem p1 by the vision v1 –, than the experts  have created a so-called preference Pref = (v1, p1) saying that the experts are preferring the imaginated possibly future state v1 more than the actual problem p1.

There is the special case, that an expert has uttered a vision statement v but there is no given reality which can be stated in a real statement r. Example: A company thinks that it can produce some vaccine against the  disease Y in two years from now, like  v2=’there is a vaccine against disease Y in yy’. Actually there exists no vaccine, but a disease is attacking the people. Because it is known, that the people can be made immune against the disease by an appropriate vaccine it makes sense to state r2=’There is no vaccine against the disease Y available’. Having the vision v2 this can turn the reality r2 into a problem p2 allowing the preference Pref=(v2,p2).

Triggering actions

If a group of experts generated a vision v — by several and different reaons (including emotions) –, having  associated this with some given eality r, and they decided to generate by v(r)=p  a preference Pr =(v,p),  then it can happen , that these experts decide to start a change process beginning now with the given problem p and ending up with a situation in some future where the problem p disappeared and the vision has become real.

Summing up

The komega software allows the planning and testing of change processes  if the acting experts have at least one preference Pref based on at least one  vision statement v and at least one real statement r.

BITS OF PHILOSOPHY

Shows the framework for the used concepts from the point of view of philosophy
Philosophical point of view

The above video (in German, DE) and the following  lengthy remark after the video how to understand the basic concepts vision statement [v],  real statement [r], problem statement [p], as well as preference [Pref] presuppose both a certain kind of philosophy. This philosophical point of view is outlined above in a simple drawing.

Basically there is a real human person (an actor) with a real brain embedded in some everyday world. The person can perceive parts of the every day world at every point of time. The most important reference point  in time is the actual moment called NOW.

Inside the brain the human person can generate some cognitive structure triggered by perception, by  memory and by some thinking.  Having learned some everyday language L the human person can map the cognitive structure into an expression E associated with the language L. If the cognitive structure correlates with some real situation outside the body then the meaning of the expression E is classified as being a real statement, here named E1.  But the brain can generate also cognitive structures and mapping these in expressions E without being actually correlated with some real situation outside. Such a statement is here called a vision statement, here named E2. A vision statement can eventually become correlated with some real situation outside in some future. In that case the vision statement transforms into a real statement E2, while the before mentioned real statement E1 can lose its correlation with a real situation.

FURTHER DISCUSSIONS

For further discussions have a look to this page too.

 

KOMEGA REQUIREMENTS: Multi Group Management

Integrating Engineering and the Human Factor (info@uffmm.org) eJournal uffmm.org ISSN 2567-6458, Nov 12 – Dec 13, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

CONTENT

Introducing the management of multiple groups working with different projects in parallel.

Update from Dec 10-13, 2020:

During the last sessions with different groups some first procedure shows up like a recipe to prepare the start of a development process using the komega-SW (See the this whole page and some others).

Supported by the complexity planning software — working title ‘komega-SW’ — different groups of experts, which are using one of the possible everyday languages can proceed with the following steps:

  1. They have to decide where — location, city, region, …[SPC] — they want to realize a change process.
  2. Additionally they have to agree about an intended time-frame [TF] within which this change process should happen.
  3. Every intended change process requires at least one vision [V] and some related given realities [R] which will be affected by the change process. There can be many visions in parallel. The visions can also be organized in conceptual hierarchies with most abstract visions on top which then are extended by more concrete visions as far as wanted.
  4. As soon as given realities are associated with a vision these realities can be classified as  problems [P], this means realities which are candidates of an intended change.
  5. The announced visions and the defined problems imply a certain set of actors [A], which will be necessary for the change process.
  6. To start the change process one has finally to define an inital  state, the start state [S_start], which includes the set of realities as a subset, which have  before been declared as problems.
  7. The preceding figure shows the relation between the start situation S_Start as some part of the real everyday world, the kernel state S_Kernel is characterized by those real facts which are are associated with some vision, and then the remaining facts S_Remain which will be enclosed in the start state S_Start beyond the kernel facts.
Update from December 9, 2020:

An Overall Tutorial [DE ] and Example 1 for the German Students in the Modul ‘Kommunalplanung & Gamification. Labor für mehr Bürgerbeteiligung’

tutorial-1-complmngr-v2 (Last change: December 9, 2020)

tutorial-2-complmngr-v1 (Last change: December 9, 2020)

 

Update from December 5, 2020

(This update has been highly influenced by discussions with Philipp Westermeier and Athene Sorokowski from the ZEVEDIINM Team).

The above figure shows a slightly renewed version of the komega SW as a whole. The arguments for this change are discussed elsewhere.

As You can detect by inspection of the new and the old version (figure below) there are three regions in the figure which have been changed: (1) the first module entitled ‘V-R/P-Pref’, (2) the second module entitled ‘Ss’, and (3) the last module entitled ‘EVAL’.

  1. In the original version the concepts ‘Vision’, ‘Problem’ as well as ‘Preferences’ have not been defined very  sharply. This deficiency has been revealed during the first tests. Several discussions have led to the new version now incorporated in the overall concept. According to the mentioned discussion these concepts are now defined as follows: an expert living in some everyday world can use expressions to refer to parts of this reality; these expressions are now called real statements [R]. Such an expert can furthermore use expressions which have no relationship to some known part of the given reality; these expressions are called here vision statements [V] because they are actually non-real. An expert can decide for himself/ herself/ x-self, that such a vision statement in a possible future perhaps can become real. A vision statement would in such a possible future then become turned  into a real statement. An expert having a vision as well as  a real statement can furthermore associate the vision and the real statement in the way of a preference like V > R, saying that he/she/x prefers V before R. After such a decision the reality R as part of the preference V > R is no longer yet a neutral part of reality but appears in the light of the preferred vision V as a problem [P] which can become the object of some change. Whether such a change indeed will happen  depends again from the decision of the expert, to start a change process leading from some initial state S_start to some goal state S_goal. After having defined a vision statement and associated with this vision statement some real statements the expert has to announce all the actors [A] (individual persons, groups, institutions, …) which are involved in the real statement as well in the vision statement.
  2. If the expert decides to start a change process with an initial state S_start then he has to include into this initial state S_start at least all the realities R_i which are occurring in a preference V_i > R_i as  R=∑R_i. Usually the initial state S_start will include other real statements too because the problematic parts of the reality are usually embedded in a richer context with other facts.
  3. If in the described way the expert has explicitly introduced  Visions V and problems P then this allows that the evaluation module EVAL can use these expressions in the following  way: embedded within the simulation process [SIM] the simulator can check after each cycle whether the actual state S contains already vision statements as real statements and that some — or all — of the problem statements have disappeared. According to some predefined threshold θ it is possible then to give a judgment whether the actual state S is already a goal state S_goal or not. A simple formula could be: IF ∑V_i – ∑P_i > θ THEN (S is_goal) is TRUE.
  4. The other change happened in the second evaluation mode:  in this second mode not only the final state of a simulation process will be judged to be a goal state but the whole process will also be weighted! This means that in the vision there can be global visions like being sustainable, but such global  visions can/ must be differentiated with regard to more concrete measures like ‘CO2-free’ or ‘recycling of resources’ something like this. If such visions are defined than the change rules [X] can be enhanced with parameters measuring properties of states and changes with regard to these visions. During evaluation one can then check the final state as described above but one can include also the different parameters measuring important properties of the process. Then perhaps ‘at a first glance’ a state can appear as if it is a goal state, but by including the more fine grained parameters it can turn out, that some of the requirement parameters for the sustainable vision are not satisfied (nice cars bad a worse CO2 balance).
Version before December 5, 2020

PDF DOCUMENT

requirements-Multi-Group-Management12nov2020

PDF DOCUMENT [DE]

A new and enlarged document to serve the needs of some German Audience.

fue-zim-omnikernel

 

KOMEGA REQUIREMENTS: Interactive Simulations

Integrating Engineering and the Human Factor (info@uffmm.org) eJournal uffmm.org ISSN 2567-6458, Nov 12, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

CONTENT

Introducing the interactive mode of simulation besides the existing
passive mode.

PDF DOCUMENT

requirements-interactive-simulations12nov2020

From Men to Philosophy, to Empirical Sciences, to Real Systems. A Conceptual Network

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, Nov 8, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

DAILY LIFE

In daily life we experience today a multitude of perspectives in all areas. While our bodies are embedded in real world scenarios our minds are filled up with perceptions, emotions, ideas, memories of all kinds. What links us to each other is language. Language gives us the power to overcome the isolation of our individual brains located in  individual bodies. And by this, our language, we can distribute and share the inner states of our brains, pictures of life as we see it. And it is this open web of expressions which spreads to the air, to the newspapers and books, to the data bases in which the different views of the world are manifested.

SORTING IDEAS SCIENTIFICALLY

While our bodies touching reality outside the bodies, our brains are organizing different kinds of order, finally expressed — only some part of it — in expressions of some language. While our daily talk is following mostly automatically some naive patterns of ordering does empirical science try to order the expressions more consciously following some self-defined rules called methods, called scientific procedures to enable transparency, repeatability, decidability of the hypothesized truth of is symbolic structures.

But because empirical science wants to be rational by being transparent, repeatable, measurable, there must exist an open discourse which is dealing with science as an object: what are the ingredients of science? Under which conditions can science work? What does it mean to ‘measure’ something? And other questions like these.

PHILOSOPHY OF SCIENCE

That discipline which is responsible for such a discourse about science is not science itself but another instance of thinking and speaking which is called Philosophy of Science.  Philosophy of science deals with all aspects of science from the outside of science.

PHILOSOPHY

Philosophy of Science dealing with empirical sciences as an object has a special focus and  it can be reflected too from another point of view dealing with Philosophy of Science as an object. This relationship reflects a general structure of human thinking: every time we have some object of our thinking we are practicing a different point of view talking about the actual object. While everyday thinking leads us directly to Philosophy as our active point of view  an object like empirical science does allow an intermediate point of view called Philosophy of Science leading then to Philosophy again.

Philosophy is our last point of reflection. If we want to reflect the conditions of our philosophical thinking than our thinking along with the used language tries to turn back on itself  but this is difficult. The whole history of Philosophy shows this unending endeavor as a consciousness trying to explain itself by being inside itself. Famous examples of this kind of thinking are e.g. Descartes, Kant, Fichte, Schelling, Hegel, and Husserl.

These examples show there exists no real way out.

PHILOSOPHY ENHANCED BY EMPIRICAL SCIENCES ? !

At a first glance it seems contradictory that Philosophy and Empirical Sciences could work ‘hand in hand’. But history has shown us, that this is to a certain extend possible; perhaps it is a major break through for the philosophical understanding of the world, especially also of men themselves.

Modern empirical sciences like Biology and Evolutionary Biology in cooperation with many other empirical disciplines have shown us, that the actual biological systems — including homo sapiens — are products of a so-called evolutionary process. And supported by modern empirical disciplines like Ethology, Psychology, Physiology, and Brain Sciences we could gain some first knowledge how our body works, how our brain, how our observable behavior is connected to this body and its brain.

While  Philosopher like Kant or Hegel could  investigate their own thinking only from the inside of their consciousness, the modern empirical sciences can investigate the human thinking from the outside. But until now there is a gap: We have no elaborated theory about the relationship between the inside of the consciousness and the outside knowledge about body and brain.

Thus what we need is a hybrid  theory mapping the inside to the outside and revers.  There are some first approaches headed under labels like Neuro-Psychology or Neuro-Phenomenology, but these are not yet completely clarified in their methodology in their relationship to Philosophy.

If one can describe to some extend the Phenomena of the consciousness from the inside as well as the working of the brain translated to its behavioral properties, then one can start first mappings like those, which have been used in this blog to establish  the theory for the komega software.

SOCIOLOGY

Sociology is only one empirical discipline  between many others. Although the theory of this blog is using many disciplines simultaneously Sociology is of special interest because it is that kind of empirical disciplines which is explicitly dealing with human societies with subsystems called cities.

The komega software which we are developing is understood here as enabling a system of interactions as part of a city understood as a system. If we understand Sociology as an empirical science according to some standard view of empirical science then it is possible to describe a city as an input-output system whose dynamics can become influenced by this komega software if citizens are using this software as part of their behavior.

STANDARD VIEW OF EMPIRICAL SCIENCE

Without some kind of a Standard View of Empirical Science it is not possible to design a discipline — e.g. Sociology — as an empirical discipline. Although it seems that everybody thinks that we have  such a ‘Standard View of Empirical Science’, in the real world of today one must state that we do not have such a view. In the 80ties of the20th century it looked for some time as if  we have it, but if you start searching the papers, books and schools today You will perceive a very fuzzy field called Philosophy of Science and within the so-called empirical sciences you will not found any coherent documented view of a ‘Standard View of Empirical Science’.

Because it is difficult to see how a process can  look like which enables such a ‘Standard View of Empirical Science’ again, we will try to document the own assumptions for our theory as good as possible. Inevitably this will mostly  have the character of only a ‘fragment’, an ‘incomplete outline’. Perhaps there will again be a time where sciences is back to have a commonly accepted view how  science should look like to be called empirical science.

 

 

 

 

KOMEGA REQUIREMENTS: Basic Version with optional on-demand Computations by the Computer

Integrating Engineering and the Human Factor (info@uffmm.org) eJournal uffmm.org ISSN 2567-6458, Nov 15, 2020

Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

CONTENT

Introducing a new general interface to transfer messages to the simulator as computer to compute explicitly some functions.

PDF DOCUMENT

requirements-inductive-semantics-27Oct2020

VIDEO [de]

This video explains in German the new ‘computation on-demand’ element of the change rules. More details are explained in the preceding English Text of the PDF document. As next step this idea will be implemented and it will be shown with another video, how this idea looks like in action.

VIDEO 2 [DE]

Explains  the first Problem-Vision-Preferences Module and makes some remarks how this is related  to the final evaluation module.

komega-v09b: from minimal to basic, first step

Journal: uffmm.org,
ISSN 2567-6458, Oct 14 until  Oct-21, 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email:gerd@doeben-henisch.de

ABSTRACT

This is the first step from the minimal version v08e into the direction of a basic version v09x. In v09b you can integrate multiple state descriptions into one state S and multiple rule documents into one X and then you can use these unified documents (S,X) for your simulation.

PDF Documents

The main program:
sourcecode-komega-v09b
The imported classes:
sourcecode-kcv9b

(If You want to use these sources on Windows 10 then you have to edit the last line of the classes document following the instruction there)

(During the next weeks — somewhere after 9.December 2020 — the whole software will be accessible by an interactive webpage)

KOMEGA REQUIREMENTS: From the minimal to the basic version

ISSN 2567-6458, 18.October  2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

CONTENT

Here we present the ideas how to extend the minimal version to a first basic version. At least two more advanced levels will follow.

VIDEO (EN)

(Last change: Oct 17, 2020)

VIDEO(DE)

(last change: Oct 18, 2020)

komega-v08e. First complete minimal version with tests

Journal: uffmm.org,
ISSN 2567-6458,Oct 14 until  Oct-15, 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email:gerd@doeben-henisch.de

ABSTRACT

This is the first complete minimal version together with two tests with the German language  as well as with the English language. From now on this ‘starting point’ will be improved step wise until some point in the future.

PDF Documents

PYTHON CODE MAIN FILE

This file is importing the file kcv8e

komega-v08e-main

(Last change: Oct 11, 2020)

PYTHON USED CLASSES

kcv8e-classes

This file is importing the ‘shelve’ module. The ‘shelve’ module has a different back end with linux or windows. See the remark at the end of the kcv8e file.

(Last change: Oct 15, 2020)

EXAMPLE with GERMAN language

test-komega-v08e-GermanExample1

(Last change Oct 15,2020)

EXAMPLE with ENGLISH language

test-komega-v08e-EnglishExample1

(Last change: Oct 15, 2020)

LINUX – WINDOWS10

(Last change: Oct 13,2020)

If you want to run the program komega-v08e.py which is importing kcv8e.py which in turn is importing the shelve modul under Windows 10 then you have in the file kcv8e.py the last line, where the storage objects initializes three databases:

LINUX:

st=Storage(‘STAT1′,’RULE1′,’PV1’)

WINDOWS10:

st=Storage(‘STAT1.dat’,’RULE1.dat’,’PV1.dat’)

The reason for this is that the shelve modul is using internally a db-interface which can be differently be implemented on different systems. For windows you need this special Postfix ‘.dat’ to indicate the windows-specific implementation.

VIDEOS

These videos show the generation of cases

(Protocol of first live session, see video)

GerdIstHungrig1

(Recorded: Oct 15, 2020 8:30am)

(Protocol 2nd live session, see video)

test-komega-v08e-GermanExample2

(recorded: Oct 15, 2020 11:30 am)