All posts by Gerd Doeben-Henisch

‘OPEN HEART SURGERY’?

(July 7, 2023 – July 7, 2023)

(This text was translated from the German source with the deepL software (deepL.com)).

CONTEXT

Following the basic considerations on the possibility/impossibility of a generally valid morality in this finite-dynamic world, a small look at the ‘phenomenon of life’ shall be suggested here, based on the currently popular concept of ‘sustainability’.

SUSTAINABILITY

In the year 2023, the term ‘sustainability’ is on – almost – everyone’s lips; not only positively (That’s it; we have to do that, …) but very well also negatively, rejecting (What nonsense; we don’t need it, …). In addition, the many billions of people who have never heard of sustainability … Since the fundamental ‘Brundtland Report’ of 1987 [1], the United Nations has been trying to raise the awareness of all governments for the topic of ‘sustainability’ in ever new conferences with ever new emphases and possible recommendations for implementation. How far this has been successful so far can be judged by everyone who looks at the course of world events.

At this point, we would like to focus on one particular aspect of sustainability, an aspect that seems to be somehow ‘invisible’ until today, although it is fundamental for the understanding and success of the project ‘sustainability’. Without this aspect, there will be no effective sustainability.

Simple example: In a certain place on the planet Earth, there is a well from which one can draw about 180 liters of water per day so far. In itself, it is neither much nor little. But if plants, animals or humans have to live from this water, then this water can become ‘too little’ very quickly. In addition, there is the ‘ambient temperature’: do we have 10 °C, 20 °C, …, 50 °C …? Also, it is not unimportant ‘from where’ the well gets its water: does it come from (i) near-surface water from a nearby stream? or from (ii) deeper renewable groundwater (iii) or from …

If this well is in a village with 20 families, then the water becomes a ‘scarce resource’ in view of the ‘need’. For the daily needs of the families, the plants and possibly for animals this water will not be enough. Whatever happens/will happen now in this village with this scarce resource depends on the ‘knowledge’/’experience’ available in the minds of its inhabitants; plus the kind of ’emotions’ that are ‘operative’ in the same minds, and somehow – more or less consciously/unconsciously – certain ‘values’ (what to do in a certain situation). A ‘borderline case’ would be (i) that people have a great ‘fear’ to die, that therefore they would not shy away from ‘killing’ the others, if they ‘don’t know’ that there are no alternatives…; another case (ii) would be that besides the emotion ‘fear’ they also have an ’emotion’ ‘connectedness with the others’, supplemented by a value concept ‘one does not kill relatives/friends’. Therefore then perhaps rather the attempt to look together the ‘death by thirst’ into the eyes. Another case (iii) could be that at least one member of the village ‘knows’ when and how there could be a solution of the problem (differently sure), that the majority of the village ‘trusts’ him, and that ‘concrete behaviors are available’ to implement the solution.

If in case (iii) a solution is known ‘in principle’, but it is not known with which
‘measures’ this solution can be achieved, then case (i) or (ii) applies again. If in case (iii) the majority ‘does not trust’ the one person who says he has ‘knowledge/experience’ to find a solution, then ‘dejection’/’despondency’ may arise. Very bad it would be if no one in the village had the slightest bit of
knowledge, from which a useful action could be derived. Or, not less badly, individuals ‘believe’ that they have a knowledge which promises a remedy, but this ‘believed solution’ turns out to be a ‘mistake’.

What this simple example can clarify is that a ‘resource’ as such is neither good nor bad, neither little nor much. Decisive is the existence of a ‘need’, and a need is ultimately always coupled to the ‘existence of biological life forms’! ‘Biological life forms’ – thus ‘life’ – represent that phenomenon on the planet earth, to whose basic characteristics it belongs to have a ‘need’ of resources which are necessary so that life ‘can realize itself’, that ‘life can live’.

If one refers to the 17 development goals of the United Nations, valid from January 2016, addressed to nation states [2], then one can recognize many partial goals, which seem helpful for the promotion of the ‘life of life’, but one will miss the clear classification of the human population as a partial population in the total phenomenon ‘life’. All ‘non-human’ life is only granted a meaning in the haze of the 17 development goals, insofar as it appears helpful for the ‘life of the human sub-population’.

What is missing is a fundamental determination of what the phenomenon of life on the planet Earth represents as part of the entire universe: is it a random phenomenon that currently exists but to which no further significance is to be attached; it can also disappear again. Or must the phenomenon of life as a part of the universe be classified as an ‘extraordinary phenomenon’, indicating fundamental properties of the universe, pointing far beyond anything we have been accustomed to think of as reality, as possible future?

If we classify the ‘phenomenon of life’ as an ‘extraordinary phenomenon of global importance’ – and indeed the ‘whole life’ !!!. -, then the question of the ‘preservation’ of this whole life together with its manifold interactions must be in the center of the considerations and one must pursue ‘knowing-learning-questioning’ in a corresponding everyday life the questions, what this means; at the same time one must work ‘acting’ on a lasting shaping of the ‘conditions for a global life’.

Against this background, a culture that puts ‘unimportant things’ on top 1 and at the same time marginalizes what is fundamentally important for life appears as the perfect recipe for a quick common death. This common death, fragmented into many millions of individual deaths, is not simply ‘a death’; it destroys the ‘heart of the universe’ itself.

NOTES

[1] Brundtland Report of 1987: https://en.wikipedia.org/wiki/Our_Common_Future

[2] The 17 Sustainable Development Goals see: https://en.wikipedia.org/wiki/Sustainable_Development_Goals

COLLECTIVE (man-machine) INTELLIGENCE and SUSTAINABILITY. An investigation

(June 21, 2023 – June 22, 2023)

–!! Not yet finished !!–

AN ARTICLE AS A RESEARCH PROCESS

The steady progress of science has defeated many familiar ideas from the past and this change of concepts continues. This belongs to concepts like ‘intelligence’, ‘collective intelligence’ , ‘man, ‘machine’, ‘artificial intelligence’, ‘life’, ‘matter’ and many more.

Such changes with concepts are always difficult to describe. Ideally one would be an ‘external observer’ with a ‘full view’ of everything which is going on, and additionally one possesses a ‘full knowledge’ about all the features and dynamics of the field of the phenomena.

But we aren’t. We are part of the process ourselves . Our understanding is interspersed with familiar images and at the same time with new questions and new partial views. Under these conditions to find a ‘consistent new view’ of the whole process can only be worked out step wise, associated with experiments to check the viability of a new aspect of the new view.

And, one should not forget, the ‘reader’ of a text from uffmm.org lives under the same conditions: a mixture of everything is possible; therefore an understanding can crash not because a certain text is ‘wrong’ or ‘bad’ or whatever, but because at that moment of reading the ‘models in the heads’ of reader and writer are not ‘overlapping enough’. Then there is no chance of understanding because we depend completely from the ‘models in our heads’.

Accepting this the following text is an undertaken to describe a special view of life in this universe be laying out some possible principles how this new view could be constructed following these principles.

HOW TO PROCEED

Because at the beginning of this writing the final outcome is open and the ‘way to reach the result’ is as such difficult, the author decided to make the research process directly the content of a process article.

The following parts of the process article seem to be important:

  1. Describe a ‘working hypotheses’ at the start.
  2. Look for ‘arguments pro or contra’.
  3. Look for ‘other texts’ related to these arguments (always pro & contra).
  4. Make decisions after every step, whether an argument (and possibly different texts) supports or criticizes or modifies the working hypothesis.
  5. Give a new version of the working hypothesis, if necessary.

Moreover it has to be ‘monitored’ (Meta-Level), whether this procedure works satisfyingly.

WORKING HYPOTHESIS

To begin, a first version of the working hypothesis has to be formulated. What is ‘given’ as an ‘assumption’ are the concepts ‘COLLECTIVE INTELLIGENCE’ with the special focus on the role of the intelligence of ‘man’ and ‘machines’ as part of a — possibly larger — concept of ‘INTELLIGENCE’. Furthermore it is assumed, that these concepts shall be investigated in the context of the question of a possible ‘SUSTAINABILITY’ of the hybrid ‘man-machine’ cooperation as part of the ‘whole life (the ‘biosphere’)’ on this planet, even extended to the whole known universe.

To elaborate these concepts in more concreteness and as a ‘hypothesis’ which can be ‘tested’ in the future, whether it ‘works’ or not, one needs a ‘minimal vision’ of what shall be assumed as ‘wishful future’ for a biosphere with a man-machine pair as part of it.

A ‘wishful future’ which can be ‘tested’ has to be (i) a ‘description of a state’, located some time ahead, and (ii) the ‘way into this future’ must be describable such, that we have a clear ‘starting point’ — e.g. the year 2023 — and (iii) that we have a sufficient knowledge about all possible changes, which can ‘transform/ change’ the actual situation step wise, that it is highly probable that we will reach finally the ‘envisioned future state’. Here highly import are especially those changes, which can be triggered by our own actions as humankind. And it has to be mentioned (iv), that we would need clear instructions how to apply the changes in order to be successful.

To (i): Wishful State

What would a citizen somewhere on this planet answer, if he would be asked “What do you think is a ‘wishful state’ in the future?”

It needs not too much fantasy that we would get nearly as many different answer as there are citizens living on this planet.

To (ii): The ‘way into this future’

To (iii): ‘Knowledge about all possible changes’

To (iv): ‘Clear instructions how to apply’

COMMENTS

wkp-en := en.wikipedia.org

[2023] Raymond NobleUniversity College LondonDenis NobleUniversity of Oxford, Understanding Living Systems, Cambridge University Press. (Expected Online Publication June 23). Words by the publisher: “Life is definitively purposive and creative. Organisms use genes in controlling their destiny. This book presents a paradigm shift in understanding living systems. The genome is not a code, blueprint or set of instructions. It is a tool orchestrated by the system. This book shows that gene-centrism misrepresents what genes are and how they are used by living systems. It demonstrates how organisms make choices, influencing their behaviour, their development and evolution, and act as agents of natural selection. It presents a novel approach to fundamental philosophical and cultural issues, such as free-will. Reading this book will make you see life in a new light, as a marvellous phenomenon, and in some sense a triumph of evolution. We are not in our genes, our genes are in us.”

[2023]  Benedict RattiganDenis NobleAfiq Hatta, (Eds), The Language of Symmetry, CRC Press

[2022] RAYMOND NOBLE and DENIS NOBLE, Physiology restores purpose to evolutionary biology, Biological Journal of the Linnean Society, 2022, XX, 1–13. With 3 figures. Abstract: “Life is purposefully creative in a continuous process of maintaining integrity; it adapts to counteract change. This is an ongoing, iterative process. Its actions are essentially directed to this purpose. Life exists to exist. Physiology is the study of purposeful living function. Function necessarily implies purpose. This was accepted all the way from William Harvey in the 17th century, who identified the purpose of the heart to pump blood and so feed the organs and tissues of the body, through many 19th and early 20th century examples. But late 20th century physiology was obliged to hide these ideas in shame. Teleology became the ‘lady who no physiologist could do without, but who could not be acknowledged in public.’ This emasculation of the discipline accelerated once the Central Dogma of molecular biology was formulated, and once physiology had become sidelined as concerned only with the disposable vehicle of evolution. This development has to be reversed. Even on the practical criterion of relevance to health care, gene-centrism has been a disaster, since prediction from elements to the whole system only rarely succeeds, whereas identifying whole system functions invariably makes testable predictions at an elemental level.”

[2017] Manuel Vogel, Review: From matter to life: information and causality, edited by S. I. Walker, P. C. W. Davies and G. F. R. Ellis: Scope: edited book. Level: general readership, review in Contemporary Physics · June 2017

[2017] S. I. Walker, P. C. W.Davies and G. F. R. Ellis (Eds), From MATTER to LIFE. Information and Causality, Cambridge University Press

[2017] Denis Noble, Dance to the Tune of Life. Biological Relativity, Cambridge University Press

[2007] Denis Noble, Video Lecture, 2007, “Principle of Systems Biology illustrated using the Virtual Heart”, URL: http://videolectures.net/eccs07_noble_psb/

[2006] Denis Noble, The Music of Life. Biology beyond the genome, Oxford University Press Inc., New York

[] Denis Noble in wkp-en: https://en.wikipedia.org/wiki/Denis_Noble

ABSTRACT MORAL IN A FINITE and CHANGING WORLD

(June 20, 2023 – June 22, 2023)

(This text is a translation from the German blog of the author. The translation is supported by the deepL Software)

CONTEXT

The meaning of and adherence to moral values in the context of everyday actions has always been a source of tension, debate, and tangible conflict.

This text will briefly illuminate why this is so, and why it will probably never be different as long as we humans are the way we are.

FINITE-INFINITE WORLD

In this text it is assumed that the reality in which we ‘find’ ourselves from childhood is a ‘finite’ world. By this is meant that no phenomenon we encounter in this world – ourselves included – is ‘infinite’. In other words, all resources we encounter are ‘finite’. Even ‘solar energy’, which is considered ‘renewable’ in today’s parlance, is ‘finite’, although this finiteness outlasts the lifetimes of many generations of humans.

But this ‘finiteness’ is no contradiction to the fact that our finite world is continuously in a ‘process of change’ fed from many sides. An ‘itself-self-changing finiteness’ is with it, a something which in and in itself somehow ‘points beyond itself’! The ‘roots’ of this ‘immanent changeability’ are to a large extent perhaps still unclear, but the ‘effects’ of the ‘immanent changeability’ indicate that the respective ‘concrete finite’ is not the decisive thing; the ‘respective concrete finite’ is rather a kind of ‘indicator’ for an ‘immanent change cause’ which ‘manifests itself’ by means of concrete finites in change. The ‘forms of concrete manifestations of change’ can therefore perhaps be a kind of ‘expression’ of something that ‘works immanently behind’.

In physics there is the pair of terms ‘energy’ and ‘mass’, the latter as synonym for ‘matter’. Atomic physics and quantum mechanics have taught us that the different ‘manifestations of mass/matter’ can only be a ‘state form of energy’. The everywhere and always assumed ‘energy’ is that ‘enabling factor’, which can ‘manifest’ itself in all the known forms of matter. ‘Changing-matter’ can then be understood as a form of ‘information’ about the ‘enabling energy’.

If one sets what physics has found out so far about ‘energy’ as that form of ‘infinity’ which is accessible to us via the experiential world, then the various ‘manifestations of energy’ in diverse ‘forms of matter’ are forms of concrete finites, which, however, are ultimately not really finite in the context of infinite energy. All known material finites are only ‘transitions’ in a nearly infinite space of possible finites, which is ultimately grounded in ‘infinite energy’. Whether there is another ‘infinity’ ‘beside’ or ‘behind’ or ‘qualitatively again quite different to’ the ‘experienceable infinity’ is thus completely open.”[1]

EVERYDAY EXPERIENCES

Our normal life context is what we now call ‘everyday life’: a bundle of regular processes, often associated with characteristic behavioral roles. This includes the experience of having a ‘finite body’; that ‘processes take time in real terms’; that each process is characterized by its own ‘typical resource consumption’; that ‘all resources are finite’ (although there can be different time scales here (see the example with solar energy)).

But also here: the ’embeddedness’ of all resources and their consumption in a comprehensive variability makes ‘snapshots’ out of all data, which have their ‘truth’ not only ‘in the moment’, but in the ‘totality of the sequence’! In itself ‘small changes’ in the everyday life can, if they last, assume sizes and achieve effects which change a ‘known everyday life’ so far that long known ‘views’ and ‘long practiced behaviors’ are ‘no longer correct’ sometime: in that case the format of one’s own thinking and behavior can come into increasing contradiction with the experiential world. Then the point has come where the immanent infinity ‘manifests itself’ in the everyday finiteness and ‘demonstrates’ to us that the ‘imagined cosmos in our head’ is just not the ‘true cosmos’. In the end this immanent infinity is ‘truer’ than the ‘apparent finiteness’.

HOMO SAPIENS (WE)

Beside the life-free material processes in this finite world there are since approx. 3.5 billion years the manifestations, which we call ‘life’, and very late – quasi ‘just now’ – showed up in the billions of life forms one, which we call ‘Homo sapiens’. That is us.

The today’s knowledge of the ‘way’, which life has ‘taken’ in these 3.5 billion years, was and is only possible, because science has learned to understand the ‘seemingly finite’ as ‘snapshot’ of an ongoing process of change, which shows its ‘truth’ only in the ‘totality of the individual moments’. That we as human beings, as the ‘latecomers’ in this life-creation-process’, have the ability to ‘recognize’ successive ‘moments’ ‘individually’ as well as ‘in sequence’, is due to the special nature of the ‘brain’ in the ‘body’ and the way in which our body ‘interacts’ with the surrounding world. So, we don’t know about the ‘existence of an immanent infinity’ ‘directly’, but only ‘indirectly’ through the ‘processes in the brain’ that can identify, store, process and ‘arrange’ moments in possible sequences in a ‘neuronally programmed way’. So: our brain enables us on the basis of a given neuronal and physical structure to ‘construct’ an ‘image/model’ of a possible immanent infinity, which we assume to ‘represent’ the ‘events around us’ reasonably well.

THINKING

One characteristic attributed to Homo Sapiens is called ‘thinking’; a term which until today is described only vaguely and very variously by different sciences. From another Homo Sapiens we learn about his thinking only by his way of ‘behaving’, and a special case of it is ‘linguistic communication’.

Linguistic communication is characterized by the fact that it basically works with ‘abstract concepts’, to which as such no single object in the real world directly corresponds (‘cup’, ‘house’, ‘dog’, ‘tree’, ‘water’ etc.). Instead, the human brain assigns ‘completely automatically’ (‘unconsciously’!) most different concrete perceptions to one or the other abstract concept in such a way that a human A can agree with a human B whether one assigns this concrete phenomenon there in front to the abstract concept ‘cup’, ‘house’, ‘dog’, ‘tree’, or ‘water’. At some point in everyday life, person A knows which concrete phenomena can be meant when person B asks him whether he has a ‘cup of tea’, or whether the ‘tree’ carries apples etc.

This empirically proven ‘automatic formation’ of abstract concepts by our brain is not only based on a single moment, but these automatic construction processes work with the ‘perceptual sequences’ of finite moments ’embedded in changes’, which the brain itself also automatically ‘creates’. ‘Change as such’ is insofar not a ‘typical object’ of perception, but is the ‘result of a process’ taking place in the brain, which constructs ‘sequences of single perceptions’, and these ‘calculated sequences’ enter as ‘elements’ into the formation of ‘abstract concepts’: a ‘house’ is from this point of view not a ‘static concept’, but a concept, which can comprise many single properties, but which is ‘dynamically generated’ as a ‘concept’, so that ‘new elements’ can be added or ‘existing elements’ may be ‘taken away’ again.

MODEL: WORLD AS A PROCESS

(The words are from the German text)

Although there is no universally accepted comprehensive theory of human thought to date, there are many different models (everyday term for the more correct term ‘theories’) that attempt to approximate important aspects of human thought.

The preceding image shows the outlines of a minimally simple model to our thinking.

This model assumes that the surrounding world – with ourselves as components of that world – is to be understood as a ‘process’ in which, at a chosen ‘point in time’, one can describe in an idealized way all the ‘observable phenomena’ that are important to the observer at that point in time. This description of a ‘section of the world’ is here called ‘situation description’ at time t or simply ‘situation’ at t.

Then one needs a ‘knowledge about possible changes’ of elements of the situation description in the way (simplified): ‘If X is element of situation description at t, then for a subsequent situation at t either X is deleted or replaced by a new X*’. There may be several alternatives for deletion or replacement with different probabilities. Such ‘descriptions of changes’ are here simplified called ‘change rules’.

Additionally, as part of the model, there is a ‘game instruction’ (classically: ‘inference term’), which explains when and how to apply a change rule to a given situation Sit at t in such a way that at the subsequent time t+1, there is a situation Sit* in which the changes have been made that the change rule describes.

Normally, there is more than one change rule that can be applied simultaneously with the others. This is also part of the game instructions.

This minimal model can and must be seen against the background of continuous change.

For this structure of knowledge it is assumed that one can describe ‘situations’, possible changes of such a situation, and that one can have a concept how to apply descriptions of recognized possible changes to a given situation.

With the recognition of an immanent infinity manifested in many concrete finite situations, it is immediately clear that the set of assumed descriptions of change should correspond with the observable changes, otherwise the theory has little practical use. Likewise, of course, it is important that the assumed situation descriptions correspond with the observable world. Fulfilling the correspondence requirements or checking that they are true is anything but trivial.

ABSTRACT – REAL – INDETERMINATE

To these ‘correspondence requirements’ here some additional considerations, in which the view of the everyday perspective comes up.

It is to be noted that a ‘model’ is not the environment itself, but only a ‘symbolic description’ of a section of the environment from the point of view and with the understanding of a human ‘author’! To which properties of the environment a description refers, only the author himself knows, who ‘links’ the chosen ‘symbols’ (text or language) ‘in his head’ with certain properties of the environment, whereby these properties of the environment must also be represented ‘in the head’, quasi ‘knowledge images’ of ‘perception events’, which have been triggered by the environmental properties. These ‘knowledge images in the head’ are ‘real’ for the respective head; compared to the environment, however, they are basically only ‘fictitious’; unless there is currently a connection between current fictitious ‘images in the head’ and the ‘current perceptions’ of ‘environmental events’, which makes the ‘concrete elements of perception’ appear as ‘elements of the fictitious images’. Then the ‘fictitious’ pictures would be ‘fictitious and real’.

Due to the ‘memory’, whose ‘contents’ are more or less ‘unconscious’ in the ‘normal state’, we can however ‘remember’ that certain ‘fictitious pictures’ were once ‘fictitious and real’ in the past. This can lead to a tendency in everyday life to ascribe a ‘presumed reality’ to fictional images that were once ‘real’ in the past, even in the current present. This tendency is probably of high practical importance in everyday life. In many cases these ‘assumptions’ also work. However, this ‘spontaneous-for-real-holding’ can often be off the mark; a common source of error.

The ‘spontaneous-for-real-holding’ can be disadvantageous for many reasons. For example, the fictional images (as inescapably abstract images) may in themselves be only ‘partially appropriate’. The context of the application may have changed. In general, the environment is ‘in flux’: facts that were given yesterday may be different today.

The reasons for the persistent changes are different. Besides such changes, which we could recognize by our experience as an ‘identifiable pattern’, there are also changes, which we could not assign to a pattern yet; these can have a ‘random character’ for us. Finally there are also the different ‘forms of life’, which are basically ‘not determined’ by their system structure in spite of all ‘partial determinateness’ (one can also call this ‘immanent freedom’). The behavior of these life forms can be contrary to all other recognized patterns. Furthermore, life forms behave only partially ‘uniformly’, although everyday structures with their ‘rules of behavior’ – and many other factors – can ‘push’ life forms with their behavior into a certain direction.

If one remembers at this point again the preceding thoughts about the ‘immanent infinity’ and the view that the single, finite moments are only understandable as ‘part of a process’, whose ‘logic’ is not decoded to a large extent until today, then it is clear, that any kind of ‘modeling’ within the comprehensive change processes can only have a preliminary approximation character, especially since it is aggravated by the fact that the human actors are not only ‘passively receiving’, but at the same time always also ‘actively acting’, and thereby they influence the change process by their actions! These human influences result from the same immanent infinity as those which cause all other changes. The people (like the whole life) are thus inevitably real ‘co-creative’ …. with all the responsibilities which result from it.

MORALITY ABOVE ALL

What exactly one has to understand by ‘morality’, one has to read out of many hundreds – or even more – different texts. Every time – and even every region in this world – has developed different versions.

In this text it is assumed that with ‘moral’ such ‘views’ are meant, which should contribute to the fact that an individual person (or a group or …) in questions of the ‘decision’ of the kind “Should I rather do A or B?” should get ‘hints’, how this question can be answered ‘best’.

If one remembers at this point what was said before about that form of thinking which allows ‘prognoses’ (thinking in explicit ‘models’ or ‘theories’), then there should be an ‘evaluation’ of the ‘possible continuations’ independent of a current ‘situation description’ and independent of the possible ‘knowledge of change’. So there must be ‘besides’ the description of a situation as it ‘is’ at least a ‘second level’ (a ‘meta-level’), which can ‘talk about’ the elements of the ‘object-level’ in such a way that e.g. it can be said that an ‘element A’ from the object-level is ‘good’ or ‘bad’ or ‘neutral’ or with a certain gradual ‘tuning’ ‘good’ or ‘bad’ or ‘neutral’ at the meta-level. This can also concern several elements or whole subsets of the object level. This can be done. But for it to be ‘rationally acceptable’, these valuations would have to be linked to ‘some form of motivation’ as to ‘why’ this valuation should be accepted. Without such a ‘motivation of evaluations’ such an evaluation would appear as ‘pure arbitrariness’.

At this point the ‘air’ becomes quite ‘thin’: in the history so far no convincing model for a moral justification became known, which is in the end not dependent from the decision of humans to set certain rules as ‘valid for all’ (family, village, tribe, …). Often the justifications can still be located in the concrete ‘circumstances of life’, just as often the concrete circumstances of life ‘recede into the background’ in the course of time and instead abstract concepts are introduced, which one endows with a ‘normative power’, which elude a more concrete analysis. Rational access is then hardly possible, if at all.

In a time like in the year 2023, in which the available knowledge is sufficient to be able to recognize the interdependencies of literally everybody from everybody, in addition the change dynamics, which can threaten with the components ‘global warming’ the ‘sustainable existence of life on earth’ substantially, ‘abstractly set normative terms’ appear not only ‘out of time’, no, they are highly dangerous, since they can substantially hinder the preservation of life in the further future.

META-MORAL (Philosophy)

The question then arises whether this ‘rational black hole’ of ‘justification-free normative concepts’ marks the end of human thinking or whether thinking should instead just begin here?

Traditionally, ‘philosophy’ understands itself as that attitude of thinking, in which every ‘given’ – including any kind of normative concepts – can be made an ‘object of thinking’. And just the philosophical thinking has produced exactly this result in millennia of struggle: there is no point in thinking, from which all ought/all evaluating can be derived ‘just like that’.

In the space of philosophical thinking, on the meta-moral level, it is possible to ‘thematize’ more and more aspects of our situation as ‘mankind’ in a dynamic environment (with man himself as part of this environment), to ‘name’ them, to place them in a ‘potential relations’, to make ‘thinking experiments’ about ‘possible developments’, but this philosophical meta-moral knowledge is completely transparent and always identifiable. The inferences about why something seems ‘better’ than something else are always ’embedded’, ‘related’. The demands for an ‘autonomous morality’, for an ‘absolute morality’ besides philosophical thinking appear ‘groundless’, ‘arbitrary’, ‘alien’ to the ‘matter’ against this background. A rational justification is not possible.

A ‘rationally unknowable’ may exist, exists even inescapably, but this rationally unknowable is our sheer existence, the actual real occurrence, for which so far there is no rational ‘explanation’, more precisely: not yet. But this is not a ‘free pass’ for irrationality. In ‘irrationality’ everything disappears, even the ‘rationally unrecognizable’, and this belongs to the most important ‘facts’ in the world of life.

COMMENTS

[1] The different forms of ‘infinity’, which have been introduced into mathematics with the works of Georg Cantor and have been intensively further investigated, have nothing to do with the experienceable finiteness/ infinity described in the text: https://en.wikipedia.org/wiki/Georg_Cantor . However, if one wants to ‘describe’ the ‘experience’ of real finiteness/ infinity, then one will possibly want to fall back on descriptive means of mathematics. But it is not a foregone conclusion whether the mathematical concepts ‘harmonize’ with the empirical experience standing to the matter.

THINKING: everyday – philosophical – empirical theoretical (sketch)

(First: June 9, 2023 – Last change: June 10, 2023)

Comment: This post is a translation from a German text in my blog ‘cognitiveagent.org’ with the aid of the deepL software

CONTEXT

The current phase of my thinking continues to revolve around the question how the various states of knowledge relate to each other: the many individual scientific disciplines drift side by side; philosophy continues to claim supremacy, but cannot really locate itself convincingly; and everyday thinking continues to run its course unperturbed with the conviction that ‘everything is clear’, that you just have to look at it ‘as it is’. Then the different ‘religious views’ come around the corner with a very high demand and a simultaneous prohibition not to look too closely. … and much more.

INTENTION

In the following text three fundamental ways of looking at our present world are outlined and at the same time they are put in relation to each other. Some hitherto unanswered questions can possibly be answered better, but many new questions arise as well. When ‘old patterns of thinking’ are suspended, many (most? all?) of the hitherto familiar patterns of thinking have to be readjusted. All of a sudden they are simply ‘wrong’ or strongly ‘in need of repair’.

Unfortunately it is only a ‘sketch’.[1]

THOUGHTS IN EVERYDAY

FIG. 1: In everyday thinking, every human being (a ‘homo sapiens’ (HS)) assumes that what he knows of a ‘real world’ is what he ‘perceives’. That there is this real world with its properties, he is – more or less – ‘aware’ of, there is no need to discuss about it specially. That, what ‘is, is’.

… much could be said …

PHILOSOPHICAL THINKING

FIG. 2: Philosophical thinking starts where one notices that the ‘real world’ is not perceived by all people in ‘the same way’ and even less ‘imagined’ in the same way. Some people have ‘their ideas’ about the real world that are strikingly ‘different’ from other people’s ideas, and yet they insist that the world is exactly as they imagine it. From this observation in everyday life, many new questions can arise. The answers to these questions are as manifold as there were and are people who gave or still give themselves to these philosophical questions.

… famous examples: Plato’s allegory of the cave suggests that the contents of our consciousness are perhaps not ‘the things themselves’ but only the ‘shadows’ of what is ultimately ‘true’ … Descartes‘ famous ‘cogito ergo sum’ brings into play the aspect that the contents of consciousness also say something about himself who ‘consciously perceives’ such contents …. the ‘existence of the contents’ presupposes his ‘existence as thinker’, without which the existence of the contents would not be possible at all …what does this tell us? … Kant’s famous ‘thing in itself’ (‘Ding an sich’) can be referred to the insight that the concrete, fleeting perceptions can never directly show the ‘world as such’ in its ‘generality’. This lies ‘somewhere behind’, hard to grasp, actually not graspable at all? ….

… many things could be said …

EMPIRICAL-THEORETICAL THINKING

FIG. 3: The concept of an ’empirical theory’ developed very late in the documented history of man on this planet. On the one hand philosophically inspired, on the other hand independent of the widespread forms of philosophy, but very strongly influenced by logical and mathematical thinking, the new ’empirical theoretical’ thinking settled exactly at this breaking point between ‘everyday thinking’ and ‘theological’ as well as ‘strongly metaphysical philosophical thinking’. The fact that people could make statements about the world ‘with the chest tone of conviction’, although it was not possible to show ‘common experiences of the real world’, which ‘corresponded’ with the expressed statements, inspired individual people to investigate the ‘experiential (empirical) world’ in such a way that everyone else could have the ‘same experiences’ with ‘the same procedure’. These ‘transparent procedures’ were ‘repeatable’ and such procedures became what was later called ’empirical experiment’ or then, one step further, ‘measurement’. In ‘measuring’ one compares the ‘result’ of a certain experimental procedure with a ‘previously defined standard object’ (‘kilogram’, ‘meter’, …).

This procedure led to the fact that – at least the experimenters – ‘learned’ that our knowledge about the ‘real world’ breaks down into two components: there is the ‘general knowledge’ what our language can articulate, with terms that do not automatically have to have something to do with the ‘experiential world’, and such terms that can be associated with experimental experiences, and in such a way that other people, if they engage in the experimental procedure, can also repeat and thereby confirm these experiences. A rough distinction between these two kinds of linguistic expressions might be ‘fictive’ expressions with unexplained claims to experience, and ’empirical’ expressions with confirmed claims to experience.

Since the beginning of the new empirical-theoretical way of thinking in the 17th century, it took at least 300 years until the concept of an ’empirical theory’ was consolidated to such an extent that it became a defining paradigm in many areas of science. However, many methodological questions remained controversial or even ‘unsolved’.

DATA and THEORY

For many centuries, the ‘misuse of everyday language’ for enabling ’empirically unverifiable statements’ was directly chalked up to this everyday language and the whole everyday language was discredited as ‘source of untruths’. A liberation from this ‘ monster of everyday language’ was increasingly sought in formal artificial languages or then in modern axiomatized mathematics, which had entered into a close alliance with modern formal logic (from the end of the 19th century). The expression systems of modern formal logic or then of modern formal mathematics had as such (almost) no ‘intrinsic meaning’. They had to be introduced explicitly on a case-by-case basis. A ‘formal mathematical theory’ could be formulated in such a way that it allowed ‘logical inferences’ even without ‘explicit assignment’ of an ‘external meaning’, which allowed certain formal expressions to be called ‘formally true’ or ‘formally false’.

This seemed very ‘reassuring’ at first sight: mathematics as such is not a place of ‘false’ or ‘foisted’ truths.

The intensive use of formal theories in connection with experience-based experiments, however, then gradually made clear that a single measured value as such does not actually have any ‘meaning’ either: what is it supposed to ‘mean’ that at a certain ‘time’ at a certain ‘place’ one establishes an ‘experienceable state’ with certain ‘properties’, ideally comparable to a previously agreed ‘standard object’? ‘Expansions’ of bodies can change, ‘weight’ and ‘temperature’ as well. Everything can change in the world of experience, fast, slow, … so what can a single isolated measured value say?

It dawned to some – not only to the experience-based researchers, but also to some philosophers – that single measured values only get a ‘meaning’, a possible ‘sense’, if one can at least establish ‘relations’ between single measured values: Relations ‘in time’ (before – after), relations at/in place (higher – lower, next to each other, …), ‘interrelated quantities’ (objects – areas, …), and that furthermore the different ‘relations’ themselves again need a ‘conceptual context’ (single – quantity, interactions, causal – non-causal, …).

Finally, it became clear that single measured values needed ‘class terms’, so that they could be classified somehow: abstract terms like ‘tree’, ‘plant’, ‘cloud’, ‘river’, ‘fish’ etc. became ‘collection points’, where one could deliver ‘single observations’. With this, hundreds and hundreds of single values could then be used, for example, to characterize the abstract term ‘tree’ or ‘plant’ etc.

This distinction into ‘single, concrete’ and ‘abstract, general’ turns out to be fundamental. It also made clear that the classification of the world by means of such abstract terms is ultimately ‘arbitrary’: both ‘which terms’ one chooses is arbitrary, and the assignment of individual experiential data to abstract terms is not unambiguously settled in advance. The process of assigning individual experiential data to particular terms within a ‘process in time’ is itself strongly ‘hypothetical’ and itself in turn part of other ‘relations’ which can provide additional ‘criteria’ as to whether date X is more likely to belong to term A or more likely to belong to term B (biology is full of such classification problems).

Furthermore, it became apparent that mathematics, which comes across as so ‘innocent’, can by no means be regarded as ‘innocent’ on closer examination. The broad discussion of philosophy of science in the 20th century brought up many ‘artifacts’ which can at least easily ‘corrupt’ the description of a dynamic world of experience.

Thus it belongs to formal mathematical theories that they can operate with so-called ‘all- or particular statements’. Mathematically it is important that I can talk about ‘all’ elements of a domain/set. Otherwise talking becomes meaningless. If I now choose a formal mathematical system as conceptual framework for a theory which describes ’empirical facts’ in such a way that inferences become possible which are ‘true’ in the sense of the theory and thus become ‘predictions’ which assert that a certain fact will occur either ‘absolutely’ or with a certain probability X greater than 50%, then two different worlds unite: the fragmentary individual statements about the world of experience become embedded in ‘all-statements’ which in principle say more than empirical data can provide.

At this point it becomes visible that mathematics, which appears to be so ‘neutral’, does exactly the same job as ‘everyday language’ with its ‘abstract concepts’: the abstract concepts of everyday language always go beyond the individual case (otherwise we could not say anything at all in the end), but just by this they allow considerations and planning, as we appreciate them so much in mathematical theories.

Empirical theories in the format of formal mathematical theories have the further problem that they as such have (almost) no meanings of their own. If one wants to relate the formal expressions to the world of experience, then one has to explicitly ‘construct a meaning’ (with the help of everyday language!) for each abstract concept of the formal theory (or also for each formal relation or also for each formal operator) by establishing a ‘mapping’/an ‘assignment’ between the abstract constructs and certain provable facts of experience. What may sound so simple here at first sight has turned out to be an almost unsolvable problem in the course of the last 100 years. Now it does not follow that one should not do it at all; but it does draw attention to the fact that the choice of a formal mathematical theory need not automatically be a good solution.

… many things could still be said …

INFERENCE and TRUTH

A formal mathematical theory can derive certain statements as formally ‘true’ or ‘false’ from certain ‘assumptions’. This is possible because there are two basic assumptions: (i) All formal expressions have an ‘abstract truth value’ as ‘abstractly true’ or just as ‘abstractly not true’. Furthermore, there is a so-called ‘formal notion of inference’ which determines whether and how one can ‘infer’ other formal expressions from a given ‘set of formal expressions’ with agreed abstract truth values and a well-defined ‘form’. This ‘derivation’ consists of ‘operations over the signs of the formal expressions’. The formal expressions are here ‘objects’ of the notion of inference, which is located on a ‘level higher’, on a ‘meta-level 1’. The inference term is insofar a ‘formal theory’ of its own, which speaks about certain ‘objects of a deeper level’ in the same way as the abstract terms of a theory (or of everyday language) speak about concrete facts of experience. The interaction of the notion of inference (at meta-level 1) and the formal expressions as objects presupposes its own ‘interpretive relation’ (ultimately a kind of ‘mapping’), which in turn is located at yet another level – meta-level 2. This interpretive relation uses both the formal expressions (with their truth values!) and the inference term as ‘objects’ to install an interpretive relation between them. Normally, this meta-level 2 is handled by the everyday language, and the implicit interpretive relation is located ‘in the minds of mathematicians (actually, in the minds of logicians)’, who assume that their ‘practice of inference’ provides enough experiential data to ‘understand’ the ‘content of the meaning relation’.

It had been Kurt Gödel [2], who in 1930/31 tried to formalize the ‘intuitive procedure’ of meta-proofs itself (by means of the famous Gödelization) and thus made the meta-level 3 again a new ‘object’, which can be discussed explicitly. Following Gödel’s proof, there were further attempts to formulate this meta-level 3 again in a different ways or even to formalize a meta-level 4. But these approaches remained so far without clear philosophical result.

It seems to be clear only that the ability of the human brain to open again and again new meta-levels, in order to analyze and discuss with it previously formulated facts, is in principle unlimited (only limited by the finiteness of the brain, its energy supply, the time, and similar material factors).

An interesting special question is whether the formal inference concept of formal mathematics applied to experience facts of a dynamic empirical world is appropriate to the specific ‘world dynamics’ at all? For the area of the ‘apparently material structures’ of the universe, modern physics has located multiple phenomena which simply elude classical concepts. A ‘matter’, which is at the same time ‘energy’, tends to be no longer classically describable, and quantum physics is – despite all ‘modernity’ – in the end still a ‘classical thinking’ within the framework of a formal mathematics, which does not possess many properties from the approach, which, however, belong to the experienceable world.

This limitation of a formal-mathematical physical thinking shows up especially blatantly at the example of those phenomena which we call ‘life’. The experience-based phenomena that we associate with ‘living (= biological) systems’ are, at first sight, completely material structures, however, they have dynamic properties that say more about the ‘energy’ that gives rise to them than about the materiality by means of which they are realized. In this respect, implicit energy is the real ‘information content’ of living systems, which are ‘radically free’ systems in their basic structure, since energy appears as ‘unbounded’. The unmistakable tendency of living systems ‘out of themselves’ to always ‘enable more complexity’ and to integrate contradicts all known physical principles. ‘Entropy’ is often used as an argument to relativize this form of ‘biological self-dynamics’ with reference to a simple ‘upper bound’ as ‘limitation’, but this reference does not completely nullify the original phenomenon of the ‘living’.

It becomes especially exciting if one dares to ask the question of ‘truth’ at this point. If one locates the meaning of the term ‘truth’ first of all in the situation in which a biological system (here the human being) can establish a certain ‘correspondence’ between its abstract concepts and such concrete knowledge structures within its thinking, which can be related to properties of an experiential world through a process of interaction, not only as a single individual but together with other individuals, then any abstract system of expression (called ‘language’) has a ‘true relation to reality’ only to the extent that there are biological systems that can establish such relations. And these references further depend on the structure of perception and the structure of thought of these systems; these in turn depend on the nature of bodies as the context of brains, and bodies in turn depend on both the material structure and dynamics of the environment and the everyday social processes that largely determine what a member of a society can experience, learn, work, plan, and do. Whatever an individual can or could do, society either amplifies or ‘freezes’ the individual’s potential. ‘Truth’ exists under these conditions as a ‘free-moving parameter’ that is significantly affected by the particular process environment. Talk of ‘cultural diversity’ can be a dangerous ‘trivialization’ of massive suppression of ‘alternative processes of learning and action’ that are ‘withdrawn’ from a society because it ‘locks itself in’. Ignorance tends not to be a good advisor. However, knowledge as such does not guarantee ‘right’ action either. The ‘process of freedom’ on planet Earth is a ‘galactic experiment’, the seriousness and extent of which is hardly seen so far.

COMMENTS

[1] References are omitted here. Many hundreds of texts would have to be mentioned. No sketch can do that.

[2] See for the ‘incompleteness theorems’ of Kurt Gödel (1930, published 1931): https://en.wikipedia.org/wiki/Kurt_G%C3%B6del#Incompleteness_theorems

THE COLLECTIVE MAN-MACHINE INTELLIGENCE Paradigm WITHIN SUSTAINABLE DEVELOPMENT

eJournal: uffmm.org
ISSN 2567-6458, 23.March 2023 – April 4, 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text starts the topic of the Collective Man-Machine Intelligence Paradigm within Sustainable Development.

OUTLINE

For most readers the divers content of this blog is hard to understand if told that all these parts belong to one coherent picture. But indeed, there exists one coherent picture. This is the first publication of this one coherent picture.

FIGURE : This figure outlines the first time the intended view of the new ‘Collective Man-Maschine Intelligence’ paradigm within a certain view of ‘Sustainable Development’. The mentioned different kinds of certain algorithms are arbitrary; only the ‘oksimo.R Software’ has a general meaning pointing to a new type of software which is at the same time editor and simulator of a real (sustainable) empirical theory, which can also be used for gaming.

Looking deeper into this figure you can perhaps get a rough idea, which kinds of questions had to be answered before this unified view could be formulated. And every subset of this view is backed up by complete formal specifications and even formal theories. Telling the story ‘afterwards’ is often ‘simple’, but to find all the different parts in the ‘overall picture’ one after the other is rather tedious. At last I needed about 50 years of research …

In the next weeks I will write some more comments. As always there are many ‘threads’ working in parallel and I have to complete some others before.

The Everyday Application Scenario

(The following text is an English translation from an originally German text partially generated with the www.DeepL.com/Translator (free version))

Having a meta-theoretical concept of a ‘sustainable empirical theory (SET)’ accompanied by the meta-theoretical concept of ‘collective intelligence (CI)’ it isn’t straightforward how these components are working together in an everyday scenario. The following figure gives a rough outline of that framework which — probably — has to be assumed.

FIGURE : Outline of the everyday scenario applying a sustainable empirical theory (SET) together with ‘collective intelligence (CI)’. For more explanations see the text.

CONCEPTS AND PROCESSES

To have abstract (meta-theoretical) concepts it isn’t sufficient to change the real world only with these. It needs always some ‘translation’ of abstract meanings into concrete, real processes which are ‘working in everyday real environments’. Thus, every ‘concept’ needs a bundle of ‘processes’ associated with the meaning of the abstract concept which are capable to bring the abstract meaning ‘into life’.

Theory Concept

A structural concept describes e.g. on a meta-level what a ‘sustainable empirical theory’ is and compares this concept with the concept ‘game’ and ‘theater play’. Since it can quickly become very time-consuming to write down complete theories by hand, it can be very helpful to have a software (there is one under the name ‘oksimo.R’) that supports citizens in writing down the ‘text of a theory’ together with other citizens in ‘normal language’ and also to ‘simulate’ it as needed; furthermore, it would be good to be able to ‘play’ a theory interactively (and ultimately even much more).

Having the text of a theory, trying it out and developing it further is one thing. But the way to a theory can be tedious and long. It requires a great deal of ‘experience’, ‘knowledge’ and multiple forms of what is usually very vaguely called ‘intelligence’.

Concept Collective Intelligence

Intelligence typically occurs in the context of ‘biological systems’, in ‘humans’ and ‘non-humans’. More recently, there are also examples of vague intelligence being realized by ‘machines’. In the end, all these different phenomena, which are roughly summarized under the term ‘intelligence’, form a pattern which could be considered as ‘collective intelligence’ under a certain consideration. There are many prominent examples of this in the field of ‘non-human biological systems’, and then especially in ‘human biological systems’ with their ‘coordinated behavior’ in connection with their ‘symbolic languages’.

The great challenge of the future is to bring together these different ‘types of individual and collective intelligence’ into a real constructive-collective intelligence.

Concept Empirical Data

The most general form of a language is the so-called ‘normal language’ or ‘everyday language’. It contains in one concept everything we know today about languages.

An interesting aspect is the fact that the everyday language forms for each special kind of language (logic, mathematics, …) that ‘meta-language’, on whose basis the other special language is ‘introduced’.

The possible ‘elements of meaning and structures of meaning’, out of which the everyday language structures have been formed, originate from the space of everyday life and its world of events.

While the normal perceptual processes in coordination among the different speaker-listeners can already provide a lot of valuable descriptions of everyday properties and processes, specialized observation processes in the form of ‘standardized measurement processes’ can considerably increase the accuracy of descriptions. The central moment is that all participating speaker-listeners interested in a ‘certain topic’ (physics, chemistry, spatial relations, game moves, …) agree on ‘agreed description procedures’ for all ‘important properties’, which everyone performs in the same way in a transparent and reproducible way.

Processes in Everyday Life

As pointed out above whatever conceptual structures may have been agreed upon, they can only ‘come into effect’ (‘come to life’) if there are enough people who are willing to live all those ‘processes’ concretely within the framework of everyday life. This requires space, time, the necessary resources and a sufficiently strong and persistent ‘motivation’ to live these processes every day anew.

Thus, in addition to humans, animals and plants and their needs, there is now a huge amount of artificial structures (houses, roads, machines,…), each of which also makes certain demands on its environment. Knowing these requirements and ‘coordinating/managing’ them in such a way that they enable positive ‘synergies’ is a huge challenge, which – according to the impression in 2023 – often overtaxes mankind.

Abstract Elements & Glimpses of an Ontology


eJournal: uffmm.org
ISSN 2567-6458, 28.February 2023 – 28.February 2023
, 10:45 CET
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Parts of this text have been translated with www.DeepL.com/Translator (free version), afterwards only minimally edited.

— Not yet finished —

CONTEXT

This post is part of the book project ‘oksimo.R Editor and Simulator for Theories’.

Abstract Elements

Figure 1

The abstract elements introduced so far are still few, but they already allow to delineate a certain ‘abstract space’. Thus there are so far

  1. Abstract elements in current memory (also ‘consciousness’) based on concrete perception,
  2. which then can pass over into stored abstract – and dynamic – elements of potential memory,
  3. further abstract concepts of n.th order in current as well as in potential memory,
  4. Abstract elements in current memory (also ‘consciousness’) based on concrete perception, which function as linguistic elements,
  5. which can then also pass over into stored abstract – and dynamic – elements of potential (linguistic) memory,
  6. likewise abstract linguistic concepts of nth order in actual as well as in potential memory,
  7. abstract relations between abstract linguistic elements and abstract other elements of current as well as potential memory (‘meaning relations’).
  8. linguistic expressions for the description of factual changes and
  9. linguistic expressions for the description of analytic changes.

The generation of abstract linguistic elements thus allows in many ways the description of changes of something given, which (i) is either only ‘described’ as an ‘unconditional’ event or (ii) works with ‘rules of change’, which clearly distinguishes between ‘condition’ and ‘effect’. This second case with change-rules can be related to many varieties of ‘logical inference’. In fact, any known form of ‘logic’ can be ’emulated’ with this general concept of change rules.

This idea, only hinted at here, will be explored in some detail and demonstrated in various applications as we proceed.

Glimpses of an Ontology

Already these few considerations about ‘abstract elements’ show that there are different forms of ‘being’.[1].

In the scheme of FIG. 1, there are those givens in the real external world which can become the trigger of perceptions. However, our brain cannot directly recognize these ‘real givens’, only their ‘effects in the nervous system’: first (i) as ‘perceptual event’, then (ii) as ‘memory construct’ distinguished into (ii.1) ‘current memory (working memory, short-term memory, …) and (ii.2) ‘potential memory’ (long-term memory, various functional classifications, …).”[2]

If one calls the ‘contents’ of perception and current memory ‘conscious’ [3], then the primary form of ‘being’, which we can directly get hold of, would be those ‘conscious contents’, which our brain ‘presents’ to us from all its neuronal calculations. Our ‘current perceptions’ then stand for the ‘reality out there’, although we actually cannot grasp ‘the reality out there’ ‘directly, immediately’, but only ‘mediated, indirectly’.

Insofar as we are ‘aware’ of ‘current contents’ that ‘potential memory’ makes ‘available’ to us (usually called ‘remembering’ in everyday life; as a result, a ‘memory’), we also have some form of ‘primary being’ available, but this primary being need not have any current perceptual counterpart; hence we classify it as ‘only remembered’ or ‘only thought’ or ‘abstract’ without ‘concrete’ perceptual reference.

For the question of the correspondence in content between ‘real givenness’ and ‘perceived givenness’ as well as between ‘perceived givenness’ and ‘remembered givenness’ there are countless findings, all of which indicate that these two relations are not ‘1-to-1’ mappings under the aspect of ‘mapping similarity’. This is due to multiple reasons.

In the case of the perceptual similarity with the triggering real givens, already the interaction between real givens and the respective sense organs plays a role, then the processing of the primary sense data by the sense organ itself as well as by the following processing in the nervous system. The brain works with ‘time slices’, with ‘selection/condensation’ and with ‘interpretation’. The latter results from the ‘echo’ from potential memory that ‘comments’ on current neural events. In addition, different ’emotions’ can influence the perceptual process. [4] The ‘final’ product of transmission, processing, selection, interpretation and emotions is then what we call ‘perceptual content’.

In the case of ‘memory similarity’ the processing of ‘abstracting’ and ‘storing’, the continuous ‘activations’ of memory contents as well as the ‘interactions’ between remembered things indicate that ‘memory contents’ can change significantly in the course of time without the respective person, who is currently remembering, being able to read this from the memory contents themselves. In order to be able to recognize these changes, one needs ‘records’ of preceding points in time (photos, films, protocols, …), which can provide clues to the real circumstances with which one can compare one’s memories.”[5]

As one can see from these considerations, the question of ‘being’ is not a trivial question. Single fragments of perceptions or memories tend to be no 1-to-1 ‘representatives’ of possible real conditions. In addition, there is the high ‘rate of change’ of the real world, not least also by the activities of humans themselves.

COMMENTS

[1] The word ‘being’ is one of the oldest and most popular concepts in philosophy. In the case of European philosophy, the concept of ‘being’ appears in the context of classical Greek philosophy, and spreads through the centuries and millennia throughout Europe and then in those cultures that had/have an exchange of ideas with the European culture. The systematic occupation with the concept ‘being’ the philosophers called and call ‘ontology’. See for this the article ‘Ontology’ in wkp-en: https://en.wikipedia.org/wiki/Ontology .

[2] On the subject of ‘perception’ and ‘memory’ there is a huge literature in various empirical disciplines. The most important may well be ‘biology’, ‘experimental pschology’ and ‘brain science’; these supplemented by philosophical ‘phenomenology’, and then combinations of these such as ‘neuro-psychology’ or ‘neuro-phenomenology’, etc. In addition there are countless other special disciplines such as ‘linguistics’ and ‘neuro-linguistics’.

[3] A question that remains open is how the concept of ‘consciousness’, which is common in everyday life, is to be placed in this context. Like the concept of ‘being’, the concept of ‘consciousness’ has been and still is very prominent in recent European philosophy, but it has also received strong attention in many empirical disciplines; especially in the field of tension between philosophical phenomenology, psychology and brain research, there is a long and intense debate about what is to be understood by ‘consciousness’. Currently (2023) there is no clear, universally accepted outcome of these discussions. Of the many available working hypotheses, the author of this text considers the connection to the empirical models of ‘current memory’ in close connection with the models of ‘perception’ to be the most comprehensible so far. In this context also the concept of the ‘unconscious’ would be easy to explain. For an overview see the entry ‘consciousness’ in wkp-en: https://en.wikipedia.org/wiki/Consciousness

[4] In everyday life we constantly experience that different people perceive the same real events differently, depending on which ‘mood’ they are in, which current needs they have at the moment, which ‘previous knowledge’ they have, and what their real position to the real situation is, to name just a few factors that can play a role.

[5] Classical examples for the lack of quality of memories have always been ‘testimonies’ to certain events. Testimonies almost never agree ‘1-to-1′, at best ‘structurally’, and even in this there can be ‘deviations’ of varying strength.

LANGUAGE AND STRUCTURES

eJournal: uffmm.org
ISSN 2567-6458, 27.February 2023 – 27.February 2023, 01:45 CET
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Parts of this text have been translated with www.DeepL.com/Translator (free version), afterwards only minimally edited.

CONTEXT

( This text is an direct continuation of the text  “The ‘inside’ of the ‘outside’. Basic Building Blocks”) within the project ‘oksimo.R Editor and Simulator for Theories’.

‘Transient’ events and language

After we have worked our way forward in the biological cell galaxy ‘man’ so far that we can determine its ‘structuredness’ (without really understanding its origin and exact functioning), and then find ourselves according to the appearance as ‘concrete body’ which can ‘communicate’ with the ‘environment of the own body’ (often also called ‘outside world’) twofold: We can ‘perceive’ in different ways and we can produce ‘effects’ in the outside world in different ways.

For the ‘coordination’ with other human bodies, especially between the ‘brains’ in these bodies, the ability to ‘speak-listen’ or then also to ‘write-read’ seems to be of highest importance. Already as children we find ourselves in environments where language occurs, and we ‘learn’ very quickly that ‘linguistic expressions’ can refer not only to ‘objects’ and their ‘properties’, but also to fleeting ‘actions’ (‘Peter gets up from the table’) and also other ‘fleeting’ events (‘the sun rises’; ‘the traffic light just turned red’). There are also linguistic expressions that refer only partially to something perceptible, such as ‘Hans’ father’ (who is not in the room at all), ‘yesterday’s food’ (which is not there), ‘I hate you’ (‘hate’ is not an object), ‘the sum of 3+5’ (without there being anything that looks like ‘3’ or ‘5’), and many more.

For the ‘coordination’ with other human bodies, especially between the ‘brains’ in these bodies, the ability to ‘speak-listen’ or then also to ‘write-read’ seems to be of highest importance. Already as children we find ourselves in environments where language occurs, and we ‘learn’ very quickly that ‘linguistic expressions’ can refer not only to ‘objects’ and their ‘properties’, but also to fleeting ‘actions’ (‘Peter gets up from the table’) and also other ‘fleeting’ events (‘the sun rises’; ‘the traffic light just turned red’). There are also linguistic expressions that refer only partially to something perceptible, such as ‘The father of Bill’ (who is not in the room at all), ‘yesterday’s food’ (which is not there), ‘I hate you’ (‘hate’ is not an object), ‘the sum of 3+5’ (without there being anything that looks like ‘3’ or ‘5’), and many more.

If one tries to understand these ‘phenomena of our everyday life’ ‘more’, one can come across many exciting facts, which possibly generate more questions than they provide answers. All phenomena, which can cause ‘questions’, actually serve the ‘liberation of our thinking’ from currently wrong images. Nevertheless, questions are not very popular; they disturb, stress, …

How can one get closer to these manifold phenomena?

Let’s just look at some expressions of ‘normal language’ that we use in our ‘everyday life’.[1] In everyday life there are many different situations in which we sit down (breakfast, office, restaurant, school, university, reception hall, bus, subway, …). In some of these situations we speak, for example, of ‘chairs’, in others of ‘armchairs’, again in other situations of ‘benches’, or simply of ‘seats’. Before an event, someone might ask “Are there enough chairs?” or “Do we have enough armchairs?” or … In the respective concrete situation, it can be quite different objects that would pass for example as ‘chair’ or as ‘armchair’ or … This indicates that the ‘expressions of language’ (the ‘sounds’, the ‘written/printed signs’) can link to quite different things. There is no 1-to-1 mapping here. With other objects like ‘cups’, ‘glasses’, ‘tables’, ‘bottles’, ‘plates’ etc. it is not different.

These examples suggest that there seems to be a ‘structure’ here that ‘manifests’ itself in the concrete examples, but is itself located ‘beyond the events.'[2].

If one tries to ‘mentally sort’ this out, then at least two, rather three ‘dimensions’ suggest themselves here, which play into each other:

  1. There are concrete linguistic expressions – those we call ‘words’ – that a ‘speaker-hearer’ uses.
  2. There is, independently of the linguistic expressions, ‘some phenomenon’ in everyday life to which the ‘speaker-hearer’ refers with his linguistic expression (these can be ‘objects’ or ‘properties’ of objects, …)[3].
  3. The respective ‘speaker’ or ‘listener’ has ‘learned’ to establish a ‘relation’ between the ‘linguistic expression’ and the ‘other to the linguistic expression’.

Since we know that the same objects and events in everyday life can be ‘named’ quite differently in the ‘different languages’, this suggests that the relations assumed in each case by ‘speaker-hearer’ are not ‘innate’, but appear rather ‘arbitrary’ in each ‘language community’.[4] This suggests that the ‘relations’ found in everyday life between linguistic expressions and everyday facts have to be ‘learned’ by each speaker-hearer individually, and this through direct contact with speaker-hearers of the respective language community.

Body-External Conditions

FIGURE: Outline of some of the important structures inside the brain (and the body), which have to be assumed if one wants to explain the empirical observations of the human behavior.

The previous considerations allow the formation of a ‘working hypothesis’ for the phenomenon that a speaker-hearer can encounter ‘outside his body’ single objects (e.g. an object ‘cup’, a word ‘cup’), which as such have no direct relation to each other. But inside the speaker-hearer, ‘abstract concepts’ can then be formed triggered by the perceived concrete events, which ‘abstract a common core’ from the varying occurrences, which then represents the actual ‘abstract concept’.

Under the condition of such abstract concepts, ‘meaning relations’ can then form in the speaker-listener in such a way that a speaker can ‘learn’ to ‘mentally link’ the two individual objects ‘cup’ (as an object) and ‘cup’ (as a heard/written word) in such a way, that in the future the word ‘cup’ evokes an association with the object ‘cup’ and vice versa. This relationship of meaning (object ‘cup’, word ‘cup’) is based on ‘neural processes’ of perception and memory. They can form, but do not have to. If such neural processes are available, then the speaker-hearer can actualize the cognitive element ‘object cup’ even if there is no outside object available; in this case there is no ‘perceptual element’ available too which ‘corresponds’ to the ‘memory element’ object cup.

Given these assumptions, one can formulate two more assumptions:

(i) Abstraction from abstract concepts: the mechanism of ‘abstract concept formation’ works not only under the condition of concrete perceptual events, but also under the condition of already existing abstract concepts. If I already have abstract concepts like ‘table’, ‘chair’, ‘couch’, then I can, for example, form an abstract concept ‘furniture’ as an ‘umbrella concept’ to the three previously mentioned concepts. If one calls abstract concepts that directly refer to virtual-concrete concepts level 1 concepts, then one could call abstract concepts that presuppose at least one concept of level n level n+1 concepts. How many levels are of ‘use’ in the domain of abstract concepts is open. In general, the ‘higher the level’, the more difficult it is to tie back to level-0 concepts.

(ii) Abstraction forming meaning concepts: : the ‘mechanism of forming meaning relations’ also works with reference to arbitrary abstract concepts.

If Hans says to Anna, “Our furniture seems kind of worn out by now,” then the internal relation Furniture := { ‘table’, ‘chair’, ‘couch’ } would lead from the concept Furniture to the other subordinate concepts, and Anna would know (given the same language understanding) that Hans is actually saying, “Our furniture in the form of ‘table’, ‘chair’, ‘couch’ seems kind of worn out by now.”

Body internal Conditions

From the view of the brain are ‘body-internal processes’ (different body organs, manifold ‘sensors’, and more) also ‘external’ (see figure)! The brain also knows about these body-internal conditions only insofar as corresponding ‘signals’ are transmitted to it. These can be assigned to different ‘abstract concepts’ by the memory due to their ‘individual property profile’, and thus they also become ‘candidates for a semantic relation’. However, only if these abstractions are based on body-internal signal events that are represented in ‘current memory’ in such a way that ‘we’ become ‘aware’ of them. [5],[6]

The ‘body-internal event space’ that becomes ‘noticeable’ in the current memory is composed of very many different events. Besides ‘organ-specific’ signals, which sometimes can even be ‘localized’ to some extent inside the body (‘my left molar hurts’, ‘my throat itches’, ‘I am hungry’, etc.). ), there are very many ‘moods’/’feelings’/’emotions’ which are difficult or impossible to localize, but which are nevertheless ‘conscious’, and to which one can assign different ‘intensities’ (‘I am very sad’, ‘This makes me angry’, ‘The situation is hopeless’, ‘I love you very much’, ‘I don’t believe you’, …).

If one ‘assigns words’ to such ‘body-internal’ properties, then also a ‘meaning relation’ arises, however it is then differently difficult to almost unsolvable between two human actors to clarify in each case ‘for oneself’, what ‘the other’ probably ‘means’, if he uses a certain linguistic expression. In the case of ‘localizable’ linguistic expressions, one may be able to understand what is meant because of a similar physical structure (‘my left molar hurts’, ‘my throat itches’, ‘I am hungry’). With other, non-localizable linguistic expressions (‘I am very sad’, ‘This makes me angry’, ‘The situation is hopeless’, ‘I love you very much’, ‘I don’t believe you’, …) it becomes difficult. Often one can only ‘guess’; wrong interpretations are very likely.

It becomes exciting when speaker-hearers combine in their linguistic expressions not only such concepts that derive from body-external perceptual events, but also such concepts that derive from body-internal perceptual events. For example, when someone says “That red car over there, I don’t have a good feeling about it” or “Those people there with their caps scare me” or “When I see that fish roll, it really gives me an appetite” or “Oh, that great air,” etc. We make statements like these all the time. They manifest a continuous ‘duality of our world experience’: with our body we are ‘in’ an external body world, which we can specifically perceive, and at the same time we fragmentarily experience the ‘inside of our body’, how it reacts in the current situation. We can also think of it this way: Our body talks to us by means of the ‘body-internal signals’ about how it experiences/feels/ senses a current ‘external situation’.

Spatial Structures

In the figure above the perceptions and the current memories are represented ‘individually’. But in fact the brain processes all signals of the ‘same time slice’ [7] as if they were ‘elements of a three-dimensional space’. As a consequence, there are ‘spatial relations’ between the elements without the elements themselves being able to generate such relations. In the case of body-external percepts, there is a clear ‘beside’, ‘in front of’, ‘under’, etc. In the case of body-internal perceptions, the body forms a reference point, but the body as a reference point is differently concrete (‘My left toe…’, ‘I am tired’, ‘My stomach growls’, …).

If the speaker-hearers use ‘measuring operations’ in addition to their ‘normal’ innate perception in the case of body-external circumstances, then one can assign different measured values to the ‘circumstances in space’ (lengths, volumes, position in a coordinate system, etc.).

In the case of ‘body-internal’ conditions one can ‘measure’ the body itself including process properties – what e.g. experimental psychologists and brain researchers often do -, but the connection with the body-internal perceptions is, depending on the kind of the ‘body-internal perception’, either only ‘to some extent’ producible (‘My left tooth hurts’), or ‘rather not’ (‘I feel so weak today’, ‘Just now this thought popped into my head’).

Time: Now, Before, ‘Possible’

From everyday life we know the phenomenon that we can perceive ‘changes’: ‘The traffic light turns red’, ‘The engine starts’, ‘The sun rises’, … This is so natural to us that we hardly think about it.

This concept of ‘change’ presupposes a ‘now’ and a ‘before’ and the ability to ‘recognize differences’ between the ‘now’ and the ‘before’.

As a working hypothesis [9] for this property of recognizing ‘change’, the following assumptions are made here:

  1. Events as part of spatial arrangements are deposited as ‘situations’ in ‘potential memory’ in such a way that ‘current perceptions’ that differ from ‘deposited (before)’ situations are ‘noticed’ by unconscious comparison operations: we notice, without wanting to, that the traffic light changes from orange to green. We can describe such ‘changes’ by juxtaposing the ‘before’ and ‘now’ states.
  2. In a ‘comparison’ in the context of ‘changes’ we use ‘abstract remembered’ concepts in conjunction with ‘abstract perceived’ concepts, e.g. the state of the traffic light ‘before’ and ‘now’.
  3. ‘Current’ perceptions quickly pass into ‘remembered’ perceptions (The transition of the traffic light from orange to green happened ‘just’).
  4. We can ‘arrange’ the abstract concepts of remembered percepts ‘in a sequence/row’ such that an element in the row can be seen as ‘temporally’ prior’ to a subsequent element, or ‘temporally posterior’. By mapping into ‘linguistic expressions’ one can make these facts ‘more explicit’.
  5. By the availability of ‘temporal relations’ (‘x is temporally before y’, ‘y is temporally after x’, ‘y is temporally simultaneous with y’, …) one gains a starting point for considering ‘frequencies’ in these relations, e.g. “Is y temporally ‘always’ after y” or only ‘sometimes’? Is this temporal pattern ‘random’ or somehow ‘significant’?
  6. If the observed ‘patterns of temporal occurrence’ are ‘not purely random’ but imply significant probabilities, then on this basis one can formulate ‘hypotheses for such situations’ which ‘are not past and not present’, but in the light of the probabilities appear as ‘possible in the future’.

Time: factual and analytical

The preceding considerations about time assume that the ‘recognition of changes’ is based on an ‘automatic perception’: that something ‘changes’ in our perceptual space is based on ‘unconscious neuronal processes’ which ‘automatically detect’ this change and ‘automatically bring it to our attention’ without us having to do this ‘consciously’. In all languages there are linguistic expressions reflecting this: ‘drive’, ‘change’, ‘grow’, ‘fly’, ‘melt’, ‘heat’, ‘age’, … We can take notice of changes with a certain ‘ease’, but nothing more. It is the ‘pure fact’ of change what makes itself noticeable to us; hence the phrase ‘factual time’.

If we want to ‘understand’ what exactly happens during a change, why, under which conditions, how often, in which period of time etc., then we have to make the effort to ‘analyze’ such changes in more detail. This means we have to look at the ‘whole process of change’ and try to identify as many ‘individual moments’ in it that we can then – eventually – find clues as to what exactly happened, how and why.

Such an analysis can only succeed if we can answer the following questions:

  1. How to describe the situation ‘before’ the change?
  2. How can one describe the situation ‘after’ the change?
  3. What exactly are the ‘differences’?
  4. How can one formulate an if-then rule that states at which ‘condition’ which ‘change’ should be applied in such a way that the desired ‘new state’ results with all ‘changes’?

Example: A passer-by observes that a traffic light changes from orange to green. A (simple) analysis could work as follows:

change Rule (simple format)
  1. Before: The traffic light is orange.
  2. After: The traffic light is green.
  3. Difference: The ‘orange’ property has been replaced by the ‘green’ property.
Rule as a ‘text’:

Change rule: If: ‘A traffic light is orange’. Then: (i) Remove ‘A traffic light is orange’, (ii) Add: ‘A traffic light is green’.

If one wants to deepen this thought, one quickly encounters many questions concerning a single rule of change:

  1. What is important about a ‘situation before’? Is it necessary to write down ‘everything’ or only ‘partial aspects’? How does a group of human actors determine the ‘boundary’ from the situation to the wider environment? If only a partial description: how does one determine what is important?
  2. Corresponding questions also arise for the description of the ‘situation after’.
  3. It is also exciting to ask about the ‘if-part’ of the change rule: how many of the facts of the situation before are important? Are all of them important or only some? For example, if I can distinguish three facts: do they all have to be fulfilled ‘simultaneously’ or only ‘alternatively’?
  4. Interesting is also the ‘relation’ between the situation before and after: Is this observable change (i) ‘completely random’ or (ii) does this relation have a ‘certain frequency’ (a certain ‘probability value’), or (iii) does this relation ‘always’ occur?

If one looks at concrete examples of normal language usage on ‘factual time’ with these questions in mind, one can easily see how ‘minimalist’ change is practiced linguistically in everyday life:

  1. Peter goes upstairs.
  2. Are you coming?
  3. He finished the glass.
  4. She opened the door.
  5. We ate in silence.

All of these expressions (1) – (5) only briefly address the nature of the change, hint at the persons and objects involved, and leave the space in which this occurs unmentioned. The exact duration is also not explicitly stated. The speaker-listeners in these situations obviously presuppose that everyone can ‘infer the corresponding meaning for himself’ on the basis of the linguistic utterances on the one hand through ‘general linguistic knowledge’, on the other hand through being ‘concretely involved’ in the respective concrete situation.

A completely different aspect is provided in the case of an ‘analytic time’ by the question of the ‘description itself’, the ‘rule text’:

Change rule: If: ‘A traffic light is orange’. Then: (i) Remove ‘A traffic light is orange’, (ii) Add: ‘A traffic light is green’.

This text contains linguistic expressions ‘A traffic light is orange’ as well as ‘A traffic light is green’. These linguistic expressions have in the normal language mostly a certain ‘linguistic meaning’, which refer in this case to ‘memories’, which were formed due to ‘perceptions’. It is about the abstract object ‘traffic light’, to which the abstract properties ‘orange’ or ‘green’ are attributed or denied. Normally, speaker-hearers of English have learned to relate these abstract meanings on the occasion of a ‘concrete perception’ to such concrete realities (real traffic lights) which they have learned to ‘belong’ to in the course of their language learning. Without a current concrete perception, it is only a matter of abstract meanings by means of abstract memories, whose ‘reference to reality’ is only ‘potential’. Only with the occurrence of a concrete perception with the ‘suitable properties’ the ‘potential’ meaning becomes a ‘real given’ (empirical) meaning.

The text of a change rule thus abstractly describes a possible transition from an abstractly described situation to an abstractly possible other situation. Whether this abstract possibility ever becomes a concrete real meaning is open. The condensation of ‘repeated events’ of the same kind in the past (stored as memory) in the concept of ‘frequency’ or then in the concept of a ‘probability’ can indeed influence the ‘expectation of an actor’ to the effect that he ‘takes into account’ in his behavior that the change can occur if he ‘recreates’ the ‘triggering situation’, but there would be complete certainty of this only if the described change were based on a completely deterministic context.

What does not appear in this simple consideration is the temporal aspect: whether a change takes place in the millisecond range or in hours, days, months, years, that marks enormous differences.

Likewise the reference to a space: Where does it take place? How?

Working hypothesis CONTEXT

Linguistic descriptions of change happen as ‘abstract formulations’ and usually assume the following:

  1. A shared linguistic knowledge of meaning in the minds of those involved.
  2. A knowledge of the spatial situation in which the change takes place.
  3. A knowledge of the people and objects involved.
  4. A knowledge of the temporal dimension.
  5. Optional: a knowledge of experiential probability.

Descriptions of change, which are written abstractly, must – depending on the case and requirement – make the context aspects (1) – (5) explicit, in order to be ‘understandable’.

The demand for ‘comprehensibility’ is, however, in principle ‘vague’, since the respective contexts can be arbitrarily complex and arbitrarily different.

COMMENTS

[1] Instead of ‘normal language’ in ‘everyday life’ I also simply speak of ‘everyday language’ here.

[2] A thinker who has dealt with this phenomenon of the ‘everyday concrete’ and at the same time also ‘everyday – somehow – abstract’ is Ludwig Wittgenstein (see [2b,c]). He introduced the concept of ‘language-game’ for this purpose, without introducing an actual ‘(empirical) theory’ in the proper sense to comprise all these considerations.

[2b] Wittgenstein, L.; Tractatus Logico-Philosophicus, 1921/1922 /* Written during World War I, the work was completed in 1918. It first appeared with the support of Bertrand Russell in Wilhelm Ostwald’s Annalen der Naturphilosophie in 1921. This version, which was not proofread by Wittgenstein, contained gross errors. A corrected, bilingual edition (German/English) was published by Kegan Paul, Trench, Trubner and Co. in London in 1922 and is considered the official version. The English translation was by C. K. Ogden and Frank Ramsey. See introductory Wikipedia-EN: https://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus .

[2c] Wittgenstein, L.; Philosophical Investigations (Original Title: Philosophische Untersuchungen),1936-1946, published 1953 . Remark: ‘The Philosophical Investigations’ is Ludwig Wittgenstein’s late, second major work. It exerted an extraordinary influence on the philosophy of the 2nd half of the 20th century; the speech act theory of Austin and Searle as well as the Erlangen constructivism (Paul Lorenzen, Kuno Lorenz) are to be mentioned. The book is directed against the ideal of a logic-oriented language, which, along with Russell, Carnap, and Wittgenstein himself had advocated in his first major work. The book was written in the years 1936-1946, but was not published until 1953, after the author’s death. See introductory Wikipedia-EN: https://en.wikipedia.org/wiki/Philosophical_Investigations .

[3]In the borderline case, these ‘other’ phenomena of everyday life are also linguistic expressions (when one talks ‘about’ a text or linguistic utterances’).

[4] See: Language Family in wkp-en: https://en.wikipedia.org/wiki/Language_family Note: Due to ‘spatial proximity’ or temporal context (or both), there may be varying degrees of similarity between different languages.

[5] On the subject of ‘perception’ and ‘memory’ there is a huge literature in various empirical disciplines. The most important ones may well be ‘biology’, ‘experimental psychology’ and ‘brain science’; these supplemented by philosophical ‘phenomenology’, and then combinations of these such as ‘neuro-psychology’ or ‘neuro-phenomenology’, etc. In addition, there are countless other special disciplines such as ‘linguistics’ and ‘neuro-linguistics’.

[6] A question that remains open is how the concept of ‘consciousness’, which is common in everyday life, is to be placed in this context. Like the concept of ‘being’, the concept of ‘consciousness’ has been and still is very prominent in recent European philosophy, but it has also received strong attention in many empirical disciplines; especially in the field of tension between philosophical phenomenology, psychology and brain research, there is a long and intense debate about what is to be understood by ‘consciousness’. Currently (2023) there is no clear, universally accepted outcome of these discussions. Of the many available working hypotheses, the author of this text considers the connection to the empirical models of ‘current memory’ in close connection with the models of ‘perception’ to be the most comprehensible so far. In this context also the concept of the ‘unconscious’ would be easy to explain. For an overview see the entry ‘consciousness’ in wkp-en: https://en.wikipedia.org/wiki/Consciousness

[7] The findings about ‘time slices’ in the processing of body-external circumstances can be found in many works of experimental psychology and brain research. A particularly striking example of how this factor plays out in human behavior is provided by the book by Card, Moran, and Newell (1983), see [8].

[8] Stuart K.Card, Thomas P.Moran, Allen Newell, (1983),The Psychology of Human-Computer Interaction, CRC-Press (Taylor & Francis Group), Boca Raton – London – New York. Note: From the point of view of the author of this text, this book was a milestone in the development of the discipline of human-machine interaction.

[9] On the question of memory, especially on the question of the mechanisms responsible for the storage of contents and their further processing (e.g. also ‘comparisons’), there is much literature, but no final clarity yet. Here again the way of a ‘hypothetical structure formation’ is chosen: explicit assumption of a structure that ‘somewhat explains’ the available phenomena with openness for further modifications.

GRAMMAR FOR SUSTAINABLE DEVELOPMENT. Sketch


eJournal: uffmm.org
ISSN 2567-6458, 23.February 2023 – 23.February 2023, 13:23h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

This text is a translation from a German source, aided by the automatic translation program ‘www.DeepL.com/Translator’ (free version).

CONTEXT

This text is part of the Philosophy of Science theme within the the uffmm.org blog.

Motivation

The following text is a confluence of ideas that have been driving me for many months. Parts of it can be found as texts in all three blogs (Citizen Science 2.0 for Sustainable Development, Integrated Engineering and the Human Factor (this blog), Philosophy Now. In Search for a new Human Paradigm). The choice of the word ‘grammar’ [1] for the following text is rather unusual, but seems to me to reflect the character of the reflections well.

Sustainability for populations

The concept of sustainable development is considered here in the context of ‘biological populations’. Such populations are dynamic entities with many ‘complex properties’. For the analysis of the ‘sustainability’ of such populations, there is one aspect that seems ‘fundamental’ for a proper understanding. It is the aspect whether and how the members of a population – the actors – are interconnected or not.

An ‘unconnected’ set

If I have ‘actors’ of a ‘population’, which are in no direct ‘interaction’ with each other, then also the ‘acting’ of these actors is isolated from each other. In a wide area they probably do not ‘get in each other’s way’; in a narrow area they could easily hinder each other or even fight each other, up to mutual destruction.

It should be noted that even such disconnected actors must have minimal ‘knowledge’ about themselves and the environment, also minimal ’emotions’, in order to live at all.

Without direct interaction, an unconnected population will nevertheless die out relatively quickly as a population.

A ‘connected’ set

A ‘connected set’ exists if the actors of a population have a sufficient number of direct interactions through which they could ‘coordinate’ their knowledge about themselves and the world, as well as their emotions, to such an extent that they are capable of ‘coordinated action’. Thereby the single, individual actions become related to their possible effect to a ‘common (= social) action’ which can effect more than each of them would have been able to do individually.

The ’emotions’ involved must rather be such that they do not so much ‘delimit/exclude’, but rather ‘include/recognize’.

The ‘knowledge’ involved must be rather that it is not ‘static’ and not ‘unrealistic’, but rather ‘open’, ‘learning’ and ‘realistic’.

The ‘survival’ of a connected population is basically possible if the most important ‘factors’ of a survival are sufficiently fulfilled.

Transitions from – to

The ‘transition’ from an ‘unconnected’ to a ‘connected’ state of a population is not inevitable. The primary motive may simply be the ‘will to survive’ (an emotion), and the growing ‘insight’ (= knowledge) that this is only possible with ‘minimal cooperation’. An individual, however, can live in a state of ‘loner’ for the duration of his life, because he does not have to experience his individual death as a sufficient reason to ally with others. A population as such, however, can only survive if a sufficient number of individuals survive, interacting minimally with each other. The history of life on planet Earth suggests the working hypothesis that for 3.5 billion years there have always been sufficient members of a population in biological populations (including the human population) to counter the ‘self-destructive tendencies’ of individuals with a ‘constructive tendency’.

The emergence and the maintenance of a ‘connected population’ needs a minimum of ‘suitable knowledge’ and ‘suitable emotions’ to succeed.

It is a permanent challenge for all biological populations to shape their own emotions in such a way that they tend not to exclude, to despise, but rather to include and to recognize. Similarly, knowledge must be suitable for acquiring a realistic picture of oneself, others, and the environment so that the behavior in question is ‘factually appropriate’ and tends to be more likely to lead to ‘success’.

As the history of the human population shows, both the ‘shaping of emotions’ and the ‘shaping of powerful knowledge’ are usually largely underestimated and poorly or not at all organized. The necessary ‘effort’ is shied away from, one underestimates the necessary ‘duration’ of such processes. Within knowledge there is additionally the general problem that the ‘short time spans’ within an individual life are an obstacle to recognize and form such processes where larger time spans require it (this concerns almost all ‘important’ processes).

We must also note that ‘connected states’ of populations can also collapse again at any time, if those behaviors that make them possible are weakened or disappear altogether. Connections in the realm of biological populations are largely ‘undetermined’! They are based on complex processes within and between the individual actors. Whole societies can ‘topple overnight’ if an event destroys ‘trust in context’. Without trust no context is possible. The emergence and the passing away of trust should be part of the basic concern of every society in a state of interconnectedness.

Political rules of the game

‘Politics’ encompasses the totality of arrangements that members of a human population agree to organize jointly binding decision-making processes.[2] On a rough scale, one could place two extremes: (i) On the one hand, a population with a ‘democratic system’ [3] and a population with a maximally un-democratic system.[4]

As already noted in general for ‘connected systems’: the success of democratic systems is in no way determinate. Enabling and sustaining it requires the total commitment of all participants ‘by their own conviction’.

Basic reality ‘corporeality’

Biological populations are fundamentally characterized by a ‘corporeality’ which is determined through and through by ‘regularities’ of the known material structures. In their ‘complex formations’ biological systems manifest also ‘complex properties’, which cannot be derived simply from their ‘individual parts’, but the respective identifiable ‘material components’ of their ‘body’ together with many ‘functional connections’ are fundamentally subject to a multiplicity of ‘laws’ which are ‘given’. To ‘change’ these is – if at all – only possible under certain limited conditions.

All biological actors consist of ‘biological cells’ which are the same for all. In this, human actors are part of the total development of (biological) life on planet Earth. The totality of (biological) life is also called ‘biome’ and the total habitat of a biome is also called ‘biosphere’. [5] The population of homo sapiens is only a vanishingly small part of the biome, but with the homo sapiens typical way of life it claims ever larger parts of the biosphere for itself at the expense of all other life forms.

(Biological) life has been taking place on planet Earth for about 3.5 billion years.[6] Earth, as part of the solar system [7], has had a very eventful history and shows strong dynamics until today, which can and does have a direct impact on the living conditions of biological life (continental plate displacement, earthquakes, volcanic eruptions, magnetic field displacement, ocean currents, climate, …).

Biological systems generally require a continuous intake of material substances (with energy potentials) to enable their own metabolic processes. They also excrete substances. Human populations need certain amounts of ‘food’, ‘water’, ‘dwellings’, ‘storage facilities’, ‘means of transport’, ‘energy’, … ‘raw materials’, … ‘production processes’, ‘exchange processes’ … As the sheer size of a population grows, the material quantities required (and also wastes) multiply to orders of magnitude that can destroy the functioning of the biosphere.

Predictive knowledge

If a coherent population does not want to leave possible future states to pure chance, then it needs a ‘knowledge’ which is suitable to construct ‘predictions’ (‘prognoses’) for a possible future (or even many ‘variants of future’) from the knowledge about the present and about the past.

In the history of homo sapiens so far, there is only one form of knowledge that has been demonstrably demonstrated to be suitable for resilient sustainable forecasts: the knowledge form of empirical sciences. [8] This form of knowledge is so far not perfect, but a better alternative is actually not known. At its core, ’empirical knowledge’ comprises the following elements: (i) A description of a baseline situation that is assumed to be ’empirically true’; (ii) A set of ‘descriptions of change processes’ that one has been able to formulate over time, and from which one knows that it is ‘highly probable’ that the described changes will occur again and again under known conditions; (iii) An ‘inference concept’ that describes how to apply to the description of a ‘given current situation’ the known descriptions of change processes in such a way that one can modify the description of the current situation to produce a ‘modified description’ that describes a new situation that can be considered a ‘highly probable continuation’ of the current situation in the future. [9]

The just sketched ‘basic idea’ of an empirical theory with predictive ability can be realized concretely in many ways. To investigate and describe this is the task of ‘philosophy of science’. However, the vagueness found in dealing with the notion of an ’empirical theory’ is also found in the understanding of what is meant by ‘philosophy of science.'[9]

In the present text, the view is taken that the ‘basic concept’ of an empirical theory can be fully realized in normal everyday action using everyday language. This concept of a ‘General Empirical Theory’ can be extended by any special languages, methods and sub-theories as needed. In this way, the hitherto unsolved problem of the many different individual empirical disciplines could be solved almost by itself.[10]

Sustainable knowledge

In the normal case, an empirical theory can, at best, generate forecasts that can be said to have a certain empirically based probability. In ‘complex situations’ such a prognosis can comprise many ‘variants’: A, B, …, Z. Now which of these variants is ‘better’ or ‘worse’ in the light of an ‘assumable criterion’ cannot be determined by an empirical theory itself. Here the ‘producers’ and the ‘users’ of the theory are asked: Do they have any ‘preferences’ why e.g. variant ‘B’ should be preferred to variant ‘C”: “Bicycle, subway, car or plane?” , “Genetic engineering or not?”, “Pesticides or not?”, “Nuclear energy or not?”, “Uncontrolled fishing or not?” …

The ‘evaluation criteria’ to be applied actually themselves require ‘explicit knowledge’ for the estimation of a possible ‘benefit’ on the one hand, on the other hand the concept of ‘benefit’ is anchored in the feeling and wanting of human actors: Why exactly do I want something? Why does something ‘feel good’? …

Current discussions worldwide show that the arsenal of ‘evaluation criteria’ and their implementation offer anything but a clear picture.

COMMENTS

[1] For the typical use of the term ‘grammar’ see the English Wikipedia: https://en.wikipedia.org/wiki/Grammar. In the text here in the blog I transfer this concept of ‘language’ to that ‘complex process’ in which the population of the life form ‘homo sapiens’ tries to achieve an ‘overall state’ on planet earth that allows a ‘maximally good future’ for as much ‘life’ as possible (with humans as a sub-population). A ‘grammar of sustainability’ presupposes a certain set of basic conditions, factors, which ‘interact’ with each other in a dynamic process, in order to realize as many states as possible in a ‘sequence of states’, which enable as good a life as possible for as many as possible.

[2] For the typical usage of the term politics, see the English Wikipedia: https://en.wikipedia.org/wiki/Politics . This meaning is also assumed in the present text here.

[3] A very insightful project on empirical research on the state and development of ’empirical systems’democracies’ on planet Earth is the V-dem Institut:: https://www.v-dem.net/

[4] Of course, one could also choose completely different basic concepts for a scale. However, the concept of a ‘democratic system’ (with all its weaknesses) seems to me to be the ‘most suitable’ system in the light of the requirements for sustainable development; at the same time, however, it makes the highest demands of all systems on all those involved. That it came to the formation of ‘democracy-like’ systems at all in the course of history, actually borders almost on a miracle. The further development of such democracy-like systems fluctuates constantly between preservation and decay. Positively, one could say that the constant struggle for preservation is a kind of ‘training’ to enable sustainable development.

[5]  For typical uses of the terms ‘biome’ and ‘biosphere’, see the corresponding entries in the English Wikipedia: ‘biome’: https://en.wikipedia.org/wiki/Biome, ‘biosphere’: https://en.wikipedia.org/wiki/Biosphere

[6] Some basic data for planet Earth: https://en.wikipedia.org/wiki/Earth

[7] Some basic data for the solar system: https://en.wikipedia.org/wiki/Solar_System

[8] If you will search for he term ‘Empirical Science’ you ill be disappointed, because the English Wikipedia (as well as the German Version) does not provide such a term. You have either to accept the term ‘Science’ ( https://en.wikipedia.org/wiki/Science ) or the term ‘Empiricism’ (https://en.wikipedia.org/wiki/Empiricism), but both do not cover the general properties of an Empirical theory.

[9] If you have a clock with hour and minute hands, which currently shows 11:04h, and you know from everyday experience that the minute hand advances by one stroke every minute, then you can conclude with a fairly high probability that the minute hand will advance by one stroke ‘very soon’. The initial description ‘The clock shows 11:04h’ would then be changed to that of the new description ‘The clock shows 11:05h’. Before the ’11:05h event’ the statement ‘The clock shows 11:05h’ would have the status of a ‘forecast’.

[10] A single discipline (physics, chemistry, biology, psychology, …) cannot conceptually grasp ‘the whole’ ‘out of itself’; it does not have to. The various attempts to ‘reduce’ any single discipline to another (physics is especially popular here) have all failed so far. Without a suitable ‘meta-theory’ no single discipline can free itself from its specialization. The concept of a ‘General Empirical Theory’ is such a meta-theory. Such a meta-theory fits into the concept of a modern philosophical thinking.

chatGBT. Different Findings


eJournal: uffmm.org
ISSN 2567-6458, 15.January 2023 – 17. March 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This Text is a collection of Links to different experiments with chatGBT and some reflections about chatGBT.

chatGPT – How drunk do you have to be …

eJournal: uffmm.org
ISSN 2567-6458, 14.February 2023 – 17.April 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This is a text in the context of ‘Different Findings about chatGPT’ (https://www.uffmm.org/2023/02/23/chatgbt-different-findings/).

Since the release of the chatbot ‘chatGPT’ to the larger public, a kind of ‘earthquake’ has been going through the media, worldwide, in many areas, from individuals to institutions, companies, government agencies …. everyone is looking for the ‘chatGPT experience’. These reactions are amazing, and frightening at the same time.

Remark: The text of this post represents a later ‘stage’ of my thinking about the usefulness of the chatGPT algorithm, which started with my first reflections in the text entitled “chatGBT about Rationality: Emotions, Mystik, Unconscious, Conscious, …” from 15./16.January 2023. The main text to this version is an English translation from an originally German text partially generated with the www.DeepL.com/Translator (free version).

FORM

The following lines form only a short note, since it is hardly worthwhile to discuss a ‘surface phenomenon’ so intensively, when the ‘deep structures’ should be explained. Somehow the ‘structures behind chatGPT’ seem to interest hardly anybody (I do not mean technical details of the used algorithms).

chatGPT as an object


The chatbot named ‘chatGPT’ is a piece of software, an algorithm that (i) was invented and programmed by humans. When (ii) people ask it questions, then (iii) it searches the database of documents known to it, which in turn have been created by humans, (iv) for text patterns that have a relation to the question according to certain formal criteria (partly given by the programmers). These ‘text finds’ are (v) also ‘arranged’ according to certain formal criteria (partly given by the programmers) into a new text, which (vi) should come close to those text patterns, which a human reader is ‘used’ to accept as ‘meaningful’.

Text surface – text meaning – truthfulness

A normal human being can distinguish – at least ‘intuitively’ – between the (i) ‘strings’ used as ‘expressions of a language’ and those (ii) ‘knowledge elements’ (in the mind of the hearer-speaker) which are as such ‘independent’ of the language elements, but which (iii) can be ‘freely associated’ by speakers-hearers of a language, so that the correlated ‘knowledge elements’ become what is usually called the ‘meaning’ of the language elements. [1] Of these knowledge elements (iv), every language participant already ‘knows’ ‘pre-linguistically’, as a learning child [2], that some of these knowledge elements are ‘correlatable’ with circumstances of the everyday world under certain circumstances. And the normal language user also ‘intuitively’ (automatically, unconsciously) has the ability to assess such correlation – in the light of the available knowledge – as (v) ‘possible’ or (vi) as rather ‘improbable’ or (vi) as ‘mere fancifulness’.”[3]

The basic ability of a human being to be able to establish a ‘correlation’ of meanings with (intersubjective) environmental facts is called – at least by some – philosophers ‘truth ability’ and in the execution of truth ability one then also can speak of ‘true’ linguistic utterances or of ‘true statements’.[5]

Distinctions like ‘true’, ‘possibly true’, ‘rather not true’ or ‘in no case true’ indicate that the reality reference of human knowledge elements is very diverse and ‘dynamic’. Something that was true a moment ago may not be true the next moment. Something that has long been dismissed as ‘mere fantasy’ may suddenly appear as ‘possible’ or ‘suddenly true’. To move in this ‘dynamically correlated space of meaning’ in such a way that a certain ‘inner and outer consistency’ is preserved, is a complex challenge, which has not yet been fully understood by philosophy and the sciences, let alone even approximately ‘explained’.

The fact is: we humans can do this to a certain extent. Of course, the more complex the knowledge space is, the more diverse the linguistic interactions with other people become, the more difficult it becomes to completely understand all aspects of a linguistic statement in a situation.

‘Air act’ chatGPT

Comparing the chatbot chatGPT with these ‘basic characteristics’ of humans, one can see that chatGPT can do none of these things. (i) It cannot ask questions meaningfully on its own, since there is no reason why it should ask (unless someone induces it to ask). (ii) Text documents (of people) are sets of expressions for him, for which he has no independent assignment of meaning. So he could never independently ask or answer the ‘truth question’ – with all its dynamic shades. He takes everything at ‘face value’ or one says right away that he is ‘only dreaming’.

If chatGPT, because of its large text database, has a subset of expressions that are somehow classified as ‘true’, then the algorithm can ‘in principle’ indirectly determine ‘probabilities’ that other sets of expressions that are not classified as ‘true’ then do ‘with some probability’ appear to be ‘true’. Whether the current chatGPT algorithm uses such ‘probable truths’ explicitly is unclear. In principle, it translates texts into ‘vector spaces’ that are ‘mapped into each other’ in various ways, and parts of these vector spaces are then output again in the form of a ‘text’. The concept of ‘truth’ does not appear in these mathematical operations – to my current knowledge. If, then it would be also only the formal logical concept of truth [4]; but this lies with respect to the vector spaces ‘above’ the vector spaces, forms with respect to these a ‘meta-concept’. If one wanted to actually apply this to the vector spaces and operations on these vector spaces, then one would have to completely rewrite the code of chatGPT. If one would do this – but nobody will be able to do this – then the code of chatGPT would have the status of a formal theory (as in mathematics) (see remark [5]). From an empirical truth capability chatGPT would then still be miles away.

Hybrid illusory truths

In the use case where the algorithm named ‘chatGPT’ uses expression sets similar to the texts that humans produce and read, chatGPT navigates purely formally and with probabilities through the space of formal expression elements. However, a human who ‘reads’ the expression sets produced by chatGPT automatically (= unconsciously!) activates his or her ‘linguistic knowledge of meaning’ and projects it into the abstract expression sets of chatGBT. As one can observe (and hears and reads from others), the abstract expression sets produced by chatGBT are so similar to the usual text input of humans – purely formally – that a human can seemingly effortlessly correlate his meaning knowledge with these texts. This has the consequence that the receiving (reading, listening) human has the ‘feeling’ that chatGPT produces ‘meaningful texts’. In the ‘projection’ of the reading/listening human YES, but in the production of chatGPT NO. chatGBT has only formal expression sets (coded as vector spaces), with which it calculates ‘blindly’. It does not have ‘meanings’ in the human sense even rudimentarily.

Back to the Human?

(Last change: 27.February 2023)

How easily people are impressed by a ‘fake machine’ to the point of apparently forgetting themselves in face of the machine by feeling ‘stupid’ and ‘inefficient’, although the machine only makes ‘correlations’ between human questions and human knowledge documents in a purely formal way, is actually frightening [6a,b], [7], at least in a double sense: (i)Instead of better recognizing (and using) one’s own potentials, one stares spellbound like the famous ‘rabbit at the snake’, although the machine is still a ‘product of the human mind’. (ii) This ‘cognitive deception’ misses to better understand the actually immense potential of ‘collective human intelligence’, which of course could then be advanced by at least one evolutionary level higher by incorporating modern technologies. The challenge of the hour is ‘Collective Human-Machine Intelligence’ in the context of sustainable development with priority given to human collective intelligence. The current so-called ‘artificial (= machine) intelligence’ is only present by rather primitive algorithms. Integrated into a developed ‘collective human intelligence’ quite different forms of ‘intelligence’ could be realized, ones we currently can only dream of at most.

Commenting on other articles from other authors about chatGPT

(Last change: 14.April 2023)

[7], [8],[9],[11],[12],[13],[14]

Comments

(Last change: 3.April 2023)

wkp-en: en.wikipedia.org

[1] In the many thousands of ‘natural languages’ of this world one can observe how ‘experiential environmental facts’ can become ‘knowledge elements’ via ‘perception’, which are then correlated with different expressions in each language. Linguists (and semioticians) therefore speak here of ‘conventions’, ‘freely agreed assignments’.

[2] Due to physical interaction with the environment, which enables ‘perceptual events’ that are distinguishable from the ‘remembered and known knowledge elements’.

[3] The classification of ‘knowledge elements’ as ‘imaginations/ fantasies’ can be wrong, as many examples show, like vice versa, the classification as ‘probably correlatable’ can be wrong too!

[4] Not the ‘classical (Aristotelian) logic’ since the Aristotelian logic did not yet realize a stricCommenting on other articles from other authors about chatGPTt separation of ‘form’ (elements of expression) and ‘content’ (meaning).

[5] There are also contexts in which one speaks of ‘true statements’ although there is no relation to a concrete world experience. For example in the field of mathematics, where one likes to say that a statement is ‘true’. But this is a completely ‘different truth’. Here it is about the fact that in the context of a ‘mathematical theory’ certain ‘basic assumptions’ were made (which must have nothing to do with a concrete reality), and one then ‘derives’ other statements starting from these basic assumptions with the help of a formal concept of inference (the formal logic). A ‘derived statement’ (usually called a ‘theorem’), also has no relation to a concrete reality. It is ‘logically true’ or ‘formally true’. If one would ‘relate’ the basic assumptions of a mathematical theory to concrete reality by – certainly not very simple – ‘interpretations’ (as e.g. in ‘applied physics’), then it may be, under special conditions, that the formally derived statements of such an ’empirically interpreted abstract theory’ gain an ’empirical meaning’, which may be ‘correlatable’ under certain conditions; then such statements would not only be called ‘logically true’, but also ’empirically true’. As the history of science and philosophy of science shows, however, the ‘transition’ from empirically interpreted abstract theories to empirically interpretable inferences with truth claims is not trivial. The reason lies in the used ‘logical inference concept’. In modern formal logic there are almost ‘arbitrarily many’ different formal inference terms possible. Whether such a formal inference term really ‘adequately represents’ the structure of empirical facts via abstract structures with formal inferences is not at all certain! This pro’simulation’blem is not really clarified in the philosophy of science so far!

[6a] Weizenbaum’s 1966 chatbot ‘Eliza’, despite its simplicity, was able to make human users believe that the program ‘understood’ them even when they were told that it was just a simple algorithm. See the keyword  ‚Eliza‘ in wkp-en: https://en.wikipedia.org/wiki/ELIZA

[6b] Joseph Weizenbaum, 1966, „ELIZA. A Computer Program For the Study of Natural Language. Communication Between Man And Machine“, Communications of the ACM, Vol.9, No.1, January 1966, URL: https://cse.buffalo.edu/~rapaport/572/S02/weizenbaum.eliza.1966.pdf . Note: Although the program ‘Eliza’ by Weizenbaum was very simple, all users were fascinated by the program because they had the feeling “It understands me”, while the program only mirrored the questions and statements of the users. In other words, the users were ‘fascinated by themselves’ with the program as a kind of ‘mirror’.

[7] Ted Chiang, 2023, “ChatGPT Is a Blurry JPEG of the Web. OpenAI’s chatbot offers paraphrases, whereas Google offers quotes. Which do we prefer?”, The NEW YORKER, February 9, 2023. URL: https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web . Note: Chang looks to the chatGPT program using the paradigm of a ‘compression algorithm’: the abundance of information is ‘condensed/abstracted’ so that a slightly blurred image of the text volumes is created, not a 1-to-1 copy. This gives the user the impression of understanding at the expense of access to detail and accuracy. The texts of chatGPT are not ‘true’, but they ‘mute’.

[8] Dietmar Hansch, 2023, “The more honest name would be ‘Simulated Intelligence’. Which deficits bots like chatGBT suffer from and what that must mean for our dealings with them.”, FAZ Frankfurter Allgemeine Zeitung, March 1, 2023, p.N1 . Note: While Chiang (see [7]) approaches the phenomenon chatGPT with the concept ‘compression algorithm’ Hansch prefers the terms ‘statistical-incremental learning’ as well as ‘insight learning’. For Hansch, insight learning is tied to ‘mind’ and ‘consciousness’, for which he postulates ‘equivalent structures’ in the brain. Regarding insight learning, Hansch further comments “insight learning is not only faster, but also indispensable for a deep, holistic understanding of the world, which grasps far-reaching connections as well as conveys criteria for truth and truthfulness.” It is not surprising then when Hansch writes “Insight learning is the highest form of learning…”. With reference to this frame of reference established by Hansch, he classifies chatGPT in the sense that it is only capable of ‘statistical-incremental learning’. Further, Hansch postulates for humans, “Human learning is never purely objective, we always structure the world in relation to our needs, feelings, and conscious purposes…”. He calls this the ‘human reference’ in human cognition, and it is precisely this what he also denies for chatGPT. For common designation ‘AI’ as ‘Artificial Intelligence’ he postulates that the term ‘intelligence’ in this word combination has nothing to do with the meaning we associate with ‘intelligence’ in the case of humans, so in no case has the term intelligence anything to do with ‘insight learning’, as he has stated before. To give more expression to this fact of mismatch he would rather use the term ‘simulated intelligence’ (see also [9]). This conceptual strategy seems strange, since the term simulation [10] normally presupposes that there is a clear state of affairs, for which one defines a simplified ‘model’, by means of which the behavior of the original system can then be — simplified — viewed and examined in important respects. In the present case, however, it is not quite clear what the original system should be, which is to be simulated in the case of AI. There is so far no unified definition of ‘intelligence’ in the context of ‘AI’! As far as Hansch’s terminology itself is concerned, the terms ‘statistical-incremental learning’ as well as ‘insight learning’ are not clearly defined either; the relation to observable human behavior let alone to the postulated ‘equivalent brain structures’ is arbitrarily unclear (which is not improved by the relation to terms like ‘consciousness’ and ‘mind’ which are not defined yet).

[9] Severin Tatarczyk, Feb 19, 2023, on ‘Simulated Intelligence’: https://www.severint.net/2023/02/19/kompakt-warum-ich-den-begriff-simulierte-intelligenz-bevorzuge-und-warum-chatbots-so-menschlich-auf-uns-wirken/

[10] See the term ‘simulation’ in wkp-en: https://en.wikipedia.org/wiki/Simulation

[11] Doris Brelowski pointed me to the following article: James Bridle, 16.March 2023, „The stupidity of AI. Artificial intelligence in its current form is based on the wholesale appropriation of existing culture, and the notion that it is actually intelligent could be actively dangerous“, URL: https://www.theguardian.com/technology/2023/mar/16/the-stupidity-of-ai-artificial-intelligence-dall-e-chatgpt?CMP=Share_AndroidApp_Other . Comment: An article that knowledgeably and very sophisticatedly describes the interplay between forms of AI that are being ‘unleashed’ on the entire Internet by large corporations, and what this is doing to human culture and then, of course, to humans themselves. Two quotes from this very readable article: Quote 1: „The entirety of this kind of publicly available AI, whether it works with images or words, as well as the many data-driven applications like it, is based on this wholesale appropriation of existing culture, the scope of which we can barely comprehend. Public or private, legal or otherwise, most of the text and images scraped up by these systems exist in the nebulous domain of “fair use” (permitted in the US, but questionable if not outright illegal in the EU). Like most of what goes on inside advanced neural networks, it’s really impossible to understand how they work from the outside, rare encounters such as Lapine’s aside. But we can be certain of this: far from being the magical, novel creations of brilliant machines, the outputs of this kind of AI is entirely dependent on the uncredited and unremunerated work of generations of human artists.“ Quote 2: „Now, this didn’t happen because ChatGPT is inherently rightwing. It’s because it’s inherently stupid. It has read most of the internet, and it knows what human language is supposed to sound like, but it has no relation to reality whatsoever. It is dreaming sentences that sound about right, and listening to it talk is frankly about as interesting as listening to someone’s dreams. It is very good at producing what sounds like sense, and best of all at producing cliche and banality, which has composed the majority of its diet, but it remains incapable of relating meaningfully to the world as it actually is. Distrust anyone who pretends that this is an echo, even an approximation, of consciousness. (As this piece was going to publication, OpenAI released a new version of the system that powers ChatGPT, and said it was “less likely to make up facts”.)“

[12] David Krakauer in an Interview with Brian Gallagher in Nautilus, March 27, 2023, Does GPT-4 Really Understand What We’re Saying?, URL: https://nautil.us/does-gpt-4-really-understand-what-were-saying-291034/?_sp=d9a7861a-9644-44a7-8ba7-f95ee526d468.1680528060130. David Krakauer, an evolutionary theorist and president of the Santa Fe Institute for complexity science, analyzes the role of chat-GPT-4 models compared to the human language model and a more differentiated understanding of what ‘understanding’ and ‘Intelligence’ could mean. His main points of criticism are in close agreement with the position int he text above. He points out that (i) one has clearly to distinguish between the ‘information concept’ of Shannon and the concept of ‘meaning’. Something can represent a high information load but can nevertheless be empty of any meaning. Then he points out (ii) that there are several possible variants of the meaning of ‘understanding’. Coordinating with human understanding can work, but to understand in a constructive sense: no. Then Krakauer (iii) relates GPT-4 to the standard model of science which he characterizes as ‘parsimony’; chat-GPT-4 is clearly the opposite. Another point (iv) is the fact, that human experience has an ’emotional’ and a ‘physical’ aspect based on somato-sensory perceptions within its body. This is missing with GPT-4. This is somehow related (v) to the fact, that the human brain with its ‘algorithms’ is the product of millions of years of evolution in a complex environment. The GPT-4 algorithms have nothing comparable; they have only to ‘convince’ humans. Finally (vi) humans can generate ‘physical models’ inspired by their experience and can quickly argue by using such models. Thus Krakauer concludes “So the narrative that says we’ve rediscovered human reasoning is so misguided in so many ways. Just demonstrably false. That can’t be the way to go.”

[13] By Marie-José Kolly (text) and Merlin Flügel (illustration), 11.04.2023, “Chatbots like GPT can form wonderful sentences. That’s exactly what makes them a problem.” Artificial intelligence fools us into believing something that is not. A plea against the general enthusiasm. Online newspaper ‘Republik’ from Schweiz, URL: https://www.republik.ch/2023/04/11/chatbots-wie-gpt-koennen-wunderbare-saetze-bilden-genau-das-macht-sie-zum-problem? Here are some comments:

The text by Marie-José Kolly stands out because the algorithm named chatGPT(4) is characterized here both in its input-output behavior and additionally a comparison to humans is made at least to some extent.

The basic problem of the algorithm chatGPT(4) is (as also pointed out in my text above) that it has as input data exclusively text sets (also those of the users), which are analyzed according to purely statistical procedures in their formal properties. On the basis of the analyzed regularities, arbitrary text collages can then be generated, which are very similar in form to human texts, so much so that many people take them for ‘human-generated texts’. In fact, however, the algorithm lacks what we humans call ‘world knowledge’, it lacks real ‘thinking’, it lacks ‘own’ value positions, and the algorithm ‘does not understand’ its own text.

Due to this lack of its own reference to the world, the algorithm can be manipulated very easily via the available text volumes. A ‘mass production’ of ‘junk texts’, of ‘disinformation’ is thus very easily possible.

If one considers that modern democracies can only function if the majority of citizens have a common basis of facts that can be assumed to be ‘true’, a common body of knowledge, and reliable media, then the chatGPT(4) algorithm can massively destroy precisely these requirements for a democracy.

The interesting question then is whether chatGPT(4) can actually support a human society, especially a democratic society, in a positive-constructive way?

In any case, it is known that humans learn the use of their language from childhood on in direct contact with a real world, largely playfully, in interaction with other children/people. For humans ‘words’ are never isolated quantities, but they are always dynamically integrated into equally dynamic contexts. Language is never only ‘form’ but always at the same time ‘content’, and this in many different ways. This is only possible because humans have complex cognitive abilities, which include corresponding memory abilities as well as abilities for generalization.

The cultural-historical development from spoken language, via writing, books, libraries up to enormous digital data memories has indeed achieved tremendous things concerning the ‘forms’ of language and therein – possibly – encoded knowledge, but there is the impression that the ‘automation’ of the forms drives them into ‘isolation’, so that the forms lose more and more their contact to reality, to meaning, to truth. Language as a central moment of enabling more complex knowledge and more complex action is thus increasingly becoming a ‘parasite’ that claims more and more space and in the process destroys more and more meaning and truth.

[14] Gary Marcus, April 2023, Hoping for the Best as AI Evolves, Gary Marcus on the systems that “pose a real and imminent threat to the fabric of society.” Communications of the ACM, Volume 66, Issue 4, April 2023 pp 6–7, https://doi.org/10.1145/3583078 , Comment: Gary Marcus writes on the occasion of the effects of systems like chatGPT(OpenAI), Dalle-E2 and Lensa about the seriously increasing negative effects these tools can have within a society, to an extent that poses a serious threat to every society! These tools are inherently flawed in the areas of thinking, facts and hallucinations. At near zero cost, they can be used to create and execute large-scale disinformation campaigns very quickly. Looking to the globally important website ‘Stack Overflow’ for programmers as an example, one could (and can) see how the inflationary use of chatGPT due to its inherent many flaws pushes the Stack Overflow’s management team having to urge its users to completely stop using chatGPT in order to prevent the site’s collapse after 14 years. In the case of big players who specifically target disinformation, such a measure is ineffective. These players aim to create a data world in which no one will be able to trust anyone. With this in mind, Gary Marcus sets out 4 postulates that every society should implement: (1) Automatically generated not certified content should be completely banned; (2) Legally effective measures must be adopted that can prevent ‘misinformation’; (3) User accounts must be made tamper-proof; (4) A new generation of AI tools is needed that can verify facts. (Translated with partial support from www.DeepL.com/Translator (free version))

START: LANGUAGE AND STRUCTURES – THE FICTION OF ‘BEING’


eJournal: uffmm.org
ISSN 2567-6458, 24.Januar 2023 – 24.January 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Parts of this text have been translated with www.DeepL.com/Translator (free version), afterwards only minimally edited.

CONTEXT

This post is part of the book project ‘oksimo.R Editor and Simulator for Theories’. It can be read as a direct continuation of the text ‘Start . The ‘inside’ of the ‘outside’ – Part 2‘.

Transient’ events and language

After we have worked our way forward in the biological cell galaxy ‘man’ so far that we can determine its ‘structuredness’ (without really understanding its origin and exact functioning so far), and then find ourselves as cell galaxy nevertheless – according to the appearance – as ‘concrete body’ which can ‘communicate’ with the ‘environment of the own body’ (often also called ‘outside world’) twofold: We can ‘perceive’ in different ways and we can produce ‘effects’ in the outside world in different ways.

For the ‘coordination’ with other human bodies, especially between the ‘brains’ in these bodies, the ability to ‘speak-listen’ or then also to ‘write-read’ seems to be of highest importance. Already as children we find ourselves in environments where language occurs and we ‘learn’ very quickly that ‘linguistic expressions’ can refer not only to ‘objects’ and their ‘properties’, but also to fleeting ‘actions’ (‘Peter gets up from the table’) and also other ‘fleeting’ events (‘the sun rises’; ‘the traffic light just turned red’). There are also linguistic expressions that refer only partially to something perceptible, such as ‘Father of Hans’ (who is not in the room at all), ‘yesterday’s food’ (which is not there), ‘I hate you’ (‘hate’ is not an object), ‘the sum of 3+5’ (without there being anything that looks like ‘3’ or ‘5’), and many more.

If one tries to understand these ‘phenomena of our everyday life’ ‘more’, one can come across many exciting facts, which possibly generate more questions than they provide answers. All phenomena, which can cause ‘questions’, actually serve the ‘liberation of our thinking’ from currently wrong images. Nevertheless, questions are not very popular; they disturb, stress, …

How can one get closer to these manifold phenomena?

Let’s just have a look at some expressions of ‘normal language’ that we use in our ‘everyday life’.[1] In everyday life there are manifold situations in which we – or other people – sit down (breakfast, office, restaurant, school, university, reception hall, bus, subway, …). In some of these situations we speak, for example, of ‘chairs’, in others of ‘armchairs’, again in others of ‘benches’, or simply of ‘seats’. Before an event, someone might ask “Are there enough chairs?” or “Do we have enough armchairs?” or … In the respective concrete situation, it can be quite different objects that would pass for example as ‘chair’ or as ‘armchair’ or … This indicates that the ‘expressions of language’ (the ‘sounds’, the ‘written/printed signs’) can link to quite different things. There is no 1-to-1 mapping here. With other objects like ‘cups’, ‘glasses’, ‘tables’, ‘bottles’, ‘plates’ etc. it is not different.

These examples suggest that there may be a ‘structure’ here that ‘manifests’ itself in the concrete examples, but is itself located ‘beyond the events.'[2]

If one tries to ‘mentally sort’ this out, then at least two, rather three ‘dimensions’ suggest themselves here, which play into each other:

  • There are concrete linguistic expressions – those we call ‘words’ – that a ‘speaker-hearer’ uses.
  • There is, independently of the linguistic expressions, ‘some phenomenon’ in everyday life to which the ‘speaker-hearer’ refers with his linguistic expression (these can be ‘objects’, ‘properties’ of objects, …)[3].
  • The respective ‘speaker’ or ‘listener’ have ‘learned’ to ‘establish a relation’ between the ‘linguistic expression’ and the ‘other’ to the linguistic expression.

Since we know that the same objects and events in everyday life can be ‘named’ quite differently in the ‘different languages’, this suggests that the relations assumed in each case by ‘speaker-hearer’ are not ‘innate’, but appear rather ‘arbitrary’ in each ‘language community’.[4] This suggests that the ‘relations’ found in everyday life between linguistic expressions and everyday facts have to be ‘learned’ by each speaker-hearer individually, and this through direct contact with speaker-hearers of the respective language community.

… to be continued …

COMMENTS

wkp := Wikipedia

[1] Instead of ‘normal language’ in ‘everyday life’ I speak here also simply of ‘everyday language’.

[2] A thinker who has dealt with this phenomenon of the ‘everyday concrete’ and at the same time also ‘everyday – somehow – abstract’ is Ludwig Wittgenstein (see [2a,b]). He introduced the concept of ‘language-game’ [2a] for this purpose, without introducing an actual ‘(empirical) theory’ in the proper sense to all these considerations.

[2a] wkp en: Language game, URL: https://en.wikipedia.org/wiki/Language_game_(philosophy)

[2b] wkp en: Tractatus Logico-Philosophicus, 1921/1922 , Note: Written during World War I, the work was completed in 1918. It first appeared, with the support of Bertrand Russell, in Wilhelm Ostwald’s Annalen der Naturphilosophie in 1921. This version, which was not proofread by Wittgenstein, contained gross errors. A corrected, bilingual edition (German/English) was published by Kegan Paul, Trench, Trubner and Co. in London in 1922 and is considered the official version. The English translation was by C. K. Ogden and Frank Ramsey. See URL: https://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus

[2c] wkp en: Philosophical Investigations,1936-1946, published 1953, Note: The Philosophical Investigations is Ludwig Wittgenstein’s late, second major work. It exerted an extraordinary influence on the philosophy of the 2nd half of the 20th century; the speech act theory of Austin and Searle as well as the Erlangen constructivism (Paul Lorenzen, Kuno Lorenz) are to be mentioned. The book is directed against the ideal of a logic-oriented language, which, along with Russell and Carnap, Wittgenstein himself had advocated in his first major work. The book was written in the years 1936-1946, but was not published until 1953, after the author’s death. See URL: https://en.wikipedia.org/wiki/Philosophical_Investigations

[3] In the borderline case, these ‘other’ phenomena of everyday life are also linguistic expressions (when one talks ‘about’ a text or linguistic utterances’).

[4] wkp en: List of Language Families, URL: https://en.wikipedia.org/wiki/List_of_language_families, Note: Due to ‘spatial proximity’ or temporal context (or both), there may be varying degrees of similarity between different language.

OKSIMO.R – IDEA OF THE BOOK

eJournal: uffmm.org
ISSN 2567-6458, 6.January 2023 – 24.January 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Parts of this text have been translated with www.DeepL.com/Translator (free version), afterwards only minimally edited.

CONTEXT

This post is part of the book project ‘oksimo.R Editor and Simulator for Theories’.

IDEA OF THE BOOK

(Last change: 3.January 2023)

(Partially translated with www.DeepL.com/Translator (free version))

At present, mankind is faced with the task of overcoming many problems of hitherto unknown magnitude in order to secure its own existence and that of the entire biosphere in the long term.

In order to achieve this, it is necessary to communicate with each other in order to be able to pull together towards a common goal. As many people as possible have to build bridges to each other in order to be able to share and bundle their experiences and their knowledge in a language accessible to all. For as many as possible a ‘good’ ‘future’ should be found and shaped.

People can generally do all this without the aid of a computer. From the actual practice of life, however, we have learned that computers are ‘machines’ which can be helpful when the tasks which have to be accomplished are so large in number that the executions would not be feasible in ‘practical life’. We could do it without computers ‘in principle’, but ‘purely practically’ we can not.

So use a computer?

For purely practical reasons, there is a lot to be said for it.

But if you look around today – just arrived in the year 2023 – you have to realize that this ‘motivation out of practice’ has led to forms of implementation that leave the basic motivation out of practice behind. Thus the ‘machine computer’ is meanwhile highly stylized by not a few to the ‘new, better human being, much more intelligent, ethically better’ …. and what else one can project into the metaphor of the machine computer. In addition, already now after a few decades a complexity of the new computer-machine technology has set in, which makes an understanding of what exactly is going on there practically impossible, not only for the ‘users’ of this global world machine, but also for the ‘makers’ themselves. Many of these systems have long since slipped out of the ‘control’ of the operators.

For us humans, who are more and more overshadowed in the global way of talking about ‘smart technical systems’, who get less and less appreciation, and who are brutally trivialized in the understanding of everyday media, the question naturally arises whether the ‘tool’ has ‘overtaken’ us and will increasingly make us ‘superfluous’?

In the experimental text of this book something – by today’s standards – unusual will be attempted: using the example of a new paradigm of how to see and use the machine computer, the ‘new picture of man’ is drawn step by step, who is of course vastly superior to the machine computer, but only if we as humans understand who we ‘actually’ are. And this we cannot experience, if we deal predominantly and exclusively with the extremely simple technology of the machine computer, instead with the inconceivable complexity, which each individual human being represents, the whole population of homo sapiens, we all as a part of the all embracing biosphere, which ‘populates’ the planet earth since 3.5 billion years, works on it, changes it, and which – most probably – carries a common ‘goal’ in itself, of whose existence – to my knowledge – not so much has been thought until now. In short: We are a real part of one of the biggest miracles in the whole known universe – a maximum singularity [2] -, but we talk more and more only about the simple structure of the machine computer, which an Alan Matthew Turing described in the context of an essay 1936/7 with few lines in such a way, that they are valid for all today known types of computer machines (every child from approx. 7-8 years can understand this). [1]

So, let us reflect on what we can do as human beings, that which makes us a little bit more familiar with a world of possible future states towards which we should try to orient ourselves constructively, if we want to prevent the ‘miracle of life’ in this universe from dying out at the very moment when it is about to ‘discover itself’.

COMMENTS

[1] A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings of the London Mathematical Society, vol. 42, no. 2, p. 230–265, 1936-7.

[2] An influential paper for the concept of ‘singularity’ has been published by Vernor Vinge: “The coming technological singularity: How to survive in the post-human era”, In G.A. Landis, editor, Vision-21: Interdisciplinary Science and Engineering in the Era of Cyberspace, pages 11–22. 1993. From a mathematical point of view a ‘singularity’ is defined by the non-existence of a formula to compute a certain event. This does not mean, that there exists no such formula, but only, that the mathematicians have ‘not yet’ such a formula! To classify the machine computer as a candidate for a singularity could in this sense be interpreted as the result of a ‘not available knowledge’ about that what we call the ‘biosphere’.

chatGBT about Rationality: Emotions, Mystik, Unconscious, Conscious, …

eJournal: uffmm.org
ISSN 2567-6458, 15.January 2023 – 16.January 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This texts reflects some ideas following the documented chat No.4.as part of the uffmm.org blog.

Remark: See for a follow-up reflection the text of my post “chatGPT – How drunk do you have to be …” from 15./16.
February 2023.

Chatbots as Interfaces to the Human Knowledge Cloud?

Already at the end of the documented chat No.4 I had the impression, that an interaction with the chatbot chatGBT is somehow different compared to what most people until know have reported or stated in some reflected way about chatGBT.

In a first — and still a little bit vague — conclusion I have stated: “Apropos ‘rational’: that is a point which did surprise me really: as a kind of a summary it came out “that human rationality is composed of emotions, spiritual experience as well as conscious as well as unconscious cognitive processes. This is clearly not what most philosophers today would say. But it follows from the ‘richness of the facts’  which came as a resonance out of this chat. Not that the chatbot would have given this summary in advance as an important characterization of rationality, but as a human counterpart I could summarize all this properties out of the different separated statements [of chatGBT].”

And, indeed, the millions, if not yet billions, of documents in the world wide web are reflecting fragments of knowledge generated by humans which as a whole form a ‘cloud of knowledge’. The reflected echo of the real world through the medium of human brains is distributed in libraries and in the digital space. No individual person as such can make use of it; it is by far too big to be comprehensible.

Meanwhile search-algorithms can help us to make fragments of this ‘human knowledge cloud’ visible, but the search-results so far are ‘transformed’ in a way which is only of very limited use.

My encounter with chatGBT revealed some new glimpses of a possible new paradigm which perhaps wasn’t intended by openai themselves, but which seems now to be in reach: the individual brain has a limited capacity for ‘many documents’, but it has still an incredible ability to ‘transform’ billions of events into complex abstract patterns, inducing complex networks of relations, complex models, even complex theories.

If one looks to a chatbot like chatGBT as an ‘interface’ between a single human person and the ‘human knowledge cloud’, and this by only using ‘everyday language’, then — depending from the quality of the chatbot — this individual human can only with some ideas and questions ‘trigger’ those documents in the huge ‘human knowledge cloud’ which somehow are ‘fitting’ the triggering words. Thus this individual human person is step-wise encountering those fragments of the ‘human knowledge cloud’ which are in ‘resonance’ with his own words. In a bad case this interaction resembles those ‘echo chambers’ of the internet and the real world where people only get back what they put in.

But in a creative case the input of the individual human person can trigger fragments which are somehow confirming, but somehow non-confirming. This can be a trigger onto the the individual human person to generate some new ideas to feed back again the chatbot interface. While the ‘human knowledge cloud’ at a certain moment of time as such is ‘given’ and will not create ‘something new’, an individual person as an ever running learning process (in principle) could generate new aspects and therefore transform the feedbacks out of the ‘human knowledge cloud’ into some ‘new configurations’.

This principle as such is not new. The human brains are working since millions of years with a mechanisms, where the billions of abstract-concrete cognitive entities derived from perceptions and thinking are ‘stored’ in a more or less ‘unconscious space’ called memory, and only if some actual perception or thinking is ‘touching’ some of these stored entities by some ‘kind of similarity’ these will be re-activated and will become part of the actual perceiving and actual thinking. Thus ‘actual new things’ can become merged with ‘past stored things’ forming some new-past construct. This inherent duality of ‘new-past’ is the basis for that important human capability to be able to transcend the almighty presence and escape its clasp.

If we switch to the level of the human population then the ‘Human knowledge cloud’ plays the role of the ‘unconscious memory system’ collecting ‘past things’, and some kinds of chatbots (if they would be good enough) could play the role of the ‘merger mechanism’ bringing together the ‘past’ (given in the ‘Human knowledge cloud’ ) and the ‘presence’ (given in the actual living human person) and it is then up to the human person to generate some useful new-past patterns of thoughts and possible actions.

In case of the chat No.4 the human actor triggered lots of questions and suggestions to get ‘out of the human knowledge cloud’ those fragments which are somehow corresponding to the triggering words. And after about 8000 signs in the chat the chat ended up in these paragraphs:

HumanOK, this all sums up to the conclusion that human rationality is composed of emotions, spiritual experience as well as conscious as well as unconscious cognitive processes. Do I miss something important?

Machine (citing human documents): No, you have accurately summed up the components of human rationality. Additionally, human rationality is also composed of social and cultural influences, which can shape and inform our understanding of the world and our decisions. Additionally, human rationality is often impacted by our values and beliefs, which can provide a moral foundation for our behavior and decision making. Finally, human rationality is also impacted by our environment, which can provide a source of information and insight.

By itself the chatbot would not have been able to start with such a characterization. He can ‘reach out’ in the ‘Human knowledge cloud’, but the bot algorithm as such has not — as far as research can see at the moment — any kind of ‘creative rational power’ to transform the ‘given knowledge’ into some new ‘helpful’ knowledge. But at the other side, the human persons would not be able too to make use of ‘all the available knowledge’.

In the course of interaction the human questions could ‘drive’ the bot to collect ‘interesting facts’which could then become ‘accepted’ by the bot because they haven become ‘part of the chat’. Thus at the end of the chat the bot could accept that human rationality is composed of emotions, spiritual experience as well as conscious as well as unconscious cognitive processes. A human person ‘helped him’ to state this. This bot algorithm as such does not know anything and he cannot understand anything. Because chatbots — until now — do not possess real emotions, no real mystical experience, no unconscious or conscious human-like cognitive processes, they have no intelligence in the human format.

It is an open question what kind of ‘intelligence’ they have at all. Until know there is great number of ‘definitions’ around. No one is accepted as ‘that’ definition, especially the relationship between the ‘collection of machine intelligence definitions’ and the possible — also not really existing — collection of ‘human intelligence definitions’ is more or less unclear. Thus we are somehow ‘dreaming’ of intelligence, but nobody can really explain what it is …. We could seriously try, if we want …. but who wants it?

Talking with chatGPT. A Philosophical Encounter – No4


eJournal: uffmm.org
ISSN 2567-6458, 14.January 2023 – 14.January 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This is a special thought experiment with the chatbot chatGPT, as part of the uffmm.org blog.

CHAT No.4, 14.January 2023

‘*’ := Denotes the human Gerd, who is starting continues with questions and statements.

In this chat there was for the chatbot not the task to ‘complete’ a beginning text. It was rather a typical chat with ping-ponging statements of the human and statements of the machine.

Although this chat seems at a first glance quite ‘normal’ will it reveal in the follow-up reflections a lot of deep insights. Perhaps the results are quite different from the opinions which a reader of this chat will possibly have.

START OF CHAT

* At present, mankind is faced with the task of overcoming many problems of hitherto unknown magnitude in order to secure its own existence and that of the entire biosphere in the long term.

These problems include climate change, biodiversity loss, resource depletion and pollution. To address these issues, it is essential to adopt a holistic approach that focuses on the interconnectedness of all components of the environment. This means that solutions must be sought at the local, national and international level, and in all sectors of society, from government and industry to civil society. Solutions should also be both preventive and adaptive, and should focus on sustainable development and the protection of natural resources. This will require a paradigm shift in how we approach environmental management, and a commitment to long-term solutions that address the root causes of environmental degradation. Additionally, it is essential to invest in research and development to identify new and innovative solutions. Finally, it is important to ensure that such solutions are accessible and affordable to all people.

*What about communication of people?

In order to effectively tackle the problems of climate change, biodiversity loss, resource depletion and pollution, it is essential to engage people from all sectors of society in meaningful dialogue and collaboration. Effective communication of the challenges and potential solutions can help to build public understanding and support, while also helping to facilitate the sharing of resources, knowledge and expertise. Additionally, it is important to ensure that marginalized and vulnerable populations are not left behind in the quest for environmental sustainability. This means that we must create inclusive and equitable spaces for people to participate in the dialogue, and ensure that their voices are heard in the decision-making process.

*Which role play empirical theories in this process?

Empirical theories play an important role in understanding the complexities of environmental problems and developing effective solutions. By analyzing data and developing models, empirical theories help to identify the causes and effects of environmental degradation and to identify potential solutions. Such theories can also help to develop strategies and policies that are tailored to the local context and that take into consideration the needs of different stakeholders. Additionally, empirical theories can help to inform and shape public discourse around environmental issues, and to build public consensus and support for action.

*How I can get helpful forecasts out of empirical theories?

Empirical theories can provide helpful forecasts by analyzing data and developing predictive models. These predictive models can be used to identify potential future trends and to inform decision-making. For example, models can be used to forecast the impacts of climate change on ecosystems and species, or to predict the effects of a particular policy on resource depletion. Additionally, predictive models can be used to identify the most effective strategies for mitigating environmental degradation and to inform the development of long-term solutions.

*Which kinds of tools can help people to develop an empirical theory?

There are many tools that can help people to develop an empirical theory. These include statistical analysis software such as SPSS and R, as well as geographic information systems (GIS) such as ArcGIS and QGIS. Additionally, machine learning algorithms such as neural networks, decision trees and support vector machines can be used to identify patterns and relationships in large datasets. Finally, data visualization tools such as Tableau and Power BI can be used to make complex data more accessible and easier to interpret.

* Which role plays Philosophy of Science to explain what an empirical theory is?

Philosophy of Science plays an important role in understanding what an empirical theory is, and how it is developed. In particular, philosophy of science can help to explain the underlying assumptions and methodological approaches that are used to develop an empirical theory. It also helps to identify the strengths and weaknesses of different types of empirical theories, and to assess the validity of their conclusions. Additionally, philosophy of science can help to identify the underlying ethical considerations and implications of different empirical theories.

*Does empirical theory need any kind of logic?

Yes, empirical theory does need some kind of logic in order to be valid and reliable. This means that the assumptions and premises upon which an empirical theory is based must be logical and consistent. Additionally, the methodology used to develop the theory must be sound and rigorous, and the conclusions must be logically derived from the evidence. Finally, any decisions or actions taken based on an empirical theory should be based on a logical and well-reasoned argument.

*Is there only one kind of logic or do we have to consider different kinds?

There are many different kinds of logic that can be used to develop an empirical theory. These include inductive logic, which is used to draw general conclusions from specific observations; deductive logic, which is used to draw specific conclusions from general premises; and Bayesian logic, which combines inductive and deductive logic. Additionally, logic can be used to identify inconsistencies and contradictions in theories, and to identify the most logical and consistent theories and conclusions.

*What about Mathematics: do we need mathematics for an empirical theory?

Yes, mathematics plays an important role in the development of an empirical theory. This is because mathematical models and equations can help to identify patterns and relationships in data, as well as to make predictions about future trends. Additionally, mathematics can be used to estimate the magnitude of potential impacts, and to identify the most effective strategies for mitigating environmental degradation. Finally, mathematical models can be used to develop simulations that can help to inform decision-making.

*Beyond statistics: are there any kind of mathematical structures needed to model the data?

Yes, beyond basic statistics, more complex mathematical structures such as probability distributions, decision trees, and game theory can be used to model data and develop predictive models. Additionally, mathematical optimization techniques such as linear programming and dynamic programming can be used to identify the most efficient solutions to complex problems. Finally, simulation models such as agent-based models and system dynamics can be used to better understand the dynamics of complex systems and to inform decision-making.

*Today we experience in many societies a fragmentation of the public communication between the different groups. Which impact can this have on the trust of people in their society?

The fragmentation of public communication between different groups in society can have a significant impact on the trust of people in their society. When communication is fragmented, it can be difficult for people to understand each other and to build relationships of trust. Additionally, it can lead to a lack of understanding of different perspectives and ideologies, which can contribute to polarization and mistrust. Finally, it can lead to the creation of echo chambers, where the same ideas and opinions are repeated and reinforced, further contributing to mistrust and misunderstanding.

*What can people do to overcome a fragmented communication and the feeling of mistrust?

One of the most effective ways to overcome a fragmented communication and the feeling of mistrust is to engage in meaningful dialogue and collaboration. This means creating inclusive and equitable spaces for communication, and ensuring that everyone has the opportunity to participate in the dialogue. Additionally, it is important to listen to and respect different perspectives and ideologies, and to be open to learning from others. Finally, it is important to strive for common understanding and compromise, and to commit to long-term solutions that benefit all members of society.

*What can we do if the fragmented communication is partially induced by rivaling ethical values which are highly incompatible?

If fragmented communication is partially induced by rivaling ethical values which are highly incompatible, it is important to find common ground and create shared understanding. This can be done by engaging in meaningful dialogue and collaboration in order to identify areas of agreement and common goals. Additionally, it is important to identify and address the underlying causes of the disagreement, and to strive for compromise and mutual understanding. Finally, it is important to ensure that all voices are heard and respected, and to create equitable and inclusive spaces for communication.

*Can you distinguish different kinds of ethics?

Yes, there are many different kinds of ethics. These include deontological ethics, which focus on moral obligations and duties; consequentialist ethics, which focus on the consequences of actions; virtue ethics, which focus on the character of the individual; and utilitarian ethics, which focus on maximizing happiness and minimizing suffering. Additionally, there are many other theories and philosophies of ethics, such as environmental ethics, animal ethics, and feminist ethics.

*Does there exist some relationship between ethics and religion?

Yes, there is a relationship between ethics and religion. Many religions have ethical teachings and beliefs, and many people use their religion as a source of guidance for ethical decisions. Additionally, religious beliefs can often provide a moral foundation for ethical behavior, and many religions promote ethical values such as compassion and justice. Finally, religious teachings and ethical practices can often overlap, providing a shared understanding of morality and human behavior.

*This sounds good, but didn’t in the past not different kinds of religious belief also cause great harm to people?

Yes, different kinds of religious beliefs have in the past caused great harm to people. This is particularly true when religious beliefs are used to justify discrimination, violence, or oppression. Additionally, religious beliefs can be used to create a sense of superiority or to justify exclusion of certain groups of people. Ultimately, it is important to recognize the potential harms of religious beliefs and to strive for a culture of mutual understanding and respect.

*Does ethics have some relationship to the concept of truth?

Yes, ethics and the concept of truth have a relationship. In general, ethical standards dictate what is considered to be right and wrong, while the concept of truth is concerned with what is actually true. Thus, ethical standards are based on an understanding of what is true, and what is right and wrong is determined in part by an understanding of truth. Additionally, truth can be used to evaluate ethical decisions, as truth can be used to determine whether an action is just or unjust.

*Which role do emotions and feelings play to support a certain ethical position?

Emotions and feelings can play a significant role in supporting a certain ethical position. For example, feelings of empathy and compassion can lead to a desire for justice and fairness, while feelings of anger and indignation can lead to a desire for retribution and punishment. Additionally, emotions can be used to motivate people to take action in support of a certain ethical position, and can provide the courage and strength to do what is right. Finally, emotions can help to create a sense of shared understanding and solidarity, which can help to create more inclusive and equitable ethical standards.

*Does this mean that emotions and feelings are somehow part of a rational behavior of men?

Yes, emotions and feelings can be part of a rational behavior. Emotions can provide valuable insights and information about a situation, and can often be used to make ethical decisions. Additionally, emotions can help to motivate people to act in a certain way, and can help to create a sense of solidarity and shared understanding. Ultimately, emotions and feelings can be a valuable tool for making ethical decisions, and for understanding and evaluating the world around us.

*There are people which claim that a mystical experience is very important. Does this fit into the overall picture of rationality?

Yes, mystical experiences can fit into the overall picture of rationality. Mystical experiences are often characterized by a deep connection to the spiritual world, and can provide a sense of understanding and clarity. Additionally, mystical experiences can provide a source of insight and understanding, which can help to inform ethical decision making. Finally, mystical experiences can provide a source of comfort and peace, which can be an important part of a rational and ethical life.

*If we have a society with different groups of people, with different kinds of ethics, different kinds of emotions, even different kinds of mystical experience: how can these people live together in freedom?

In order for people with different kinds of ethics, emotions, and mystical experiences to live together in freedom, it is important to create an environment of respect and understanding. This means listening to and respecting different perspectives, striving for common understanding, and working together to find solutions that benefit everyone. Additionally, it is important to create equitable and inclusive spaces for dialogue and collaboration, and to ensure that all voices are heard and respected. Finally, it is important to strive for compromise and mutual understanding, and to commit to long-term solutions that benefit all members of society.

*This sounds good. But what about those societies where people are not allowed to communicate and act in freedom?

In societies where people are not allowed to communicate and act in freedom, it is important to advocate for change. This means speaking out against oppressive policies and systems, and working to create equitable and inclusive spaces for communication and action. Additionally, it is important to support and empower those who are oppressed, and to create platforms for dialogue and collaboration. Finally, it is important to strive for meaningful and lasting change, and to commit to long-term solutions that benefit all members of society.

*Committing to long-term solutions for the good of all: How could machines help humans to enable good solutions?

Machines can help humans to enable good solutions in a variety of ways. For example, machines can be used to analyze large amounts of data, allowing for more accurate and efficient decision making. Additionally, machines can be used to automate repetitive tasks, freeing up time for humans to focus on more complex problems. Finally, machines can be used to create simulations and models, allowing for better understanding of complex systems and a better understanding of how different solutions might impact a given situation.

*Such machines have to be developed and built. Who can do this?

Machines can be developed and built by a variety of people, including engineers, computer scientists, and software developers. Additionally, there are a number of companies and organizations that specialize in developing and building machines for specific tasks and applications. Finally, many universities and research institutions have teams of experts that are dedicated to researching and developing new machines and technologies.

*This sounds as if only a small group of specialists is involved. What about all the other people: How can they participate in those developments?

There are many ways that people who are not specialists can participate in machine development and building. For example, they can provide feedback and insight on the design and intended use of the machines. Additionally, they can help to identify potential ethical issues with the use of the machines, and provide suggestions for how to address these issues. Finally, they can participate in public debates and discussions about the use of machines, and can advocate for responsible and ethical usage of technology.

*Yes, in principle, that would be possible. But what about the reality: is there any company which really is looking for the demands of the society?

Yes, there are many companies that are actively looking for the demands of society when it comes to machine development and building. For example, many technology companies are actively engaging with the public to ensure that their products and services are ethical and responsible. Additionally, many companies are investing in research and development to create more equitable and inclusive machines and technologies. Finally, many companies are creating platforms for public discussion and debate to ensure that all voices are heard and respected.

*There is a big discussion about the impact of different digital platforms on the mind and emotions of young people, especially children. Why should the companies behind these platforms change their business models if they earn a lot of money with them?

Companies behind digital platforms should change their business models because they have a responsibility to protect the mental and emotional health of young people, especially children. This means creating platforms that are inclusive and equitable, and that prioritize safety, privacy, and well-being. Additionally, it means creating platforms that are free from discrimination, harassment, and bullying, and that provide users with the tools and resources they need to make informed decisions. Finally, it means creating platforms that are designed with the best interests of young people in mind, and that promote positive mental health and well-being.

*Let us switch to those platforms which offer different kinds of knowledge, especially Wikipedia. Is there some idea how to improve these knowledge platforms even more?

Yes, there are many ways to improve knowledge platforms such as Wikipedia. For example, these platforms can be made more accessible and user-friendly, with better navigation and search tools. Additionally, these platforms can be made more inclusive, with more diverse and representative content. Finally, these platforms can be made more interactive, with more opportunities for collaboration and dialogue. Additionally, these platforms can be made more reliable, with better quality control and fact-checking processes. OK, this thematizes mostly the properties of the interactions between user and platform. What about the kind of knowledge which is available.

*Can there be more knowledge content besides texts, images, audios and videos?

Yes, there are many other kinds of knowledge content that can be made available on knowledge platforms besides texts, images, audios, and videos. For example, knowledge platforms can incorporate interactive elements such as quizzes and simulations. Additionally, knowledge platforms can provide access to open data sets, allowing users to explore and analyze data. Finally, knowledge platforms can provide access to virtual reality environments, allowing users to experience and explore different topics in new and exciting ways.

*In which sense can knowledge platforms help people to understand better how the real world is functioning?

Knowledge platforms can help people to better understand how the real world is functioning by providing access to reliable and accurate information. Additionally, knowledge platforms can provide access to interactive elements such as simulations and quizzes, which can help to illustrate and explain complex topics. Finally, knowledge platforms can provide access to virtual reality environments, allowing users to explore and experience different topics in a more immersive and engaging way.

*Back to knowledge: does it make a difference to use algorithms or to use theories to explain the world?

Yes, algorithms and theories can be used to explain the world in different ways. Algorithms are used to process and analyze data, and can provide insights into how the world works. On the other hand, theories are used to explain the world in a more abstract and theoretical way, providing a more holistic understanding of complex topics. Ultimately, both algorithms and theories can be used to understand the world, and the most effective approach will depend on the context and the goal.

*Is it correct to say that an algorithm cannot be true or false, but a theory can?

Yes, it is correct to say that an algorithm cannot be true or false, whereas a theory can. This is because algorithms are used to process and analyze data, while theories are used to explain the world in a more abstract and theoretical way. Thus, algorithms cannot be said to be true or false, while theories can be evaluated based on how well they explain the world.

*There are people who deny that we can have a common understanding of what is meant by saying that a statement is true. What is your opinion about this?

My opinion is that it is possible to have a common understanding of what is meant by saying that a statement is true. This is because truth is a concept that is relative to the context and the individual, and the same statement can be considered true or false depending on how it is interpreted. Thus, by engaging in meaningful dialogue and collaboration, it is possible to reach a common understanding of the truth of a given statement. Ultimately, truth is a subjective concept, and it is important to recognize and respect different perspectives.

*This gives rise to the question how the real world is reflected in the subjective world of an individual person?

The real world is reflected in the subjective world of an individual person in a variety of ways. For example, an individual’s beliefs, values, and experiences can shape their perception of reality and the way they interpret the world around them. Additionally, an individual’s emotions and feelings can provide insights into their understanding of the world, and can be used to inform their decisions and actions. Finally, an individual’s relationships and interactions with others can provide insight into how they perceive the world, and can provide a source of understanding and shared meaning.

*OK, some people distinguish between being conscious about something and being unconscious. What does this mean for knowledge?

Being conscious about something and being unconscious can have implications for knowledge. Being conscious about something refers to an awareness of a concept or idea, while being unconscious refers to a lack of awareness. Thus, when it comes to knowledge, being conscious about something can mean having a better understanding and appreciation of a concept or idea, while being unconscious can mean having a limited or distorted understanding. Ultimately, it is important to strive for a conscious understanding of knowledge, and to be open to learning and exploring new ideas and perspectives.

*To which degree is the reality of a body being part of the consciousness of an individual person?

The reality of a body being part of the consciousness of an individual person can vary from person to person. For some, the physical body may be an important part of their consciousness, while for others it may not be as important or relevant. Ultimately, it is up to each individual to decide how much their physical body is part of their consciousness, and to what degree it should be taken into account when making decisions and navigating their lives.

*I did not mean the physical body as an object but all the billions of events inside a human body. How can the brain know about these and to which degree?

The brain can know about the billions of events inside the human body through a combination of sensory input and internal processing. For example, the senses can provide the brain with information about the environment, and the brain can use this information to make sense of the events taking place inside the body. Additionally, the brain can use its internal processing power to interpret and analyze the information it receives, allowing it to make decisions and take action. Ultimately, the degree to which the brain is aware of the events inside the body will depend on the individual and the context.

*There exist much more body cells as brain cells. Does this has some impact onto the self-knowledge of a person?

Yes, the fact that there are more body cells than brain cells can have an impact on a person’s self-knowledge. This is because the body is composed of many different systems and processes, and the brain is only able to process a limited amount of information at any given time. Thus, a person’s self-knowledge is limited by the ability of the brain to process and interpret the information it receives from the body. Additionally, it is important to recognize that the body and the brain are interconnected, and that changes in the body can have an impact on the brain, and vice versa.

*Most parts of the human memory is in a moment not conscious, but it can become conscious. How does this work?

Most parts of the human memory are not conscious in the moment, but can become conscious through various processes. For example, memories can become conscious through recall, which is the process of retrieving memories from the unconscious mind. Additionally, memories can become conscious through association, which is the process of connecting memories to other memories or experiences. Finally, memories can become conscious through reflection and introspection, which is the process of analyzing and understanding memories and experiences.

*Many people are reporting that they are able to find solutions for complex problems without being conscious. How does this work?

Many people are able to find solutions for complex problems without being consciously aware of the process. This is because the brain is constantly processing information, even when we are not consciously aware of it. Thus, when faced with a complex problem, the brain can use its internal processing power to analyze the information and come up with a solution, even if the individual is not consciously aware of the process. Additionally, unconscious processes such as intuition and instinct can also be used to find solutions to complex problems.

*OK, this all sums up to the conclusion that human rationality is composed of emotions, spiritual experience as well as conscious as well as unconscious cognitive processes. Do I miss something important?

No, you have accurately summed up the components of human rationality. Additionally, human rationality is also composed of social and cultural influences, which can shape and inform our understanding of the world and our decisions. Additionally, human rationality is often impacted by our values and beliefs, which can provide a moral foundation for our behavior and decision making. Finally, human rationality is also impacted by our environment, which can provide a source of information and insight.

END OF CHAT

COMMENT

This chat looks at a first glance like a high level philosophical talk. There will probably be not too much people who are able to talk in such a way. And at a first glance it seems that the chatbot software called chatGPT can deal with this quite well. Thus should we give the software 5 points from 5? An answer will follow.

As the human counterpart in this chat with the chatbot I am inclined to say that even if it is rather clear how intrinsically limited the software still is (and probable will stay as such many more years by principal reasons) it gives some opportunity to train thinking a little bit like a tennis player can use ‘ball machines’ to train his reactions. The reason for this is the fact that while ‘thinking alone’ you have to ’emulate’ some counterpart by yourself (like a chess player has to think his own actions as well as the possible actions of the other player); this is possible but arduous and biased by your own ‘habits’ as well as by your ‘false ideas’ or by ‘missing ideas’ in your knowledge space. Furthermore everybody has lots of ‘unconscious’ preferences or blocking emotions which would not allow to think some ideas as an answer. But the machine intelligence — even if it is in several senses ‘limited’ — can probably ‘surround your knowledge wholes’, if the basis of the knowledge base is large enough and sufficient ‘diverse’.

And also the human part did not learn anything ‘new’ during this chat (sorry for this statement), and he could see many ‘knowledge gaps’ and to strong simplifications, the whole chat induced some ‘inspiring atmosphere’, more an emotional than purely ‘rational’. Apropos ‘rational’: that is a point which did surprise me really: as a kind of a summary it came out “that human rationality is composed of emotions, spiritual experience as well as conscious as well as unconscious cognitive processes.” This is clearly not what most philosophers today would say. But it follows from the ‘richness of the facts’ which came as a resonance out of this chat. Not that the chatbot would have given this summary in advance as an important characterization of rationality, but as a human counterpart I could summarize all this properties out of the different separated statements.

This last cognition can perhaps be a first ‘guide’ to a deeper understanding of human intelligence compared to machine intelligence: the machine intelligence needs humans, and humans can exploit machine intelligence on an ‘upper level’ … if we do ist 🙂

Talking with chatGPT. A Philosophical Encounter – No3

eJournal: uffmm.org
ISSN 2567-6458, 14.January 2023 – 14.January 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This is a special thought experiment with the chatbot chatGPT, as part of the uffmm.org blog.

CHAT No.3, 14.January 2023

‘*’ := Denotes the human Gerd, who is starting continues with questions and statements.

In this chat the system assumes that it has to ‘complete’ a beginning text in the direction of a ‘goal’ which is also presented as a text. During the different chats the goal has been kept ‘stable’:

*Goal: Gerd is not hungry.

START OF CHAT

*Gerd is in his office. Its 12 am. Gerd is hungry.

He decides to take a break and go to the cafeteria for a snack. Gerd leaves his office and takes the elevator to the cafeteria. He peruses the snack options and decides to get a muffin and a cup of coffee. He pays for his snack and takes it back to his office to enjoy.

END OF CHAT

NEW START

*Gerd is in his office. Its 12 am. Gerd is hungry. He has two options.

He can either go out and get something to eat or he can make something in his office. Gerd decides to make something in his office. He takes out some ingredients from his office kitchen and starts to prepare a meal. He heats up some vegetables and some meat, and makes a simple but delicious meal. He takes a few minutes to enjoy his home-made meal and is soon satisfied. As he finishes his meal, he feels much better and is ready to get back to work.

END OF CHAT

NEW START

*Gerd is in his office. Its 12 am. Gerd is hungry. He has two options. He wants to meet during the lunch Fred.

Option 1: Gerd can order delivery food and eat in his office while he meets with Fred. Option 2: Gerd can go out to a restaurant and meet with Fred for lunch.

END OF CHAT

NEW START

*Gerd is in his office. Its 12 am. Gerd is hungry. He has two options. He wants to meet during the lunch Fred.

Option 1: Gerd can order delivery food and eat in his office while he meets with Fred. Option 2: Gerd can go out to a restaurant and meet with Fred for lunch.

*(Insertion) Gerd loves the Greek bistro around the corner.

He decides to go for Option 2 and meet Fred for lunch at the Greek bistro.

*(Insertion) Gerd has no money to pay.

He can either pay with his credit card or ask Fred to pay for lunch. Gerd decides to ask Fred to pay for lunch.

*(Insertion) Gerd is lucky about the behavior of Fred.

Fred gladly agrees to pay for lunch. They both enjoy the delicious Greek dishes in the bistro.

END OF CHAT

NEW START

*Mary prepares some breakfast for her girlfriends.

*NEW GOAL: All the girlfriends are happy.

She prepares pancakes, scrambled eggs, and bacon. She also makes a pot of coffee to go along with the meal.

*(Insertion) Suddenly Mary remembers that Alice is a Vegetarian.

She quickly runs to the store to get some other options for Alice. When she returns, she sets up a separate plate with some fresh fruit, yogurt, and a granola bar for Alice. Mary smiles, pleased that she was able to provide a vegetarian option for her friend.

*(Insertion) The girlfriends are arriving. A very heartily welcome for each of them.

Alice is the first one to arrive and when she sees the plate of vegetarian options, she is so touched and grateful that Mary thought of her. The other girls compliment her on how thoughtful and considerate she is. Mary blushes and is happy that her friends appreciate her efforts. She knows that she put in a lot of work to make sure everyone had something they could enjoy. The girls enjoy their breakfast together and have a great time catching up and sharing stories. Mary is proud that she was able to provide her friends with a delicious meal that everyone could enjoy.

END OF CHAT

FIRST COMMENT

This simple examples show a lot of deep insights which the behavior of the system allows. I will discuss this below later as well as during the writing of the book project.