OKSIMO MEETS POPPER. Popper’s Position

eJournal: uffmm.org
ISSN 2567-6458, 31.March – 31.March  2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

POPPERs POSITION IN THE CHAPTERS 1-17

In my reading of the chapters 1-17 of Popper’s The Logic of Scientific Discovery [1] I see the following three main concepts which are interrelated: (i) the concept of a scientific theory, (ii) the point of view of a meta-theory about scientific theories, and (iii) possible empirical interpretations of scientific theories.

Scientific Theory

A scientific theory is according to Popper a collection of universal statements AX, accompanied by a concept of logical inference , which allows the deduction of a certain theorem t  if one makes  some additional concrete assumptions H.

Example: Theory T1 = <AX1,>

AX1= {Birds can fly}

H1= {Peter is  a bird}

: Peter can fly

Because  there exists a concrete object which is classified as a bird and this concrete bird with the name ‘Peter’ can  fly one can infer that the universal statement could be verified by this concrete bird. But the question remains open whether all observable concrete objects classifiable as birds can fly.

One could continue with observations of several hundreds of concrete birds but according to Popper this would not prove the theory T1 completely true. Such a procedure can only support a numerical universality understood as a conjunction of finitely many observations about concrete birds   like ‘Peter can fly’ & ‘Mary can fly’ & …. &’AH2 can fly’.(cf. p.62)

The only procedure which is applicable to a universal theory according to Popper is to falsify a theory by only one observation like ‘Doxy is a bird’ and ‘Doxy cannot fly’. Then one could construct the following inference:

AX1= {Birds can fly}

H2= {Doxy is  a bird, Doxy cannot fly}

: ‘Doxy can fly’ & ~’Doxy can fly’

If a statement A can be inferred and simultaneously the negation ~A then this is called a logical contradiction:

{AX1, H2}  ‘Doxy can fly’ & ~’Doxy can fly’

In this case the set {AX1, H2} is called inconsistent.

If a set of statements is classified as inconsistent then you can derive from this set everything. In this case you cannot any more distinguish between true or false statements.

Thus while the increase of the number of confirmed observations can only increase the trust in the axioms of a scientific theory T without enabling an absolute proof  a falsification of a theory T can destroy the ability  of this  theory to distinguish between true and false statements.

Another idea associated with this structure of a scientific theory is that the universal statements using universal concepts are strictly speaking speculative ideas which deserve some faith that these concepts will be provable every time one will try  it.(cf. p.33, 63)

Meta Theory, Logic of Scientific Discovery, Philosophy of Science

Talking about scientific theories has at least two aspects: scientific theories as objects and those who talk about these objects.

Those who talk about are usually Philosophers of Science which are only a special kind of Philosophers, e.g. a person  like Popper.

Reading the text of Popper one can identify the following elements which seem to be important to describe scientific theories in a more broader framework:

A scientific theory from a point of  view of Philosophy of Science represents a structure like the following one (minimal version):

MT=<S, A[μ], E, L, AX, , ET, E+, E-, true, false, contradiction, inconsistent>

In a shared empirical situation S there are some human actors A as experts producing expressions E of some language L.  Based on their built-in adaptive meaning function μ the human actors A can relate  properties of the situation S with expressions E of L.  Those expressions E which are considered to be observable and classified to be true are called true expressions E+, others are called false expressions  E-. Both sets of expressions are true subsets of E: E+ ⊂ E  and E- ⊂ E. Additionally the experts can define some special  set of expressions called axioms  AX which are universal statements which allow the logical derivation of expressions called theorems of the theory T  ET which are called logically true. If one combines the set of axioms AX with some set of empirically true expressions E+ as {AX, E+} then one can logically derive either  only expressions which are logically true and as well empirically true, or one can derive logically true expressions which are empirically true and empirically false at the same time, see the example from the paragraph before:

{AX1, H2}  ‘Doxy can fly’ & ~’Doxy can fly’

Such a case of a logically derived contradiction A and ~A tells about the set of axioms AX unified with the empirical true expressions  that this unified set  confronted with the known true empirical expressions is becoming inconsistent: the axioms AX unified with true empirical expressions  can not  distinguish between true and false expressions.

Popper gives some general requirements for the axioms of a theory (cf. p.71):

  1. Axioms must be free from contradiction.
  2. The axioms  must be independent , i.e . they must not contain any axiom deducible from the remaining axioms.
  3. The axioms should be sufficient for the deduction of all statements belonging to the theory which is to be axiomatized.

While the requirements (1) and (2) are purely logical and can be proved directly is the requirement (3) different: to know whether the theory covers all statements which are intended by the experts as the subject area is presupposing that all aspects of an empirical environment are already know. In the case of true empirical theories this seems not to be plausible. Rather we have to assume an open process which generates some hypothetical universal expressions which ideally will not be falsified but if so, then the theory has to be adapted to the new insights.

Empirical Interpretation(s)

Popper assumes that the universal statements  of scientific theories   are linguistic representations, and this means  they are systems of signs or symbols. (cf. p.60) Expressions as such have no meaning.  Meaning comes into play only if the human actors are using their built-in meaning function and set up a coordinated meaning function which allows all participating experts to map properties of the empirical situation S into the used expressions as E+ (expressions classified as being actually true),  or E- (expressions classified as being actually false) or AX (expressions having an abstract meaning space which can become true or false depending from the activated meaning function).

Examples:

  1. Two human actors in a situation S agree about the  fact, that there is ‘something’ which  they classify as a ‘bird’. Thus someone could say ‘There is something which is a bird’ or ‘There is  some bird’ or ‘There is a bird’. If there are two somethings which are ‘understood’ as being a bird then they could say ‘There are two birds’ or ‘There is a blue bird’ (If the one has the color ‘blue’) and ‘There is a red bird’ or ‘There are two birds. The one is blue and the other is red’. This shows that human actors can relate their ‘concrete perceptions’ with more abstract  concepts and can map these concepts into expressions. According to Popper in this way ‘bottom-up’ only numerical universal concepts can be constructed. But logically there are only two cases: concrete (one) or abstract (more than one).  To say that there is a ‘something’ or to say there is a ‘bird’ establishes a general concept which is independent from the number of its possible instances.
  2. These concrete somethings each classified as a ‘bird’ can ‘move’ from one position to another by ‘walking’ or by ‘flying’. While ‘walking’ they are changing the position connected to the ‘ground’ while during ‘flying’ they ‘go up in the air’.  If a human actor throws a stone up in the air the stone will come back to the ground. A bird which is going up in the air can stay there and move around in the air for a long while. Thus ‘flying’ is different to ‘throwing something’ up in the air.
  3. The  expression ‘A bird can fly’ understood as an expression which can be connected to the daily experience of bird-objects moving around in the air can be empirically interpreted, but only if there exists such a mapping called meaning function. Without a meaning function the expression ‘A bird can fly’ has no meaning as such.
  4. To use other expressions like ‘X can fly’ or ‘A bird can Y’ or ‘Y(X)’  they have the same fate: without a meaning function they have no meaning, but associated with a meaning function they can be interpreted. For instance saying the the form of the expression ‘Y(X)’ shall be interpreted as ‘Predicate(Object)’ and that a possible ‘instance’ for a predicate could be ‘Can Fly’ and for an object ‘a bird’ then we could get ‘Can Fly(a Bird)’ translated as ‘The object ‘a Bird’ has the property ‘can fly” or shortly ‘A Bird can fly’. This usually would be used as a possible candidate for the daily meaning function which relates this expression to those somethings which can move up in the air.
Axioms and Empirical Interpretations

The basic idea with a system of axioms AX is — according to Popper —  that the axioms as universal expressions represent  a system of equations where  the  general terms   should be able to be substituted by certain values. The set of admissible values is different from the set of  inadmissible values. The relation between those values which can be substituted for the terms  is called satisfaction: the values satisfy the terms with regard to the relations! And Popper introduces the term ‘model‘ for that set of admissible terms which can satisfy the equations.(cf. p.72f)

But Popper has difficulties with an axiomatic system interpreted as a system of equations  since it cannot be refuted by the falsification of its consequences ; for these too must be analytic.(cf. p.73) His main problem with axioms is,  that “the concepts which are to be used in the axiomatic system should be universal names, which cannot be defined by empirical indications, pointing, etc . They can be defined if at all only explicitly, with the help of other universal names; otherwise they can only be left undefined. That some universal names should remain undefined is therefore quite unavoidable; and herein lies the difficulty…” (p.74)

On the other hand Popper knows that “…it is usually possible for the primitive concepts of an axiomatic system such as geometry to be correlated with, or interpreted by, the concepts of another system , e.g . physics …. In such cases it may be possible to define the fundamental concepts of the new system with the help of concepts which were originally used in some of the old systems .”(p.75)

But the translation of the expressions of one system (geometry) in the expressions of another system (physics) does not necessarily solve his problem of the non-empirical character of universal terms. Especially physics is using also universal or abstract terms which as such have no meaning. To verify or falsify physical theories one has to show how the abstract terms of physics can be related to observable matters which can be decided to be true or not.

Thus the argument goes back to the primary problem of Popper that universal names cannot not be directly be interpreted in an empirically decidable way.

As the preceding examples (1) – (4) do show for human actors it is no principal problem to relate any kind of abstract expressions to some concrete real matters. The solution to the problem is given by the fact that expressions E  of some language L never will be used in isolation! The usage of expressions is always connected to human actors using expressions as part of a language L which consists  together with the set of possible expressions E also with the built-in meaning function μ which can map expressions into internal structures IS which are related to perceptions of the surrounding empirical situation S. Although these internal structures are processed internally in highly complex manners and  are — as we know today — no 1-to-1 mappings of the surrounding empirical situation S, they are related to S and therefore every kind of expressions — even those with so-called abstract or universal concepts — can be mapped into something real if the human actors agree about such mappings!

Example:

Lets us have a look to another  example.

If we take the system of axioms AX as the following schema:  AX= {a+b=c}. This schema as such has no clear meaning. But if the experts interpret it as an operation ‘+’ with some arguments as part of a math theory then one can construct a simple (partial) model m  as follows: m={<1,2,3>, <2,3,5>}. The values are again given as  a set of symbols which as such must not ave a meaning but in common usage they will be interpreted as sets of numbers   which can satisfy the general concept of the equation.  In this secondary interpretation m is becoming  a logically true (partial) model for the axiom Ax, whose empirical meaning is still unclear.

It is conceivable that one is using this formalism to describe empirical facts like the description of a group of humans collecting some objects. Different people are bringing  objects; the individual contributions will be  reported on a sheet of paper and at the same time they put their objects in some box. Sometimes someone is looking to the box and he will count the objects of the box. If it has been noted that A brought 1 egg and B brought 2 eggs then there should according to the theory be 3 eggs in the box. But perhaps only 2 could be found. Then there would be a difference between the logically derived forecast of the theory 1+2 = 3  and the empirically measured value 1+2 = 2. If one would  define all examples of measurement a+b=c’ as contradiction in that case where we assume a+b=c as theoretically given and c’ ≠ c, then we would have with  ‘1+2 = 3′ & ~’1+2 = 3’ a logically derived contradiction which leads to the inconsistency of the assumed system. But in reality the usual reaction of the counting person would not be to declare the system inconsistent but rather to suggest that some unknown actor has taken against the agreed rules one egg from the box. To prove his suggestion he had to find this unknown actor and to show that he has taken the egg … perhaps not a simple task … But what will the next authority do: will the authority belief  the suggestion of the counting person or will the authority blame the counter that eventually he himself has taken the missing egg? But would this make sense? Why should the counter write the notes how many eggs have been delivered to make a difference visible? …

Thus to interpret some abstract expression with regard to some observable reality is not a principal problem, but it can eventually be unsolvable by purely practical reasons, leaving questions of empirical soundness open.

SOURCES

[1] Karl Popper, The Logic of Scientific Discovery, First published 1935 in German as Logik der Forschung, then 1959 in English by  Basic Books, New York (more editions have been published  later; I am using the eBook version of Routledge (2002))

 

 

PHILOSOPHY OF SCIENCE

eJournal: uffmm.org
ISSN 2567-6458, 15.March – 5.April  2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This post is part of the uffmm science blog and will introduce in the new possibility to use the oksimo software for theory development  and theory testing using only everyday language. More options are possible, e.g. the unification of theories.

PREFACE

The topic Philosophy of Science [PoS] in the context of modern science has  a history of   more then 100 years and — in the view of the author — this topic has not yet settled in one grand view of science which is globally accepted.[1]-[7] From the many books the one which I like most as a good first introduction is that entitled The Structure of Scientific Theories edited by Frederick Suppe (1977).[5]  In the German philosophical Discourse there exists the distinction between ‘Philosophy of Science’ (‘Wissenschaftsphilosophie’) and ‘Theory of Science’ (‘Wissenschaftstheorie’). [7] In this text this distinction will not be used.

Given such a multifarious outlook of the subject matter it is difficult to decided how to start a discourse?

In our case we have started with a certain kind of engineering theory, embedded in philosophical considerations, which gave raise to a new paradigm of software which enables behavior spaces which have similarities with e.g. process planning, with solving of problems in a systems engineering style, or with collective man:machine intelligence. A new aspect only recently detected points into the direction, that this behavior space can also be understood as theory production and the  testing of theories.

To clarify these new phenomena with regard to the different views of philosophy of science the following procedure will be followed:

  1. Describe the subject matter of the oksimo behavior space as starting point.
  2. Take the book (or paper) of a well known author of the field and
  3. compare this well known position with the oksimo case.
  4. After such a comparison some result will show up: either the oksimo case is  describable by the position of the selected author or one can detect some differences.
  5. A discussion will reveal in which direction the discourse will proceed.
  6. Repeat (2) – (5)

The first encounters will be arranged with the book The Logic of Scientific Discovery of Karl Popper and then the book Science and Hypothesis of Henri Poincaré.

Here follow the different contributions:

SOURCES

[1] Wikipedia EN, Philosophy of Science: https://en.wikipedia.org/wiki/Philosophy_of_science

[2] Enyclopaedia Britannica, Philosophy of Science: https://www.britannica.com/topic/philosophy-of-science /* Very broad overview */

[3] Journal Philosophy of Science (Since 1934), published by the University of Chicago Press: https://www.journals.uchicago.edu/toc/phos/current

[4] Stanford Encylopedia of Philosophy, Philosophy of Science in Latin America: https://plato.stanford.edu/entries/phil-science-latin-america/ /* There exists no general topic of Philosophy of Science! */

[5] Frederick Suppe (Ed.), The Structure of ScientificTheories,  University of Illinois Press, Urbana, 1977, 2nd edition 1979

[6] Jürgen Mittelstraß (Ed.), Enzylopädie Philosophie und Wissenschaftstheorie, Bd.1-4, Publisher J.Metzler, Stuttgart – Weimar (Germany), 1995 – 1996

[7] Hans Jörg Sandkühler (Ed.), Enzylopädie Philosophie, Bd. 1-3, Publisher Felix Meiner Verlag, Hamburg (Germany), 2010. Stichworte ‘Wissenschaftsphilosophie‘ und ‘Wissenschaftstheorie‘ in Bd.3

[8] Karl Popper, The Logic of Scientific Discovery, First published 1935 in German as Logik der Forschung, then 1959 in English by  Basic Books, New York (more editions have been published  later; I am using the eBook version of Routledge (2002))

[9] Jules Henri Poincaré (1854 – 1912),https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9,  La science et l’hypothèse, Paris 1902, English: Science and Hypothesis, New York 1905, publisher The Walter Scott Publishing CO., LTD (See wikisource: https://en.wikisource.org/wiki/Science_and_Hypothesis )

 

 

HMI Analysis for the CM:MI paradigm. Part 1

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, February 25, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Last change: March 16, 2021 (Some minor corrections)
HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 1
Introduction

Since January 2021 an intense series of posts has been published how the new ideas manifested in the new software published in this journal  can adequately be reflected in the DAAI theoretical framework. Because these ideas included in the beginning parts of philosophy, philosophy of science, philosophy of engineering, these posts have been first published in the German Blog of the author (cognitiveagent.org). This series of posts started with an online lecture for students of the University of Leipzig together with students of the ‘Hochschule für Technik, Wirtschaft und Kultur (HTWK)’ January 12, 2021.  Here is the complete list of posts:

In what follows in this text is an English version of the following 5 posts. This is not a 1-to-1 translation but rather a new version:

HMI Analysis as Part of Systems Engineering
HMI analysis as pat of systems engineering illustrated with the oksimo software
HMI analysis for the CM:MI paradigm illustrated with the oksimo software concept

As described in the original DAAI theory paper the whole topic of HMI is here understood as a job within the systems engineering paradigm.

The specification process is a kind of a ‘test’ whether the DAAI format of the HMI analysis works with this new  application too.

To remember, the main points of the integrated engineering concept are the following ones:

  1. A philosophical  framework (Philosophy of Science, Philosophy of Engineering, …), which gives the fundamentals for such a process.
  2. The engineering process as such where managers and engineers start the whole process and do it.
  3. After the clarification of the problem to be solved and a minimal vision, where to go, it is the job of the HMI analysis to clarify which requirements have to be fulfilled, to find an optimal solution for the intended product/ service. In modern versions of the HMI analysis substantial parts of the context, i.e. substantial parts of the surrounding society, have to be included in the analysis.
  4. Based on the HMI analysis  in  the logical design phase a mathematical structure has to be identified, which integrates all requirements sufficiently well. This mathematical structure has to be ‘map-able’ into a set of algorithms written in  appropriate programming languages running on  an appropriate platform (the mentioned phases Problem, Vision, HMI analysis, Logical Design are in reality highly iterative).
  5. During the implementation phase the algorithms will be translated into a real working system.
Which Kinds of Experts?

While the original version of the DAAI paper is assuming as ‘experts’ only the typical manager and engineers of an engineering process including all the typical settings, the new extended version under the label CM:MI (Collective Man-Machine Intelligence) has been generalized to any kind of human person as an expert, which allows a maximum of diversity. No one is the ‘absolute expert’.

Collective Intelligence

As ‘intelligence’ is understood here the whole of knowledge, experience, and motivations which can be the moving momentum inside of a human person. As ‘collective’  is meant  the situation, where more than one person is communicating with other persons to share it’s intelligence.

Man-Machine Symbiosis

Today there are discussions going around  about the future of man and (intelligent) machines. Most of these discussions are very weak because they are lacking clear concepts of intelligent machines as well of what is a human person. In the CM:MI paradigm the human person (together with all other biological systems)  is seen at the center of the future  (by  reasons based on modern theories of biological evolution) and the  intelligent machines are seen as supporting devices (although it is assumed here to use ‘strong’ intelligence compared to the actual ‘weak’ machine intelligence today).

CM:MI by Design

Although we know, that groups of many people are ‘in principal’ capable of sharing intelligence to define problems, visions, constructing solutions, testing the solutions etc., we know too, that the practical limits of the brains and the communication are quite narrow. For special tasks a computer can be much, much better. Thus the CM:MI paradigm provides an environment for groups of people to do the shared planning and testing in a new way, only using normal language. Thus the software is designed to enable new kinds of shared knowledge about shared common modes of future worlds. Only with such a truly general framework the vision of a sustainable society as pointed out by the United Nations since 1992 can become real.

Continuation

Look here.

WHY THE WORLD NEEDS ANTHROPOLOGISTS – Review Part 1

eJournal: uffmm.org, ISSN 2567-6458, 1.December  2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

ANTHROPOLOGY AND ENGINEERING

The starting point of view in this blog has been and still is the point of engineering, especially the perspective of man-machine interface [MMI], later as Man-Machine Interaction, then  accompanied by   human-computer interaction [HCI] or human-machine interaction [HMI]. While MMI often is discussed in isolation, not as part of engineering, this blog emphasizes a point of view where MMI is understood as an integrated part of systems engineering. The past years have shown, that this integration makes a great difference in the overall layout as well as in the details of the used methods. This integration widened the scope of MMI to the context of engineering in a way which teared down many artificial boundaries in dealing with the subject of MMI. The analysis part of MMI can take into account not only the intended users and a limited set of tasks required for the usage of a system but it can extend the scope to the different kinds of contexts of the intended users as well as the intended service/product as such: cultural patterns, sustainable perspectives, climate relevance, political implications, and more. This triggers the question, whether there are other established scientific disciplines which are sharing this scope with MMI. Traditionally experimental and cognitive psychology has always played an important role as part of the MMI analysis.  Different special disciplines like physiology or neuro-psychology, linguistics, phonetics etc. have played some role too. More recently culture and society have been brought more into the focus of MMI. What about sociology? What about anthropology? The following text discusses a possible role of anthropology in the light of the recent book Why The World Needs Anthropologists?

INTRODUCTION AND CONCLUSION

This review has the addendum ‘Part 1’ pointing to the fact, that this text does not deal with the whole book first, but only with some parts, the introduction and the conclusion.

An Introduction

The introduction of the book is asking, why does the world needs anthropologists?, and the main pattern of the introduction looks back to the old picture of anthropology, and then seeks to identify, what could/is the new paradigm which should be followed.

The roots of anthropology are located in the colonial activities of the British Empire as well as in the federal activities of the USA, which both had a strong bias to serve the political power more than to evolve a really free science. And an enduring gap between the more theoretical anthropology and an applied one is thematised although there existed always  a strong inter-dependency  between both.

To leave the close connection with primarily  governmental interests and to see the relation  between the theory and the different Applications  more positive than negative anthropology is understood  as challenged to rebrand its appearance in the public and in their own practice.

The most vital forces for such a rebranding seem to be rooted in more engagements in societal problems of public interests and thereby challenging the theory to widen their concept and methods.

Besides the classical methods of anthropology (cultural relativism, ethnography, comparison, and contextual understanding)  anthropology has to show that it can make sense beyond pure data, deciphering ambiguity, complexity, and ambivalence, helping with  diversity, investigating the interface between culture, technology, and environment.

What Is Left Out

After the introduction the main chapters of the book  are left out in this text  until later. The chapters in the book are giving examples to the questions, why the world needs anthropology, what have been the motivations for active anthropologists to become one, how they have applied anthropology, and which five tips they would give for practicing and theorizing.

Conclusion

In the conclusion of the book not the five questions are the guiding principle but ‘five axis that matter greatly’, and these five axis are circumscribed as (i) navigate the ethics of change; (ii) own-it in the sense, that an anthropologist should have a self-esteem for his/ her/ x  profession and can co-create it with others; (iii) expand the skill-set; (iv) collaborate, co-create and study-up; (v) recommend as being advisors and consultants.

The stronger commitment with actual societal problems leads anthropology at the crossroads of many processes which require new views, new methods. To gain new knowledge and to do a new practice is  not always accompanied by  known ethical schemata. Doing this induces  ethical questions which have not been known before in this way.  While a new practice is challenging the old knowledge and induces a pressure for change, new versions of knowing can  trigger new forms of practice as well. Theory and application are a dynamic pair where each part learns from the other.

The long-lasting preference of academic anthropology, thinking predominantly  in the mind-setting of   white-western-man, is  more and more resolved  by extending anthropology from academia to application, from man into the diversity of genders, from western culture into all the other cultures, from single persons to assemblies of diverse gatherings living an ongoing discourse with a growing publicity.

This widening of anthropological subjects and methods calls naturally for more interdisciplinarity, transdisciplinarity, and of a constructive attitude  which looks ahead to  possible futures of processes.

Close to this are expressions like collaboration and co-creation with others. In the theory dimension this is reflected by multiperspectivity and a holistic view. In societal development processes — like urban planning — there are different driving forces acting working top-down or acting working bottom-up.

Recommending solutions based on anthropological thinking ending in a yes or no, can be of help and can be necessary because real world processes can not only wait of final answers (which are often not realistic), they need again and again decisions to proceed now.

REFLECTIONS FOLLOWING THE INTRODUCTION AND THE CONCLUSION

The just referred texts making a fresh impression of a discipline in a dynamic movement.

General Knowledge Architecture

For the point of view of MMI (Man-Machine Interface, later HMI Human-Machine Interaction, in my theory extended to DAAI Distributed Actor-Actor Interaction) embedded in systems engineering with an openness for the whole context of society and culture arises the question whether such a dynamic anthropology can be of help.

To clarify this question let us have a short look to the general architecture of knowledge.

Within the everyday world philosophy can be understood as the most general point of view of knowing  and thinking.  Traditionally logic and mathematics can be understood as part of philosophy although today this has been changed. But there are no real reasons for this departure: logic and mathematics are not empirical sciences and they are not engineering.

Empirical science can be understood as specialized extension of philosophical thinking with identifiable characteristics which allow to  differentiate to some extend different  disciplines.  Traditionally all the different disciplines of empirical science have a more theoretical part and a more applied part. But systematically they depend from each other. A theory is only an empirical one, if there exists a clear relationship to the everyday world, and certain aspects of the everyday world are only theoretical entities (data) if there exists a relationship to an explicit theory which gives a formal explanation.

Asking for a  systematic place for engineering it is often said, that it belongs to the applied dimension of empirical science.  But engineering has realized processes, buildings, machines long before there was a scientific framework for to do this, and engineering uses in its engineering processes lots of knowledge which is not part of science. On the other side, yes, engineering is using scientific knowledge as far as it is usable and it is also giving back many questions to science which are not yet solved sufficiently. Therefore it is sound to locate engineering besides science, but   being  part of philosophy dealing with the practical dimensions of life.

What About Anthropology?

While philosophy (with logic and mathematics) is ‘on top’ of empirical science and engineering, it is an interesting question where to place anthropology?

While empirical science as well as engineering are inheriting all what philosophy provides remains the question whether  anthropology is more an empirical science or more engineering or some kind of a hybrid system with roots in empirical science as well as in engineering?

Looking back into history it could arise the impression that anthropology is more a kind of an empirical science with strong roots in academia, but doing  fieldwork to feed the theories.

Looking to the new book it could support the image that anthropology should be more like engineering: identifying  open problems in society and trying to transform these problems — like engineers — into satisfying solutions, at least on the level of counseling.

Because in our societies the universities have traditionally a higher esteem then the engineers — although the engineers  are all  trained by highly demanding university courses — it could be a bias in the thinking of  anthropologist not to think of their discipline   as engineering.

If one looks to the real world than everything which  makes human societies livable is realized by engineers. Yes, without science many of the today solutions wouldn’t be possible, but no single scientific theory has ever enabled directly some practical stuff.  And without the engineers there would not exist any of the modern machines used for measurements and experiments for science. Thus both are intimately  interrelated: science inspires engineering and engineering inspires and enables science, but both are genuinely different and science and engineering play their own fundamental role.

Thus if I am reading the new book as engineer (attention: I am also a philosopher and I am trained in the Humanities too!) then I think there are more arguments to understand anthropology  as engineering than as a pure empirical science. In the light of my distributed actor-actor interaction paradigm, which is a ‘spinoff’ of engineering and societal thinking it seems very ‘naturally’ to think of anthropology as a kind of social engineering.

Let us discuss both perspectives a bit more, thereby not excluding the hybrid version.

1) Anthropology as Engineering

The basic idea of engineering is to enable a change process which is completely transparent in all respects: Why, Who, Where, When, How etc. The process starts with explicit preferences turning some known reality into a problem on account of some visions which have been imagined and which have become ranked higher than the given known reality. And then the engineers try to organized an appropriate change process which will lead from the given situation to a new situation until some date in the future where the then given situation — the envisioned goal state — has become real and the situation from the beginning, which has been ranked down, has disappeared, or is at least weakened in a way that one can say, yes, it has changed.

Usually engineers are known to enable change processes which enable the production of everyday things (tools, products, machines, houses, plants, ships, airplanes, …), but to the extend that the engineering is touching the everyday life deeper and deeper (e.g. the global digital revolution absorbing more and more from the real life processes by transforming them into digital realities forcing human persons to act digitally and not any more with their bodies in the everyday world) the sharp boundary between engineering products and the societal life of human persons is vanishing. In such a context engineering is becoming social engineering even if the majority of traditional engineers this doesn’t see yet in this way. As the traditional discipline MMI Man-Machine Interface and then  expanded to HMI Human-Machine Interaction and further morphed into DAAI Distributed Actor-Actor Interaction this  already manifests, that the realm of human persons, yes  the whole of society is already included in engineering.  The border between machines and human actors is already at least fuzzy and the mixing of technical devices and human actors (as well as all other biological actors) has already gained a degree which does not allow any longer a separation.

These ideas would argue for the option to see anthropology as social engineering: thematizing all the important visions which seem to be helpful or important for a good future of modern mankind, and to help to organize change processes, which will support approaching this better future. That these visions can fail, can be wrong is part of the ever lasting battle of the homo sapiens to gain the right knowledge.

2) Anthropology as  an Empirical Science

… to be continued …

3) Anthropology as a Hybrid Couple of Science and Engineering

… to be continued …

 

 

From Men to Philosophy, to Empirical Sciences, to Real Systems. A Conceptual Network

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, Nov 8, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

DAILY LIFE

In daily life we experience today a multitude of perspectives in all areas. While our bodies are embedded in real world scenarios our minds are filled up with perceptions, emotions, ideas, memories of all kinds. What links us to each other is language. Language gives us the power to overcome the isolation of our individual brains located in  individual bodies. And by this, our language, we can distribute and share the inner states of our brains, pictures of life as we see it. And it is this open web of expressions which spreads to the air, to the newspapers and books, to the data bases in which the different views of the world are manifested.

SORTING IDEAS SCIENTIFICALLY

While our bodies touching reality outside the bodies, our brains are organizing different kinds of order, finally expressed — only some part of it — in expressions of some language. While our daily talk is following mostly automatically some naive patterns of ordering does empirical science try to order the expressions more consciously following some self-defined rules called methods, called scientific procedures to enable transparency, repeatability, decidability of the hypothesized truth of is symbolic structures.

But because empirical science wants to be rational by being transparent, repeatable, measurable, there must exist an open discourse which is dealing with science as an object: what are the ingredients of science? Under which conditions can science work? What does it mean to ‘measure’ something? And other questions like these.

PHILOSOPHY OF SCIENCE

That discipline which is responsible for such a discourse about science is not science itself but another instance of thinking and speaking which is called Philosophy of Science.  Philosophy of science deals with all aspects of science from the outside of science.

PHILOSOPHY

Philosophy of Science dealing with empirical sciences as an object has a special focus and  it can be reflected too from another point of view dealing with Philosophy of Science as an object. This relationship reflects a general structure of human thinking: every time we have some object of our thinking we are practicing a different point of view talking about the actual object. While everyday thinking leads us directly to Philosophy as our active point of view  an object like empirical science does allow an intermediate point of view called Philosophy of Science leading then to Philosophy again.

Philosophy is our last point of reflection. If we want to reflect the conditions of our philosophical thinking than our thinking along with the used language tries to turn back on itself  but this is difficult. The whole history of Philosophy shows this unending endeavor as a consciousness trying to explain itself by being inside itself. Famous examples of this kind of thinking are e.g. Descartes, Kant, Fichte, Schelling, Hegel, and Husserl.

These examples show there exists no real way out.

PHILOSOPHY ENHANCED BY EMPIRICAL SCIENCES ? !

At a first glance it seems contradictory that Philosophy and Empirical Sciences could work ‘hand in hand’. But history has shown us, that this is to a certain extend possible; perhaps it is a major break through for the philosophical understanding of the world, especially also of men themselves.

Modern empirical sciences like Biology and Evolutionary Biology in cooperation with many other empirical disciplines have shown us, that the actual biological systems — including homo sapiens — are products of a so-called evolutionary process. And supported by modern empirical disciplines like Ethology, Psychology, Physiology, and Brain Sciences we could gain some first knowledge how our body works, how our brain, how our observable behavior is connected to this body and its brain.

While  Philosopher like Kant or Hegel could  investigate their own thinking only from the inside of their consciousness, the modern empirical sciences can investigate the human thinking from the outside. But until now there is a gap: We have no elaborated theory about the relationship between the inside of the consciousness and the outside knowledge about body and brain.

Thus what we need is a hybrid  theory mapping the inside to the outside and revers.  There are some first approaches headed under labels like Neuro-Psychology or Neuro-Phenomenology, but these are not yet completely clarified in their methodology in their relationship to Philosophy.

If one can describe to some extend the Phenomena of the consciousness from the inside as well as the working of the brain translated to its behavioral properties, then one can start first mappings like those, which have been used in this blog to establish  the theory for the komega software.

SOCIOLOGY

Sociology is only one empirical discipline  between many others. Although the theory of this blog is using many disciplines simultaneously Sociology is of special interest because it is that kind of empirical disciplines which is explicitly dealing with human societies with subsystems called cities.

The komega software which we are developing is understood here as enabling a system of interactions as part of a city understood as a system. If we understand Sociology as an empirical science according to some standard view of empirical science then it is possible to describe a city as an input-output system whose dynamics can become influenced by this komega software if citizens are using this software as part of their behavior.

STANDARD VIEW OF EMPIRICAL SCIENCE

Without some kind of a Standard View of Empirical Science it is not possible to design a discipline — e.g. Sociology — as an empirical discipline. Although it seems that everybody thinks that we have  such a ‘Standard View of Empirical Science’, in the real world of today one must state that we do not have such a view. In the 80ties of the20th century it looked for some time as if  we have it, but if you start searching the papers, books and schools today You will perceive a very fuzzy field called Philosophy of Science and within the so-called empirical sciences you will not found any coherent documented view of a ‘Standard View of Empirical Science’.

Because it is difficult to see how a process can  look like which enables such a ‘Standard View of Empirical Science’ again, we will try to document the own assumptions for our theory as good as possible. Inevitably this will mostly  have the character of only a ‘fragment’, an ‘incomplete outline’. Perhaps there will again be a time where sciences is back to have a commonly accepted view how  science should look like to be called empirical science.

 

 

 

 

THE BIG PICTURE: HCI – HMI – AAI in History – Engineering – Society – Philosophy

eJournal: uffmm.org,
ISSN 2567-6458, 20.April 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

A first draft version …

CONTEXT

The context for this text is the whole block dedicated to the AAI (Actor-Actor Interaction)  paradigm. The aim of this text is to give the big picture of all dimensions and components of this subject as it shows up during April 2019.

The first dimension introduced is the historical dimension, because this allows a first orientation in the course of events which lead  to the actual situation. It starts with the early days of real computers in the thirties and forties of the 20 century.

The second dimension is the engineering dimension which describes the special view within which we are looking onto the overall topic of interactions between human persons and computers (or machines or technology or society). We are interested how to transform a given problem into a valuable solution in a methodological sound way called engineering.

The third dimension is the whole of society because engineering happens always as some process within a society.  Society provides the resources which can be used and spends the preferences (values) what is understood as ‘valuable’, as ‘good’.

The fourth dimension is Philosophy as that kind of thinking which takes everything into account which can be thought and within thinking Philosophy clarifies conditions of thinking, possible tools of thinking and has to clarify when some symbolic expression becomes true.

HISTORY

In history we are looking back in the course of events. And this looking back is in a first step guided by the  concepts of HCI (Human-Computer Interface) and  HMI (Human-Machine Interaction).

It is an interesting phenomenon how the original focus of the interface between human persons and the early computers shifted to  the more general picture of interaction because the computer as machine developed rapidly on account of the rapid development of the enabling hardware (HW)  the enabling software (SW).

Within the general framework of hardware and software the so-called artificial intelligence (AI) developed first as a sub-topic on its own. Since the last 10 – 20 years it became in a way productive that it now  seems to become a normal part of every kind of software. Software and smart software seem to be   interchangeable. Thus the  new wording of augmented or collective intelligence is emerging intending to bridge the possible gap between humans with their human intelligence and machine intelligence. There is some motivation from the side of society not to allow the impression that the smart (intelligent) machines will replace some day the humans. Instead one is propagating the vision of a new collective shape of intelligence where human and machine intelligence allows a symbiosis where each side gives hist best and receives a maximum in a win-win situation.

What is revealing about the actual situation is the fact that the mainstream is always talking about intelligence but not seriously about learning! Intelligence is by its roots a static concept representing some capabilities at a certain point of time, while learning is the more general dynamic concept that a system can change its behavior depending from actual external stimuli as well as internal states. And such a change includes real changes of some of its internal states. Intelligence does not communicate this dynamics! The most demanding aspect of learning is the need for preferences. Without preferences learning is impossible. Today machine learning is a very weak example of learning because the question of preferences is not a real topic there. One assumes that some reward is available, but one does not really investigate this topic. The rare research trying to do this job is stating that there is not the faintest idea around how a general continuous learning could happen. Human society is of no help for this problem while human societies have a clash of many, often opposite, values, and they have no commonly accepted view how to improve this situation.

ENGINEERING

Engineering is the art and the science to transform a given problem into a valuable and working solution. What is valuable decides the surrounding enabling society and this judgment can change during the course of time.  Whether some solution is judged to be working can change during the course of time too but the criteria used for this judgment are more stable because of their adherence to concrete capabilities of technical solutions.

While engineering was and is  always  a kind of an art and needs such aspects like creativity, innovation, intuition etc. it is also and as far as possible a procedure driven by defined methods how to do things, and these methods are as far as possible backed up by scientific theories. The real engineer therefore synthesizes art, technology and science in a unique way which can not completely be learned in the schools.

In the past as well as in the present engineering has to happen in teams of many, often many thousands or even more, people which coordinate their brains by communication which enables in the individual brains some kind of understanding, of emerging world pictures,  which in turn guide the perception, the decisions, and the concrete behavior of everybody. And these cognitive processes are embedded — in every individual team member — in mixtures of desires, emotions, as well as motivations, which can support the cognitive processes or obstruct them. Therefore an optimal result can only be reached if the communication serves all necessary cognitive processes and the interactions between the team members enable the necessary constructive desires, emotions, and motivations.

If an engineering process is done by a small group of dedicated experts  — usually triggered by the given problem of an individual stakeholder — this can work well for many situations. It has the flavor of a so-called top-down approach. If the engineering deals with states of affairs where different kinds of people, citizens of some town etc. are affected by the results of such a process, the restriction to  a small group of experts  can become highly counterproductive. In those cases of a widespread interest it seems promising to include representatives of all the involved persons into the executing team to recognize their experiences and their kinds of preferences. This has to be done in a way which is understandable and appreciative, showing esteem for the others. This manner of extending the team of usual experts by situative experts can be termed bottom-up approach. In this usage of the term bottom-up this is not the opposite to top-down but  is reflecting the extend in which members of a society are included insofar they are affected by the results of a process.

SOCIETY

Societies in the past and the present occur in a great variety of value systems, organizational structures, systems of power etc.  Engineering processes within a society  are depending completely on the available resources of a society and of its value systems.

The population dynamics, the needs and wishes of the people, the real territories, the climate, housing, traffic, and many different things are constantly producing demands to be solved if life shall be able and continue during the course of time.

The self-understanding and the self-management of societies is crucial for their ability to used engineering to improve life. This deserves communication and education to a sufficient extend, appropriate public rules of management, otherwise the necessary understanding and the freedom to act is lacking to use engineering  in the right way.

PHILOSOPHY

Without communication no common constructive process can happen. Communication happens according to many  implicit rules compressed in the formula who when can speak how about what with whom etc. Communication enables cognitive processes of for instance  understanding, explanations, lines of arguments.  Especially important for survival is the ability to make true descriptions and the ability to decide whether a statement is true or not. Without this basic ability communication will break down, coordination will break down, life will break down.

The basic discipline to clarify the rules and conditions of true communication, of cognition in general, is called Philosophy. All the more modern empirical disciplines are specializations of the general scope of Philosophy and it is Philosophy which integrates all the special disciplines in one, coherent framework (this is the ideal; actually we are far from this ideal).

Thus to describe the process of engineering driven by different kinds of actors which are coordinating themselves by communication is primarily the task of philosophy with all their sub-disciplines.

Thus some of the topics of Philosophy are language, text, theory, verification of a  theory, functions within theories as algorithms, computation in general, inferences of true statements from given theories, and the like.

In this text I apply Philosophy as far as necessary. Especially I am introducing a new process model extending the classical systems engineering approach by including the driving actors explicitly in the formal representation of the process. Learning machines are included as standard tools to improve human thinking and communication. You can name this Augmented Social Learning Systems (ASLS). Compared to the wording Augmented Intelligence (AI) (as used for instance by the IBM marketing) the ASLS concept stresses that the primary point of reference are the biological systems which created and create machine intelligence as a new tool to enhance biological intelligence as part of biological learning systems. Compared to the wording Collective Intelligence (CI) (as propagated by the MIT, especially by Thomas W.Malone and colleagues) the spirit of the CI concept seems to be   similar, but perhaps only a weak similarity.

AAI THEORY V2 –A Philosophical Framework

eJournal: uffmm.org,
ISSN 2567-6458, 22.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: 23.February 2019 (continued the text)

Last change: 24.February 2019 (extended the text)

CONTEXT

In the overview of the AAI paradigm version 2 you can find this section  dealing with the philosophical perspective of the AAI paradigm. Enjoy reading (or not, then send a comment :-)).

THE DAILY LIFE PERSPECTIVE

The perspective of Philosophy is rooted in the everyday life perspective. With our body we occur in a space with other bodies and objects; different features, properties  are associated with the objects, different kinds of relations an changes from one state to another.

From the empirical sciences we have learned to see more details of the everyday life with regard to detailed structures of matter and biological life, with regard to the long history of the actual world, with regard to many interesting dynamics within the objects, within biological systems, as part of earth, the solar system and much more.

A certain aspect of the empirical view of the world is the fact, that some biological systems called ‘homo sapiens’, which emerged only some 300.000 years ago in Africa, show a special property usually called ‘consciousness’ combined with the ability to ‘communicate by symbolic languages’.

General setting of the homo sapiens species (simplified)
Figure 1: General setting of the homo sapiens species (simplified)

As we know today the consciousness is associated with the brain, which in turn is embedded in the body, which  is further embedded in an environment.

Thus those ‘things’ about which we are ‘conscious’ are not ‘directly’ the objects and events of the surrounding real world but the ‘constructions of the brain’ based on actual external and internal sensor inputs as well as already collected ‘knowledge’. To qualify the ‘conscious things’ as ‘different’ from the assumed ‘real things’ ‘outside there’ it is common to speak of these brain-generated virtual things either as ‘qualia’ or — more often — as ‘phenomena’ which are  different to the assumed possible real things somewhere ‘out there’.

PHILOSOPHY AS FIRST PERSON VIEW

‘Philosophy’ has many facets.  One enters the scene if we are taking the insight into the general virtual character of our primary knowledge to be the primary and irreducible perspective of knowledge.  Every other more special kind of knowledge is necessarily a subspace of this primary phenomenological knowledge.

There is already from the beginning a fundamental distinction possible in the realm of conscious phenomena (PH): there are phenomena which can be ‘generated’ by the consciousness ‘itself’  — mostly called ‘by will’ — and those which are occurring and disappearing without a direct influence of the consciousness, which are in a certain basic sense ‘given’ and ‘independent’,  which are appearing  and disappearing according to ‘their own’. It is common to call these independent phenomena ’empirical phenomena’ which represent a true subset of all phenomena: PH_emp  PH. Attention: These empirical phenomena’ are still ‘phenomena’, virtual entities generated by the brain inside the brain, not directly controllable ‘by will’.

There is a further basic distinction which differentiates the empirical phenomena into those PH_emp_bdy which are controlled by some processes in the body (being tired, being hungry, having pain, …) and those PH_emp_ext which are controlled by objects and events in the environment beyond the body (light, sounds, temperature, surfaces of objects, …). Both subsets of empirical phenomena are different: PH_emp_bdy PH_emp_ext = 0. Because phenomena usually are occurring  associated with typical other phenomena there are ‘clusters’/ ‘pattern’ of phenomena which ‘represent’ possible events or states.

Modern empirical science has ‘refined’ the concept of an empirical phenomenon by introducing  ‘standard objects’ which can be used to ‘compare’ some empirical phenomenon with such an empirical standard object. Thus even when the perception of two different observers possibly differs somehow with regard to a certain empirical phenomenon, the additional comparison with an ’empirical standard object’ which is the ‘same’ for both observers, enhances the quality, improves the precision of the perception of the empirical phenomena.

From these considerations we can derive the following informal definitions:

  1. Something is ‘empirical‘ if it is the ‘real counterpart’ of a phenomenon which can be observed by other persons in my environment too.
  2. Something is ‘standardized empirical‘ if it is empirical and can additionally be associated with a before introduced empirical standard object.
  3. Something is ‘weak empirical‘ if it is the ‘real counterpart’ of a phenomenon which can potentially be observed by other persons in my body as causally correlated with the phenomenon.
  4. Something is ‘cognitive‘ if it is the counterpart of a phenomenon which is not empirical in one of the meanings (1) – (3).

It is a common task within philosophy to analyze the space of the phenomena with regard to its structure as well as to its dynamics.  Until today there exists not yet a complete accepted theory for this subject. This indicates that this seems to be some ‘hard’ task to do.

BRIDGING THE GAP BETWEEN BRAINS

As one can see in figure 1 a brain in a body is completely disconnected from the brain in another body. There is a real, deep ‘gap’ which has to be overcome if the two brains want to ‘coordinate’ their ‘planned actions’.

Luckily the emergence of homo sapiens with the new extended property of ‘consciousness’ was accompanied by another exciting property, the ability to ‘talk’. This ability enabled the creation of symbolic languages which can help two disconnected brains to have some exchange.

But ‘language’ does not consist of sounds or a ‘sequence of sounds’ only; the special power of a language is the further property that sequences of sounds can be associated with ‘something else’ which serves as the ‘meaning’ of these sounds. Thus we can use sounds to ‘talk about’ other things like objects, events, properties etc.

The single brain ‘knows’ about the relationship between some sounds and ‘something else’ because the brain is able to ‘generate relations’ between brain-structures for sounds and brain-structures for something else. These relations are some real connections in the brain. Therefore sounds can be related to ‘something  else’ or certain objects, and events, objects etc.  can become related to certain sounds. But these ‘meaning relations’ can only ‘bridge the gap’ to another brain if both brains are using the same ‘mapping’, the same ‘encoding’. This is only possible if the two brains with their bodies share a real world situation RW_S where the perceptions of the both brains are associated with the same parts of the real world between both bodies. If this is the case the perceptions P(RW_S) can become somehow ‘synchronized’ by the shared part of the real world which in turn is transformed in the brain structures P(RW_S) —> B_S which represent in the brain the stimulating aspects of the real world.  These brain structures B_S can then be associated with some sound structures B_A written as a relation  MEANING(B_S, B_A). Such a relation  realizes an encoding which can be used for communication. Communication is using sound sequences exchanged between brains via the body and the air of an environment as ‘expressions’ which can be recognized as part of a learned encoding which enables the receiving brain to identify a possible meaning candidate.

DIFFERENT MODES TO EXPRESS MEANING

Following the evolution of communication one can distinguish four important modes of expressing meaning, which will be used in this AAI paradigm.

VISUAL ENCODING

A direct way to express the internal meaning structures of a brain is to use a ‘visual code’ which represents by some kinds of drawing the visual shapes of objects in the space, some attributes of  shapes, which are common for all people who can ‘see’. Thus a picture and then a sequence of pictures like a comic or a story board can communicate simple ideas of situations, participating objects, persons and animals, showing changes in the arrangement of the shapes in the space.

Pictorial expressions representing aspects of the visual and the auditory sens modes
Figure 2: Pictorial expressions representing aspects of the visual and the auditory sens modes

Even with a simple visual code one can generate many sequences of situations which all together can ‘tell a story’. The basic elements are a presupposed ‘space’ with possible ‘objects’ in this space with different positions, sizes, relations and properties. One can even enhance these visual shapes with written expressions of  a spoken language. The sequence of the pictures represents additionally some ‘timely order’. ‘Changes’ can be encoded by ‘differences’ between consecutive pictures.

FROM SPOKEN TO WRITTEN LANGUAGE EXPRESSIONS

Later in the evolution of language, much later, the homo sapiens has learned to translate the spoken language L_s in a written format L_w using signs for parts of words or even whole words.  The possible meaning of these written expressions were no longer directly ‘visible’. The meaning was now only available for those people who had learned how these written expressions are associated with intended meanings encoded in the head of all language participants. Thus only hearing or reading a language expression would tell the reader either ‘nothing’ or some ‘possible meanings’ or a ‘definite meaning’.

A written textual version in parallel to a pictorial version
Figure 3: A written textual version in parallel to a pictorial version

If one has only the written expressions then one has to ‘know’ with which ‘meaning in the brain’ the expressions have to be associated. And what is very special with the written expressions compared to the pictorial expressions is the fact that the elements of the pictorial expressions are always very ‘concrete’ visual objects while the written expressions are ‘general’ expressions allowing many different concrete interpretations. Thus the expression ‘person’ can be used to be associated with many thousands different concrete objects; the same holds for the expression ‘road’, ‘moving’, ‘before’ and so on. Thus the written expressions are like ‘manufacturing instructions’ to search for possible meanings and configure these meanings to a ‘reasonable’ complex matter. And because written expressions are in general rather ‘abstract’/ ‘general’ which allow numerous possible concrete realizations they are very ‘economic’ because they use minimal expressions to built many complex meanings. Nevertheless the daily experience with spoken and written expressions shows that they are continuously candidates for false interpretations.

FORMAL MATHEMATICAL WRITTEN EXPRESSIONS

Besides the written expressions of everyday languages one can observe later in the history of written languages the steady development of a specialized version called ‘formal languages’ L_f with many different domains of application. Here I am  focusing   on the formal written languages which are used in mathematics as well as some pictorial elements to ‘visualize’  the intended ‘meaning’ of these formal mathematical expressions.

Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)
Fig. 4: Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)

One prominent concept in mathematics is the concept of a ‘graph’. In  the basic version there are only some ‘nodes’ (also called vertices) and some ‘edges’ connecting the nodes.  Formally one can represent these edges as ‘pairs of nodes’. If N represents the set of nodes then N x N represents the set of all pairs of these nodes.

In a more specialized version the edges are ‘directed’ (like a ‘one way road’) and also can be ‘looped back’ to a node   occurring ‘earlier’ in the graph. If such back-looping arrows occur a graph is called a ‘cyclic graph’.

Directed cyclic graph extended to represent 'states of affairs'
Fig.5: Directed cyclic graph extended to represent ‘states of affairs’

If one wants to use such a graph to describe some ‘states of affairs’ with their possible ‘changes’ one can ‘interpret’ a ‘node’ as  a state of affairs and an arrow as a change which turns one state of affairs S in a new one S’ which is minimally different to the old one.

As a state of affairs I  understand here a ‘situation’ embedded in some ‘context’ presupposing some common ‘space’. The possible ‘changes’ represented by arrows presuppose some dimension of ‘time’. Thus if a node n’  is following a node n indicated by an arrow then the state of affairs represented by the node n’ is to interpret as following the state of affairs represented in the node n with regard to the presupposed time T ‘later’, or n < n’ with ‘<‘ as a symbol for a timely ordering relation.

Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token
Fig.6: Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token

The space can be any kind of a space. If one assumes as an example a 2-dimensional space configured as a grid –as shown in figure 6 — with two tokens at certain positions one can introduce a language to describe the ‘facts’ which constitute the state of affairs. In this example one needs ‘names for objects’, ‘properties of objects’ as well as ‘relations between objects’. A possible finite set of facts for situation 1 could be the following:

  1. TOKEN(T1), BLACK(T1), POSITION(T1,1,1)
  2. TOKEN(T2), WHITE(T2), POSITION(T2,2,1)
  3. NEIGHBOR(T1,T2)
  4. CELL(C1), POSITION(1,2), FREE(C1)

‘T1’, ‘T2’, as well as ‘C1’ are names of objects, ‘TOKEN’, ‘BACK’ etc. are names of properties, and ‘NEIGHBOR’ is a relation between objects. This results in the equation:

S1 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), TOKEN(T2), WHITE(T2), POSITION(T2,2,1), NEIGHBOR(T1,T2), CELL(C1), POSITION(1,2), FREE(C1)}

These facts describe the situation S1. If it is important to describe possible objects ‘external to the situation’ as important factors which can cause some changes then one can describe these objects as a set of facts  in a separated ‘context’. In this example this could be two players which can move the black and white tokens and thereby causing a change of the situation. What is the situation and what belongs to a context is somewhat arbitrary. If one describes the agriculture of some region one usually would not count the planets and the atmosphere as part of this region but one knows that e.g. the sun can severely influence the situation   in combination with the atmosphere.

Change of a state of affairs given as a state which will be enhanced by a new object
Fig.7: Change of a state of affairs given as a state which will be enhanced by a new object

Let us stay with a state of affairs with only a situation without a context. The state of affairs is     a ‘state’. In the example shown in figure 6 I assume a ‘change’ caused by the insertion of a new black token at position (2,2). Written in the language of facts L_fact we get:

  1. TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)

Thus the new state S2 is generated out of the old state S1 by unifying S1 with the set of new facts: S2 = S1 {TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)}. All the other facts of S1 are still ‘valid’. In a more general manner one can introduce a change-expression with the following format:

<S1, S2, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)})>

This can be read as follows: The follow-up state S2 is generated out of the state S1 by adding to the state S1 the set of facts { … }.

This layout of a change expression can also be used if some facts have to be modified or removed from a state. If for instance  by some reason the white token should be removed from the situation one could write:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)})>

Another notation for this is S2 = S1 – {TOKEN(T2), WHITE(T2), POSITION(2,1)}.

The resulting state S2 would then look like:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1)}

And a combination of subtraction of facts and addition of facts would read as follows:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)}, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would result in the final state S2:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1),TOKEN(T3), BLACK(T3), POSITION(2,2)}

These simple examples demonstrate another fact: while facts about objects and their properties are independent from each other do relational facts depend from the state of their object facts. The relation of neighborhood e.g. depends from the participating neighbors. If — as in the example above — the object token T2 disappears then the relation ‘NEIGHBOR(T1,T2)’ no longer holds. This points to a hierarchy of dependencies with the ‘basic facts’ at the ‘root’ of a situation and all the other facts ‘above’ basic facts or ‘higher’ depending from the basic facts. Thus ‘higher order’ facts should be added only for the actual state and have to be ‘re-computed’ for every follow-up state anew.

If one would specify a context for state S1 saying that there are two players and one allows for each player actions like ‘move’, ‘insert’ or ‘delete’ then one could make the change from state S1 to state S2 more precise. Assuming the following facts for the context:

  1. PLAYER(PB1), PLAYER(PW1), HAS-THE-TURN(PB1)

In that case one could enhance the change statement in the following way:

<S1, S2, PB1,insert(TOKEN(T3,2,2)),add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would read as follows: given state S1 the player PB1 inserts a  black token at position (2,2); this yields a new state S2.

With or without a specified context but with regard to a set of possible change statements it can be — which is the usual case — that there is more than one option what can be changed. Some of the main types of changes are the following ones:

  1. RANDOM
  2. NOT RANDOM, which can be specified as follows:
    1. With PROBABILITIES (classical, quantum probability, …)
    2. DETERMINISTIC

Furthermore, if the causing object is an actor which can adapt structurally or even learn locally then this actor can appear in some time period like a deterministic system, in different collected time periods as an ‘oscillating system’ with different behavior, or even as a random system with changing probabilities. This make the forecast of systems with adaptive and/ or learning systems rather difficult.

Another aspect results from the fact that there can be states either with one actor which can cause more than one action in parallel or a state with multiple actors which can act simultaneously. In both cases the resulting total change has eventually to be ‘filtered’ through some additional rules telling what  is ‘possible’ in a state and what not. Thus if in the example of figure 6 both player want to insert a token at position (2,2) simultaneously then either  the rules of the game would forbid such a simultaneous action or — like in a computer game — simultaneous actions are allowed but the ‘geometry of a 2-dimensional space’ would not allow that two different tokens are at the same position.

Another aspect of change is the dimension of time. If the time dimension is not explicitly specified then a change from some state S_i to a state S_j does only mark the follow up state S_j as later. There is no specific ‘metric’ of time. If instead a certain ‘clock’ is specified then all changes have to be aligned with this ‘overall clock’. Then one can specify at what ‘point of time t’ the change will begin and at what point of time t*’ the change will be ended. If there is more than one change specified then these different changes can have different timings.

THIRD PERSON VIEW

Up until now the point of view describing a state and the possible changes of states is done in the so-called 3rd-person view: what can a person perceive if it is part of a situation and is looking into the situation.  It is explicitly assumed that such a person can perceive only the ‘surface’ of objects, including all kinds of actors. Thus if a driver of a car stears his car in a certain direction than the ‘observing person’ can see what happens, but can not ‘look into’ the driver ‘why’ he is steering in this way or ‘what he is planning next’.

A 3rd-person view is assumed to be the ‘normal mode of observation’ and it is the normal mode of empirical science.

Nevertheless there are situations where one wants to ‘understand’ a bit more ‘what is going on in a system’. Thus a biologist can be  interested to understand what mechanisms ‘inside a plant’ are responsible for the growth of a plant or for some kinds of plant-disfunctions. There are similar cases for to understand the behavior of animals and men. For instance it is an interesting question what kinds of ‘processes’ are in an animal available to ‘navigate’ in the environment across distances. Even if the biologist can look ‘into the body’, even ‘into the brain’, the cells as such do not tell a sufficient story. One has to understand the ‘functions’ which are enabled by the billions of cells, these functions are complex relations associated with certain ‘structures’ and certain ‘signals’. For this it is necessary to construct an explicit formal (mathematical) model/ theory representing all the necessary signals and relations which can be used to ‘explain’ the obsrvable behavior and which ‘explains’ the behavior of the billions of cells enabling such a behavior.

In a simpler, ‘relaxed’ kind of modeling  one would not take into account the properties and behavior of the ‘real cells’ but one would limit the scope to build a formal model which suffices to explain the oservable behavior.

This kind of approach to set up models of possible ‘internal’ (as such hidden) processes of an actor can extend the 3rd-person view substantially. These models are called in this text ‘actor models (AM)’.

HIDDEN WORLD PROCESSES

In this text all reported 3rd-person observations are called ‘actor story’, independent whether they are done in a pictorial or a textual mode.

As has been pointed out such actor stories are somewhat ‘limited’ in what they can describe.

It is possible to extend such an actor story (AS)  by several actor models (AM).

An actor story defines the situations in which an actor can occur. This  includes all kinds of stimuli which can trigger the possible senses of the actor as well as all kinds of actions an actor can apply to a situation.

The actor model of such an actor has to enable the actor to handle all these assumed stimuli as well as all these actions in the expected way.

While the actor story can be checked whether it is describing a process in an empirical ‘sound’ way,  the actor models are either ‘purely theoretical’ but ‘behavioral sound’ or they are also empirically sound with regard to the body of a biological or a technological system.

A serious challenge is the occurrence of adaptiv or/ and locally learning systems. While the actor story is a finite  description of possible states and changes, adaptiv or/ and locally learning systeme can change their behavior while ‘living’ in the actor story. These changes in the behavior can not completely be ‘foreseen’!

COGNITIVE EXPERT PROCESSES

According to the preceding considerations a homo sapiens as a biological system has besides many properties at least a consciousness and the ability to talk and by this to communicate with symbolic languages.

Looking to basic modes of an actor story (AS) one can infer some basic concepts inherently present in the communication.

Without having an explicit model of the internal processes in a homo sapiens system one can infer some basic properties from the communicative acts:

  1. Speaker and hearer presuppose a space within which objects with properties can occur.
  2. Changes can happen which presuppose some timely ordering.
  3. There is a disctinction between concrete things and abstract concepts which correspond to many concrete things.
  4. There is an implicit hierarchy of concepts starting with concrete objects at the ‘root level’ given as occurence in a concrete situation. Other concepts of ‘higher levels’ refer to concepts of lower levels.
  5. There are different kinds of relations between objects on different conceptual levels.
  6. The usage of language expressions presupposes structures which can be associated with the expressions as their ‘meanings’. The mapping between expressions and their meaning has to be learned by each actor separately, but in cooperation with all the other actors, with which the actor wants to share his meanings.
  7. It is assume that all the processes which enable the generation of concepts, concept hierarchies, relations, meaning relations etc. are unconscious! In the consciousness one can  use parts of the unconscious structures and processes under strictly limited conditions.
  8. To ‘learn’ dedicated matters and to be ‘critical’ about the quality of what one is learnig requires some disciplin, some learning methods, and a ‘learning-friendly’ environment. There is no guaranteed method of success.
  9. There are lots of unconscious processes which can influence understanding, learning, planning, decisions etc. and which until today are not yet sufficiently cleared up.

 

 

 

 

 

 

 

 

AAI THEORY V2 –EPISTEMOLOGY OF THE AAI-EXPERTS

eJournal: uffmm.org,
ISSN 2567-6458, 26.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about the fourth chapter dealing with the epistemology of actors within an AAI analysis process.

EPISTEMOLOGY AND THE EMPIRICAL SCIENCES

Epistemology is a sub-discipline of general philosophy. While a special discipline in empirical science is defined by a certain sub-set of the real world RW  by empirical measurement methods generating empirical data which can be interpreted by a formalized theory,  philosophy  is not restricted to a sub-field of the real world. This is important because an empirical discipline has no methods to define itself.  Chemistry e.g. can define by which kinds of measurement it is gaining empirical data   and it can offer different kinds of formal theories to interpret these data including inferences to forecast certain reactions given certain configurations of matters, but chemistry is not able  to explain the way how a chemist is thinking, how the language works which a chemist is using etc. Thus empirical science presupposes a general framework of bodies, sensors, brains, languages etc. to be able to do a very specialized  — but as such highly important — job. One can define ‘philosophy’ then as that kind of activity which tries to clarify all these  conditions which are necessary to do science as well as how cognition works in the general case.

Given this one can imagine that philosophy is in principle a nearly ‘infinite’ task. To get not lost in this conceptual infinity it is recommended to start with concrete processes of communications which are oriented to generate those kinds of texts which can be shown as ‘related to parts of the empirical world’ in a decidable way. This kind of texts   is here called ’empirically sound’ or ’empirically true’. It is to suppose that there will be texts for which it seems to be clear that they are empirically sound, others will appear ‘fuzzy’ for such a criterion, others even will appear without any direct relation to empirical soundness.

In empirical sciences one is using so-called empirical measurement procedures as benchmarks to decided whether one has empirical data or not, and it is commonly assumed that every ‘normal observer’ can use these data as every other ‘normal observer’. But because individual, single data have nearly no meaning on their own one needs relations, sets of relations (models) and even more complete theories, to integrate the data in a context, which allows some interpretation and some inferences for forecasting. But these relations, models, or theories can not directly be inferred from the real world. They have to be created by the observers as ‘working hypotheses’ which can fit with the data or not. And these constructions are grounded in  highly complex cognitive processes which follow their own built-in rules and which are mostly not conscious. ‘Cognitive processes’ in biological systems, especially in human person, are completely generated by a brain and constitute therefore a ‘virtual world’ on their own.  This cognitive virtual world  is not the result of a 1-to-1 mapping from the real world into the brain states.  This becomes important in that moment where the brain is mapping this virtual cognitive world into some symbolic language L. While the symbols of a language (sounds or written signs or …) as such have no meaning the brain enables a ‘coding’, a ‘mapping’ from symbolic expressions into different states of the brain. In the light’ of such encodings the symbolic expressions have some meaning.  Besides the fact that different observers can have different encodings it is always an open question whether the encoded meaning of the virtual cognitive space has something to do with some part of the empirical reality. Empirical data generated by empirical measurement procedures can help to coordinate the virtual cognitive states of different observers with each other, but this coordination is not an automatic process. Empirically sound language expressions are difficult to get and therefore of a high value for the survival of mankind. To generate empirically sound formal theories is even more demanding and until today there exists no commonly accepted concept of the right format of an empirically sound theory. In an era which calls itself  ‘scientific’ this is a very strange fact.

EPISTEMOLOGY OF THE AAI-EXPERTS

Applying these general considerations to the AAI experts trying to construct an actor story to describe at least one possible path from a start state to a goal state, one can pick up the different languages the AAI experts are using and asking back under which conditions these languages have some ‘meaning’ and under which   conditions these meanings can be called ’empirically sound’?

In this book three different ‘modes’ of an actor story will be distinguished:

  1. A textual mode using some ordinary everyday language, thus using spoken language (stored in an audio file) or written language as a text.
  2. A pictorial mode using a ‘language of pictures’, possibly enhanced by fragments of texts.
  3. A mathematical mode using graphical presentations of ‘graphs’ enhanced by symbolic expressions (text) and symbolic expressions only.

For every mode it has to be shown how an AAI expert can generate an actor story out of the virtual cognitive world of his brain and how it is possible to decided the empirical soundness of the actor story.