The following text is a confluence of ideas that have been driving me for many months. Parts of it can be found as texts in all three blogs (Citizen Science 2.0 for Sustainable Development, Integrated Engineering and the Human Factor (this blog), Philosophy Now. In Search for a new Human Paradigm). The choice of the word ‘grammar’ [1] for the following text is rather unusual, but seems to me to reflect the character of the reflections well.
Sustainability for populations
The concept of sustainable development is considered here in the context of ‘biological populations’. Such populations are dynamic entities with many ‘complex properties’. For the analysis of the ‘sustainability’ of such populations, there is one aspect that seems ‘fundamental’ for a proper understanding. It is the aspect whether and how the members of a population – the actors – are interconnected or not.
An ‘unconnected’ set
If I have ‘actors’ of a ‘population’, which are in no direct ‘interaction’ with each other, then also the ‘acting’ of these actors is isolated from each other. In a wide area they probably do not ‘get in each other’s way’; in a narrow area they could easily hinder each other or even fight each other, up to mutual destruction.
It should be noted that even such disconnected actors must have minimal ‘knowledge’ about themselves and the environment, also minimal ’emotions’, in order to live at all.
Without direct interaction, an unconnected population will nevertheless die out relatively quickly as a population.
A ‘connected’ set
A ‘connected set’ exists if the actors of a population have a sufficient number of direct interactions through which they could ‘coordinate’ their knowledge about themselves and the world, as well as their emotions, to such an extent that they are capable of ‘coordinated action’. Thereby the single, individual actions become related to their possible effect to a ‘common (= social) action’ which can effect more than each of them would have been able to do individually.
The ’emotions’ involved must rather be such that they do not so much ‘delimit/exclude’, but rather ‘include/recognize’.
The ‘knowledge’ involved must be rather that it is not ‘static’ and not ‘unrealistic’, but rather ‘open’, ‘learning’ and ‘realistic’.
The ‘survival’ of a connected population is basically possible if the most important ‘factors’ of a survival are sufficiently fulfilled.
Transitions from – to
The ‘transition’ from an ‘unconnected’ to a ‘connected’ state of a population is not inevitable. The primary motive may simply be the ‘will to survive’ (an emotion), and the growing ‘insight’ (= knowledge) that this is only possible with ‘minimal cooperation’. An individual, however, can live in a state of ‘loner’ for the duration of his life, because he does not have to experience his individual death as a sufficient reason to ally with others. A population as such, however, can only survive if a sufficient number of individuals survive, interacting minimally with each other. The history of life on planet Earth suggests the working hypothesis that for 3.5 billion years there have always been sufficient members of a population in biological populations (including the human population) to counter the ‘self-destructive tendencies’ of individuals with a ‘constructive tendency’.
The emergence and the maintenance of a ‘connected population’ needs a minimum of ‘suitable knowledge’ and ‘suitable emotions’ to succeed.
It is a permanent challenge for all biological populations to shape their own emotions in such a way that they tend not to exclude, to despise, but rather to include and to recognize. Similarly, knowledge must be suitable for acquiring a realistic picture of oneself, others, and the environment so that the behavior in question is ‘factually appropriate’ and tends to be more likely to lead to ‘success’.
As the history of the human population shows, both the ‘shaping of emotions’ and the ‘shaping of powerful knowledge’ are usually largely underestimated and poorly or not at all organized. The necessary ‘effort’ is shied away from, one underestimates the necessary ‘duration’ of such processes. Within knowledge there is additionally the general problem that the ‘short time spans’ within an individual life are an obstacle to recognize and form such processes where larger time spans require it (this concerns almost all ‘important’ processes).
We must also note that ‘connected states’ of populations can also collapse again at any time, if those behaviors that make them possible are weakened or disappear altogether. Connections in the realm of biological populations are largely ‘undetermined’! They are based on complex processes within and between the individual actors. Whole societies can ‘topple overnight’ if an event destroys ‘trust in context’. Without trust no context is possible. The emergence and the passing away of trust should be part of the basic concern of every society in a state of interconnectedness.
Political rules of the game
‘Politics’ encompasses the totality of arrangements that members of a human population agree to organize jointly binding decision-making processes.[2] On a rough scale, one could place two extremes: (i) On the one hand, a population with a ‘democratic system’ [3] and a population with a maximally un-democratic system.[4]
As already noted in general for ‘connected systems’: the success of democratic systems is in no way determinate. Enabling and sustaining it requires the total commitment of all participants ‘by their own conviction’.
Basic reality ‘corporeality’
Biological populations are fundamentally characterized by a ‘corporeality’ which is determined through and through by ‘regularities’ of the known material structures. In their ‘complex formations’ biological systems manifest also ‘complex properties’, which cannot be derived simply from their ‘individual parts’, but the respective identifiable ‘material components’ of their ‘body’ together with many ‘functional connections’ are fundamentally subject to a multiplicity of ‘laws’ which are ‘given’. To ‘change’ these is – if at all – only possible under certain limited conditions.
All biological actors consist of ‘biological cells’ which are the same for all. In this, human actors are part of the total development of (biological) life on planet Earth. The totality of (biological) life is also called ‘biome’ and the total habitat of a biome is also called ‘biosphere’. [5] The population of homo sapiens is only a vanishingly small part of the biome, but with the homo sapiens typical way of life it claims ever larger parts of the biosphere for itself at the expense of all other life forms.
(Biological) life has been taking place on planet Earth for about 3.5 billion years.[6] Earth, as part of the solar system [7], has had a very eventful history and shows strong dynamics until today, which can and does have a direct impact on the living conditions of biological life (continental plate displacement, earthquakes, volcanic eruptions, magnetic field displacement, ocean currents, climate, …).
Biological systems generally require a continuous intake of material substances (with energy potentials) to enable their own metabolic processes. They also excrete substances. Human populations need certain amounts of ‘food’, ‘water’, ‘dwellings’, ‘storage facilities’, ‘means of transport’, ‘energy’, … ‘raw materials’, … ‘production processes’, ‘exchange processes’ … As the sheer size of a population grows, the material quantities required (and also wastes) multiply to orders of magnitude that can destroy the functioning of the biosphere.
Predictive knowledge
If a coherent population does not want to leave possible future states to pure chance, then it needs a ‘knowledge’ which is suitable to construct ‘predictions’ (‘prognoses’) for a possible future (or even many ‘variants of future’) from the knowledge about the present and about the past.
In the history of homo sapiens so far, there is only one form of knowledge that has been demonstrably demonstrated to be suitable for resilient sustainable forecasts: the knowledge form of empirical sciences. [8] This form of knowledge is so far not perfect, but a better alternative is actually not known. At its core, ’empirical knowledge’ comprises the following elements: (i) A description of a baseline situation that is assumed to be ’empirically true’; (ii) A set of ‘descriptions of change processes’ that one has been able to formulate over time, and from which one knows that it is ‘highly probable’ that the described changes will occur again and again under known conditions; (iii) An ‘inference concept’ that describes how to apply to the description of a ‘given current situation’ the known descriptions of change processes in such a way that one can modify the description of the current situation to produce a ‘modified description’ that describes a new situation that can be considered a ‘highly probable continuation’ of the current situation in the future. [9]
The just sketched ‘basic idea’ of an empirical theory with predictive ability can be realized concretely in many ways. To investigate and describe this is the task of ‘philosophy of science’. However, the vagueness found in dealing with the notion of an ’empirical theory’ is also found in the understanding of what is meant by ‘philosophy of science.'[9]
In the present text, the view is taken that the ‘basic concept’ of an empirical theory can be fully realized in normal everyday action using everyday language. This concept of a ‘General Empirical Theory’ can be extended by any special languages, methods and sub-theories as needed. In this way, the hitherto unsolved problem of the many different individual empirical disciplines could be solved almost by itself.[10]
Sustainable knowledge
In the normal case, an empirical theory can, at best, generate forecasts that can be said to have a certain empirically based probability. In ‘complex situations’ such a prognosis can comprise many ‘variants’: A, B, …, Z. Now which of these variants is ‘better’ or ‘worse’ in the light of an ‘assumable criterion’ cannot be determined by an empirical theory itself. Here the ‘producers’ and the ‘users’ of the theory are asked: Do they have any ‘preferences’ why e.g. variant ‘B’ should be preferred to variant ‘C”: “Bicycle, subway, car or plane?” , “Genetic engineering or not?”, “Pesticides or not?”, “Nuclear energy or not?”, “Uncontrolled fishing or not?” …
The ‘evaluation criteria’ to be applied actually themselves require ‘explicit knowledge’ for the estimation of a possible ‘benefit’ on the one hand, on the other hand the concept of ‘benefit’ is anchored in the feeling and wanting of human actors: Why exactly do I want something? Why does something ‘feel good’? …
Current discussions worldwide show that the arsenal of ‘evaluation criteria’ and their implementation offer anything but a clear picture.
COMMENTS
[1] For the typical use of the term ‘grammar’ see the English Wikipedia: https://en.wikipedia.org/wiki/Grammar. In the text here in the blog I transfer this concept of ‘language’ to that ‘complex process’ in which the population of the life form ‘homo sapiens’ tries to achieve an ‘overall state’ on planet earth that allows a ‘maximally good future’ for as much ‘life’ as possible (with humans as a sub-population). A ‘grammar of sustainability’ presupposes a certain set of basic conditions, factors, which ‘interact’ with each other in a dynamic process, in order to realize as many states as possible in a ‘sequence of states’, which enable as good a life as possible for as many as possible.
[2] For the typical usage of the term politics, see the English Wikipedia: https://en.wikipedia.org/wiki/Politics . This meaning is also assumed in the present text here.
[4] Of course, one could also choose completely different basic concepts for a scale. However, the concept of a ‘democratic system’ (with all its weaknesses) seems to me to be the ‘most suitable’ system in the light of the requirements for sustainable development; at the same time, however, it makes the highest demands of all systems on all those involved. That it came to the formation of ‘democracy-like’ systems at all in the course of history, actually borders almost on a miracle. The further development of such democracy-like systems fluctuates constantly between preservation and decay. Positively, one could say that the constant struggle for preservation is a kind of ‘training’ to enable sustainable development.
[5] For typical uses of the terms ‘biome’ and ‘biosphere’, see the corresponding entries in the English Wikipedia: ‘biome’: https://en.wikipedia.org/wiki/Biome, ‘biosphere’: https://en.wikipedia.org/wiki/Biosphere
[6] Some basic data for planet Earth: https://en.wikipedia.org/wiki/Earth
[7] Some basic data for the solar system: https://en.wikipedia.org/wiki/Solar_System
[8] If you will search for he term ‘Empirical Science’ you ill be disappointed, because the English Wikipedia (as well as the German Version) does not provide such a term. You have either to accept the term ‘Science’ ( https://en.wikipedia.org/wiki/Science ) or the term ‘Empiricism’ (https://en.wikipedia.org/wiki/Empiricism), but both do not cover the general properties of an Empirical theory.
[9] If you have a clock with hour and minute hands, which currently shows 11:04h, and you know from everyday experience that the minute hand advances by one stroke every minute, then you can conclude with a fairly high probability that the minute hand will advance by one stroke ‘very soon’. The initial description ‘The clock shows 11:04h’ would then be changed to that of the new description ‘The clock shows 11:05h’. Before the ’11:05h event’ the statement ‘The clock shows 11:05h’ would have the status of a ‘forecast’.
[10] A single discipline (physics, chemistry, biology, psychology, …) cannot conceptually grasp ‘the whole’ ‘out of itself’; it does not have to. The various attempts to ‘reduce’ any single discipline to another (physics is especially popular here) have all failed so far. Without a suitable ‘meta-theory’ no single discipline can free itself from its specialization. The concept of a ‘General Empirical Theory’ is such a meta-theory. Such a meta-theory fits into the concept of a modern philosophical thinking.
The whole text shows a dynamic, which induces many changes. Difficult to plan ‘in advance’.
Perhaps, some time, it will look like a ‘book’, at least ‘for a moment’.
I have started a ‘book project’ in parallel. This was motivated by the need to provide potential users of our new oksimo.R software with a coherent explanation of how the oksimo.R software, when used, generates an empirical theory in the format of a screenplay. The primary source of the book is in German and will be translated step by step here in the uffmm.blog.
INTRODUCTION
In a rather foundational paper about an idea, how one can generalize ‘systems engineering’ [*1] to the art of ‘theory engineering’ [1] a new conceptual framework has been outlined for a ‘sustainable applied empirical theory (SAET)’. Part of this new framework has been the idea that the classical recourse to groups of special experts (mostly ‘engineers’ in engineering) is too restrictive in the light of the new requirement of being sustainable: sustainability is primarily based on ‘diversity’ combined with the ‘ability to predict’ from this diversity probable future states which keep life alive. The aspect of diversity induces the challenge to see every citizen as a ‘natural expert’, because nobody can know in advance and from some non-existing absolut point of truth, which knowledge is really important. History shows that the ‘mainstream’ is usually to a large degree ‘biased’ [*1b].
With this assumption, that every citizen is a ‘natural expert’, science turns into a ‘general science’ where all citizens are ‘natural members’ of science. I will call this more general concept of science ‘sustainable citizen science (SCS)’ or ‘Citizen Science 2.0 (CS2)’. The important point here is that a sustainable citizen science is not necessarily an ‘arbitrary’ process. While the requirement of ‘diversity’ relates to possible contents, to possible ideas, to possible experiments, and the like, it follows from the other requirement of ‘predictability’/ of being able to make some useful ‘forecasts’, that the given knowledge has to be in a format, which allows in a transparent way the construction of some consequences, which ‘derive’ from the ‘given’ knowledge and enable some ‘new’ knowledge. This ability of forecasting has often been understood as the business of ‘logic’ providing an ‘inference concept’ given by ‘rules of deduction’ and a ‘practical pattern (on the meta level)’, which defines how these rules have to be applied to satisfy the inference concept. But, looking to real life, to everyday life or to modern engineering and economy, one can learn that ‘forecasting’ is a complex process including much more than only cognitive structures nicely fitting into some formulas. For this more realistic forecasting concept we will use here the wording ‘common logic’ and for the cognitive adventure where common logic is applied we will use the wording ‘common science’. ‘Common science’ is structurally not different from ‘usual science’, but it has a substantial wider scope and is using the whole of mankind as ‘experts’.
The following chapters/ sections try to illustrate this common science view by visiting different special views which all are only ‘parts of a whole’, a whole which we can ‘feel’ in every moment, but which we can not yet completely grasp with our theoretical concepts.
CONTENT
Language (Main message: “The ordinary language is the ‘meta language’ to every special language. This can be used as a ‘hint’ to something really great: the mystery of the ‘self-creating’ power of the ordinary language which for most people is unknown although it happens every moment.”)
Concrete Abstract Statements (Main message: “… you will probably detect, that nearly all words of a language are ‘abstract words’ activating ‘abstract meanings’. …If you cannot provide … ‘concrete situations’ the intended meaning of your abstract words will stay ‘unclear’: they can mean ‘nothing or all’, depending from the decoding of the hearer.”)
True False Undefined (Main message: “… it reveals that ’empirical (observational) evidence’ is not necessarily an automatism: it presupposes appropriate meaning spaces embedded in sets of preferences, which are ‘observation friendly’.“
Beyond Now (Main message: “With the aid of … sequences revealing possible changes the NOW is turned into a ‘moment’ embedded in a ‘process’, which is becoming the more important reality. The NOW is something, but the PROCESS is more.“)
Playing with the Future (Main message: “In this sense seems ‘language’ to be the master tool for every brain to mediate its dynamic meaning structures with symbolic fix points (= words, expressions) which as such do not change, but the meaning is ‘free to change’ in any direction. And this ‘built in ‘dynamics’ represents an ‘internal potential’ for uncountable many possible states, which could perhaps become ‘true’ in some ‘future state’. Thus ‘future’ can begin in these potentials, and thinking is the ‘playground’ for possible futures.(but see [18])”)
Forecasting – Prediction: What? (This chapter explains the cognitive machinery behind forecasting/ predictions, how groups of human actors can elaborate shared descriptions, and how it is possible to start with sequences of singularities to built up a growing picture of the empirical world which appears as a radical infinite and indeterministic space. )
!!! From here all the following chapters have to be re-written !!!
Boolean Logic (Explains what boolean logic is, how it enables the working of programmable machines, but that it is of nearly no help for the ‘heart’ of forecasting.)
/* Often people argue against the usage of the wikipedia encyclopedia as not ‘scientific’ because the ‘content’ of an entry in this encyclopedia can ‘change’. This presupposes the ‘classical view’ of scientific texts to be ‘stable’, which presupposes further, that such a ‘stable text’ describes some ‘stable subject matter’. But this view of ‘steadiness’ as the major property of ‘true descriptions’ is in no correspondence with real scientific texts! The reality of empirical science — even as in some special disciplines like ‘physics’ — is ‘change’. Looking to Aristotle’s view of nature, to Galileo Galilei, to Newton, to Einstein and many others, you will not find a ‘single steady picture’ of nature and science, and physics is only a very simple strand of science compared to the live-sciences and many others. Thus wikipedia is a real scientific encyclopedia give you the breath of world knowledge with all its strengths and limits at once. For another, more general argument, see In Favour for Wikipedia */
[*1] Meaning operator ‘…’ : In this text (and in nearly all other texts of this author) the ‘inverted comma’ is used quite heavily. In everyday language this is not common. In some special languages (theory of formal languages or in programming languages or in meta-logic) the inverted comma is used in some special way. In this text, which is primarily a philosophical text, the inverted comma sign is used as a ‘meta-language operator’ to raise the intention of the reader to be aware, that the ‘meaning’ of the word enclosed in the inverted commas is ‘text specific’: in everyday language usage the speaker uses a word and assumes tacitly that his ‘intended meaning’ will be understood by the hearer of his utterance as ‘it is’. And the speaker will adhere to his assumption until some hearer signals, that her understanding is different. That such a difference is signaled is quite normal, because the ‘meaning’ which is associated with a language expression can be diverse, and a decision, which one of these multiple possible meanings is the ‘intended one’ in a certain context is often a bit ‘arbitrary’. Thus, it can be — but must not — a meta-language strategy, to comment to the hearer (or here: the reader), that a certain expression in a communication is ‘intended’ with a special meaning which perhaps is not the commonly assumed one. Nevertheless, because the ‘common meaning’ is no ‘clear and sharp subject’, a ‘meaning operator’ with the inverted commas has also not a very sharp meaning. But in the ‘game of language’ it is more than nothing 🙂
[*1b] That the main stream ‘is biased’ is not an accident, not a ‘strange state’, not a ‘failure’, it is the ‘normal state’ based on the deeper structure how human actors are ‘built’ and ‘genetically’ and ‘cultural’ ‘programmed’. Thus the challenge to ‘survive’ as part of the ‘whole biosphere’ is not a ‘partial task’ to solve a single problem, but to solve in some sense the problem how to ‘shape the whole biosphere’ in a way, which enables a live in the universe for the time beyond that point where the sun is turning into a ‘red giant’ whereby life will be impossible on the planet earth (some billion years ahead)[22]. A remarkable text supporting this ‘complex view of sustainability’ can be found in Clark and Harvey, summarized at the end of the text. [23]
[*2] The meaning of the expression ‘normal’ is comparable to a wicked problem. In a certain sense we act in our everyday world ‘as if there exists some standard’ for what is assumed to be ‘normal’. Look for instance to houses, buildings: to a certain degree parts of a house have a ‘standard format’ assuming ‘normal people’. The whole traffic system, most parts of our ‘daily life’ are following certain ‘standards’ making ‘planning’ possible. But there exists a certain percentage of human persons which are ‘different’ compared to these introduced standards. We say that they have a ‘handicap’ compared to this assumed ‘standard’, but this so-called ‘standard’ is neither 100% true nor is the ‘given real world’ in its properties a ‘100% subject’. We have learned that ‘properties of the real world’ are distributed in a rather ‘statistical manner’ with different probabilities of occurrences. To ‘find our way’ in these varying occurrences we try to ‘mark’ the main occurrences as ‘normal’ to enable a basic structure for expectations and planning. Thus, if in this text the expression ‘normal’ is used it refers to the ‘most common occurrences’.
[*3] Thus we have here a ‘threefold structure’ embracing ‘perception events, memory events, and expression events’. Perception events represent ‘concrete events’; memory events represent all kinds of abstract events but they all have a ‘handle’ which maps to subsets of concrete events; expression events are parts of an abstract language system, which as such is dynamically mapped onto the abstract events. The main source for our knowledge about perceptions, memory and expressions is experimental psychology enhanced by many other disciplines.
[*4] Characterizing language expressions by meaning – the fate of any grammar: the sentence ” … ‘words’ (= expressions) of a language which can activate such abstract meanings are understood as ‘abstract words’, ‘general words’, ‘category words’ or the like.” is pointing to a deep property of every ordinary language, which represents the real power of language but at the same time the great weakness too: expressions as such have no meaning. Hundreds, thousands, millions of words arranged in ‘texts’, ‘documents’ can show some statistical patterns’ and as such these patterns can give some hint which expressions occur ‘how often’ and in ‘which combinations’, but they never can give a clue to the associated meaning(s). During more than three-thousand years humans have tried to describe ordinary language in a more systematic way called ‘grammar’. Due to this radically gap between ‘expressions’ as ‘observable empirical facts’ and ‘meaning constructs’ hidden inside the brain it was all the time a difficult job to ‘classify’ expressions as representing a certain ‘type’ of expression like ‘nouns’, ‘predicates’, ‘adjectives’, ‘defining article’ and the like. Without regressing to the assumed associated meaning such a classification is not possible. On account of the fuzziness of every meaning ‘sharp definitions’ of such ‘word classes’ was never and is not yet possible. One of the last big — perhaps the biggest ever — project of a complete systematic grammar of a language was the grammar project of the ‘Akademie der Wissenschaften der DDR’ (‘Academy of Sciences of the GDR’) from 1981 with the title “Grundzüge einer Deutschen Grammatik” (“Basic features of a German grammar”). A huge team of scientists worked together using many modern methods. But in the preface you can read, that many important properties of the language are still not sufficiently well describable and explainable. See: Karl Erich Heidolph, Walter Flämig, Wolfgang Motsch et al.: Grundzüge einer deutschen Grammatik. Akademie, Berlin 1981, 1028 Seiten.
[*5] Differing opinions about a given situation manifested in uttered expressions are a very common phenomenon in everyday communication. In some sense this is ‘natural’, can happen, and it should be no substantial problem to ‘solve the riddle of being different’. But as you can experience, the ability of people to solve the occurrence of different opinions is often quite weak. Culture is suffering by this as a whole.
[1] Gerd Doeben-Henisch, 2022, From SYSTEMS Engineering to THEORYEngineering, see: https://www.uffmm.org/2022/05/26/from-systems-engineering-to-theory-engineering/(Remark: At the time of citation this post was not yet finished, because there are other posts ‘corresponding’ with that post, which are too not finished. Knowledge is a dynamic network of interwoven views …).
[1d] ‘usual science’ is the game of science without having a sustainable format like in citizen science 2.0.
[2] Science, see e.g. wkp-en: https://en.wikipedia.org/wiki/Science
Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testableconjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”
[2b] History of science in wkp-en: https://en.wikipedia.org/wiki/History_of_science#Scientific_Revolution_and_birth_of_New_Science
[3] Theory, see wkp-en: https://en.wikipedia.org/wiki/Theory#:~:text=A%20theory%20is%20a%20rational,or%20no%20discipline%20at%20all.
Citation = “A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory’s assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.”
Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testableconjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”
[4b] Empiricism in wkp-en: https://en.wikipedia.org/wiki/Empiricism
[4c] Scientific method in wkp-en: https://en.wikipedia.org/wiki/Scientific_method
Citation =”The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries). It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; experimental and measurement-based statistical testing of deductions drawn from the hypotheses; and refinement (or elimination) of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.[1][2][3] [4c]
and
Citation = “The purpose of an experiment is to determine whether observations[A][a][b] agree with or conflict with the expectations deduced from a hypothesis.[6]: Book I, [6.54] pp.372, 408 [b] Experiments can take place anywhere from a garage to a remote mountaintop to CERN’s Large Hadron Collider. There are difficulties in a formulaic statement of method, however. Though the scientific method is often presented as a fixed sequence of steps, it represents rather a set of general principles.[7] Not all steps take place in every scientific inquiry (nor to the same degree), and they are not always in the same order.[8][9]”
[5] Gerd Doeben-Henisch, “Is Mathematics a Fake? No! Discussing N.Bourbaki, Theory of Sets (1968) – Introduction”, 2022, https://www.uffmm.org/2022/06/06/n-bourbaki-theory-of-sets-1968-introduction/
[6] Logic, see wkp-en: https://en.wikipedia.org/wiki/Logic
[7] W. C. Kneale, The Development of Logic, Oxford University Press (1962)
[8] Set theory, in wkp-en: https://en.wikipedia.org/wiki/Set_theory
[9] N.Bourbaki, Theory of Sets , 1968, with a chapter about structures, see: https://en.wikipedia.org/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique
[10] = [5]
[11] Ludwig Josef Johann Wittgenstein ( 1889 – 1951): https://en.wikipedia.org/wiki/Ludwig_Wittgenstein
[12] Ludwig Wittgenstein, 1953: Philosophische Untersuchungen [PU], 1953: Philosophical Investigations [PI], translated by G. E. M. Anscombe /* For more details see: https://en.wikipedia.org/wiki/Philosophical_Investigations */
[13] Wikipedia EN, Speech acts: https://en.wikipedia.org/wiki/Speech_act
[14] While the world view constructed in a brain is ‘virtual’ compared to the ‘real word’ outside the brain (where the body outside the brain is also functioning as ‘real world’ in relation to the brain), does the ‘virtual world’ in the brain function for the brain mostly ‘as if it is the real world’. Only under certain conditions can the brain realize a ‘difference’ between the triggering outside real world and the ‘virtual substitute for the real world’: You want to use your bicycle ‘as usual’ and then suddenly you have to notice that it is not at that place where is ‘should be’. …
[15] Propositional Calculus, see wkp-en: https://en.wikipedia.org/wiki/Propositional_calculus#:~:text=Propositional%20calculus%20is%20a%20branch,of%20arguments%20based%20on%20them.
[16] Boolean algebra, see wkp-en: https://en.wikipedia.org/wiki/Boolean_algebra
[17] Boolean (or propositional) Logic: As one can see in the mentioned articles of the English wikipedia, the term ‘boolean logic’ is not common. The more logic-oriented authors prefer the term ‘boolean calculus’ [15] and the more math-oriented authors prefer the term ‘boolean algebra’ [16]. In the view of this author the general view is that of ‘language use’ with ‘logic inference’ as leading idea. Therefore the main topic is ‘logic’, in the case of propositional logic reduced to a simple calculus whose similarity with ‘normal language’ is widely ‘reduced’ to a play with abstract names and operators. Recommended: the historical comments in [15].
[18] Clearly, thinking alone can not necessarily induce a possible state which along the time line will become a ‘real state’. There are numerous factors ‘outside’ the individual thinking which are ‘driving forces’ to push real states to change. But thinking can in principle synchronize with other individual thinking and — in some cases — can get a ‘grip’ on real factors causing real changes.
[19] This kind of knowledge is not delivered by brain science alone but primarily from experimental (cognitive) psychology which examines observable behavior and ‘interprets’ this behavior with functional models within an empirical theory.
[20] Predicate Logic or First-Order Logic or … see: wkp-en: https://en.wikipedia.org/wiki/First-order_logic#:~:text=First%2Dorder%20logic%E2%80%94also%20known,%2C%20linguistics%2C%20and%20computer%20science.
[21] Gerd Doeben-Henisch, In Favour of Wikipedia, https://www.uffmm.org/2022/07/31/in-favour-of-wikipedia/, 31 July 2022
[22] The sun, see wkp-ed https://en.wikipedia.org/wiki/Sun (accessed 8 Aug 2022)
[23] By Clark, William C., and Alicia G. Harley – https://doi.org/10.1146/annurev-environ-012420-043621, Clark, William C., and Alicia G. Harley. 2020. “Sustainability Science: Toward a Synthesis.” Annual Review of Environment and Resources 45 (1): 331–86, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=109026069
[24] Sustainability in wkp-en: https://en.wikipedia.org/wiki/Sustainability#Dimensions_of_sustainability
[27] SDG 4 in wkp-en: https://en.wikipedia.org/wiki/Sustainable_Development_Goal_4
[28] Thomas Rid, Rise of the Machines. A Cybernetic History, W.W.Norton & Company, 2016, New York – London
[29] Doeben-Henisch, G., 2006, Reducing Negative Complexity by a Semiotic System In: Gudwin, R., & Queiroz, J., (Eds). Semiotics and Intelligent Systems Development. Hershey et al: Idea Group Publishing, 2006, pp.330-342
[30] Döben-Henisch, G., Reinforcing the global heartbeat: Introducing the planet earth simulator project, In M. Faßler & C. Terkowsky (Eds.), URBAN FICTIONS. Die Zukunft des Städtischen. München, Germany: Wilhelm Fink Verlag, 2006, pp.251-263
[29] The idea that individual disciplines are not good enough for the ‘whole of knowledge’ is expressed in a clear way in a video of the theoretical physicist and philosopher Carlo Rovell: Carlo Rovelli on physics and philosophy, June 1, 2022, Video from the Perimeter Institute for Theoretical Physics. Theoretical physicist, philosopher, and international bestselling author Carlo Rovelli joins Lauren and Colin for a conversation about the quest for quantum gravity, the importance of unlearning outdated ideas, and a very unique way to get out of a speeding ticket.
[] By Azote for Stockholm Resilience Centre, Stockholm University – https://www.stockholmresilience.org/research/research-news/2016-06-14-how-food-connects-all-the-sdgs.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=112497386
[] Sierra Club in wkp-en: https://en.wikipedia.org/wiki/Sierra_Club
[] Herbert Bruderer, Where is the Cradle of the Computer?, June 20, 2022, URL: https://cacm.acm.org/blogs/blog-cacm/262034-where-is-the-cradle-of-the-computer/fulltext (accessed: July 20, 2022)
[] UN. Secretary-General; World Commission on Environment and Development, 1987, Report of the World Commission on Environment and Development : note / by the Secretary-General., https://digitallibrary.un.org/record/139811 (accessed: July 20, 2022) (A more readable format: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf )
/* Comment: Gro Harlem Brundtland (Norway) has been the main coordinator of this document */
[] Chaudhuri, S.,et al.Neurosymbolic programming. Foundations and Trends in Programming Languages 7, 158-243 (2021).
[] Nello Cristianini, Teresa Scantamburlo, James Ladyman, The social turn of artificial intelligence, in: AI & SOCIETY, https://doi.org/10.1007/s00146-021-01289-8
[] Carl DiSalvo, Phoebe Sengers, and Hrönn Brynjarsdóttir, Mapping the landscape of sustainable hci, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, page 1975–1984, New York, NY, USA, 2010. Association for Computing Machinery.
[] Claude Draude, Christian Gruhl, Gerrit Hornung, Jonathan Kropf, Jörn Lamla, Jan Marco Leimeister, Bernhard Sick, Gerd Stumme, Social Machines, in: Informatik Spektrum, https://doi.org/10.1007/s00287-021-01421-4
[] EU: High-Level Expert Group on AI (AI HLEG), A definition of AI: Main capabilities and scientific disciplines, European Commission communications published on 25 April 2018 (COM(2018) 237 final), 7 December 2018 (COM(2018) 795 final) and 8 April 2019 (COM(2019) 168 final). For our definition of Artificial Intelligence (AI), please refer to our document published on 8 April 2019: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=56341
[] EU: High-Level Expert Group on AI (AI HLEG), Policy and investment recommendations for trustworthy Artificial Intelligence, 2019, https://digital-strategy.ec.europa.eu/en/library/policy-and-investment-recommendations-trustworthy-artificial-intelligence
[] European Union. Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC General Data Protection Regulation; http://eur-lex.europa.eu/eli/reg/2016/679/oj (Wirksam ab 25.Mai 2018) [26.2.2022]
[] C.S. Holling. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1):1–23, 1973
[] John P. van Gigch. 1991. System Design Modeling and Metamodeling. Springer US. DOI:https://doi.org/10.1007/978-1-4899-0676-2
[] Gudwin, R.R. (2003), On a Computational Model of the Peircean Semiosis, IEEE KIMAS 2003 Proceedings
[] J.A. Jacko and A. Sears, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 1st edition, 2003.
[] LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
[] Lenat, D. What AI can learn from Romeo & Juliet.Forbes (2019)
[] Pierre Lévy, Collective Intelligence. mankind’s emerging world in cyberspace, Perseus books, Cambridge (M A), 1997 (translated from the French Edition 1994 by Robert Bonnono)
[] Lexikon der Nachhaltigkeit, ‘Starke Nachhaltigkeit‘, https://www.nachhaltigkeit.info/artikel/schwache_vs_starke_nachhaltigkeit_1687.htm (acessed: July 21, 2022)
[] Michael L. Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield, Michael C. Horowitz, Charles Isbell, Hiroaki Kitano, Karen Levy, Terah Lyons, Melanie Mitchell, Julie Shah, Steven Sloman, Shannon Vallor, and Toby Walsh. “Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report.” Stanford University, Stanford, CA, September 2021. Doc: http://ai100.stanford.edu/2021-report.
[] Kathryn Merrick. Value systems for developmental cognitive robotics: A survey. Cognitive Systems Research, 41:38 – 55, 2017
[] Illah Reza Nourbakhsh and Jennifer Keating, AI and Humanity, MIT Press, 2020 /* An examination of the implications for society of rapidly advancing artificial intelligence systems, combining a humanities perspective with technical analysis; includes exercises and discussion questions. */
[] Olazaran, M. , A sociological history of the neural network controversy. Advances in Computers37, 335-425 (1993).
[] Friedrich August Hayek (1945), The use of knowledge in society. The American Economic Review 35, 4 (1945), 519–530
[] Karl Popper, „A World of Propensities“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1988, leicht erweitert neu abgedruckt 1990, repr. 1995)
[] Karl Popper, „Towards an Evolutionary Theory of Knowledge“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1989, ab gedruckt in 1990, repr. 1995)
[] Karl Popper, „All Life is Problem Solving“, Artikel, ursprünglich ein Vortrag 1991 auf Deutsch, erstmalig publiziert in dem Buch (auf Deutsch) „Alles Leben ist Problemlösen“ (1994), dann in dem Buch (auf Englisch) „All Life is Problem Solving“, 1999, Routledge, Taylor & Francis Group, London – New York
[] A. Sears and J.A. Jacko, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 2nd edition, 2008.
[] Skaburskis, Andrejs (19 December 2008). “The origin of “wicked problems””. Planning Theory & Practice. 9 (2): 277-280. doi:10.1080/14649350802041654. At the end of Rittel’s presentation, West Churchman responded with that pensive but expressive movement of voice that some may well remember, ‘Hmm, those sound like “wicked problems.”‘
[] Thoppilan, R., et al. LaMDA: Language models for dialog applications. arXiv 2201.08239 (2022).
[] Wurm, Daniel; Zielinski, Oliver; Lübben, Neeske; Jansen, Maike; Ramesohl, Stephan (2021) : Wege in eine ökologische Machine Economy: Wir brauchen eine ‘Grüne Governance der Machine Economy’, um das Zusammenspiel von Internet of Things, Künstlicher Intelligenz und Distributed Ledger Technology ökologisch zu gestalten, Wuppertal Report, No. 22, Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal, https://doi.org/10.48506/opus-7828
[] Aimee van Wynsberghe, Sustainable AI: AI for sustainability and the sustainability of AI, in: AI and Ethics (2021) 1:213–218, see: https://doi.org/10.1007/s43681
[] R. I. Damper (2000), Editorial for the special issue on ‘Emergent Properties of Complex Systems’: Emergence and levels of abstraction. International Journal of Systems Science 31, 7 (2000), 811–818. DOI:https://doi.org/10.1080/002077200406543
[] Gerd Doeben-Henisch (2004), The Planet Earth Simulator Project – A Case Study in Computational Semiotics, IEEE AFRICON 2004, pp.417 – 422
[] Eric Bonabeau (2009), Decisions 2.0: The power of collective intelligence. MIT Sloan Management Review 50, 2 (Winter 2009), 45-52.
[] Jim Giles (2005), Internet encyclopaedias go head to head. Nature 438, 7070 (Dec. 2005), 900–901. DOI:https://doi.org/10.1038/438900a
[] T. Bosse, C. M. Jonker, M. C. Schut, and J. Treur (2006), Collective representational content for shared extended mind. Cognitive Systems Research 7, 2-3 (2006), pp.151-174, DOI:https://doi.org/10.1016/j.cogsys.2005.11.007
[] Romina Cachia, Ramón Compañó, and Olivier Da Costa (2007), Grasping the potential of online social networks for foresight. Technological Forecasting and Social Change 74, 8 (2007), oo.1179-1203. DOI:https://doi.org/10.1016/j.techfore.2007.05.006
[] Tom Gruber (2008), Collective knowledge systems: Where the social web meets the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 6, 1 (2008), 4–13. DOI:https://doi.org/10.1016/j.websem.2007.11.011
[] Luca Iandoli, Mark Klein, and Giuseppe Zollo (2009), Enabling on-line deliberation and collective decision-making through large-scale argumentation. International Journal of Decision Support System Technology 1, 1 (Jan. 2009), 69–92. DOI:https://doi.org/10.4018/jdsst.2009010105
[] Shuangling Luo, Haoxiang Xia, Taketoshi Yoshida, and Zhongtuo Wang (2009), Toward collective intelligence of online communities: A primitive conceptual model. Journal of Systems Science and Systems Engineering 18, 2 (01 June 2009), 203–221. DOI:https://doi.org/10.1007/s11518-009-5095-0
[] Dawn G. Gregg (2010), Designing for collective intelligence. Communications of the ACM 53, 4 (April 2010), 134–138. DOI:https://doi.org/10.1145/1721654.1721691
[] Rolf Pfeifer, Jan Henrik Sieg, Thierry Bücheler, and Rudolf Marcel Füchslin. 2010. Crowdsourcing, open innovation and collective intelligence in the scientific method: A research agenda and operational framework. (2010). DOI:https://doi.org/10.21256/zhaw-4094
[] Martijn C. Schut. 2010. On model design for simulation of collective intelligence. Information Sciences 180, 1 (2010), 132–155. DOI:https://doi.org/10.1016/j.ins.2009.08.006 Special Issue on Collective Intelligence
[] Dimitrios J. Vergados, Ioanna Lykourentzou, and Epaminondas Kapetanios (2010), A resource allocation framework for collective intelligence system engineering. In Proceedings of the International Conference on Management of Emergent Digital EcoSystems (MEDES’10). ACM, New York, NY, 182–188. DOI:https://doi.org/10.1145/1936254.1936285
[] Anita Williams Woolley, Christopher F. Chabris, Alex Pentland, Nada Hashmi, and Thomas W. Malone (2010), Evidence for a collective intelligence factor in the performance of human groups. Science 330, 6004 (2010), 686–688. DOI:https://doi.org/10.1126/science.1193147
[] Michael A. Woodley and Edward Bell (2011), Is collective intelligence (mostly) the General Factor of Personality? A comment on Woolley, Chabris, Pentland, Hashmi and Malone (2010). Intelligence 39, 2 (2011), 79–81. DOI:https://doi.org/10.1016/j.intell.2011.01.004
[] Joshua Introne, Robert Laubacher, Gary Olson, and Thomas Malone (2011), The climate CoLab: Large scale model-based collaborative planning. In Proceedings of the 2011 International Conference on Collaboration Technologies and Systems (CTS’11). 40–47. DOI:https://doi.org/10.1109/CTS.2011.5928663
[] Miguel de Castro Neto and Ana Espírtio Santo (2012), Emerging collective intelligence business models. In MCIS 2012 Proceedings. Mediterranean Conference on Information Systems. https://aisel.aisnet.org/mcis2012/14
[] Peng Liu, Zhizhong Li (2012), Task complexity: A review and conceptualization framework, International Journal of Industrial Ergonomics 42 (2012), pp. 553 – 568
[] Sean Wise, Robert A. Paton, and Thomas Gegenhuber. (2012), Value co-creation through collective intelligence in the public sector: A review of US and European initiatives. VINE 42, 2 (2012), 251–276. DOI:https://doi.org/10.1108/03055721211227273
[] Antonietta Grasso and Gregorio Convertino (2012), Collective intelligence in organizations: Tools and studies. Computer Supported Cooperative Work (CSCW) 21, 4 (01 Oct 2012), 357–369. DOI:https://doi.org/10.1007/s10606-012-9165-3
[] Sandro Georgi and Reinhard Jung (2012), Collective intelligence model: How to describe collective intelligence. In Advances in Intelligent and Soft Computing. Vol. 113. Springer, 53–64. DOI:https://doi.org/10.1007/978-3-642-25321-8_5
[] H. Santos, L. Ayres, C. Caminha, and V. Furtado (2012), Open government and citizen participation in law enforcement via crowd mapping. IEEE Intelligent Systems 27 (2012), 63–69. DOI:https://doi.org/10.1109/MIS.2012.80
[] Jörg Schatzmann & René Schäfer & Frederik Eichelbaum (2013), Foresight 2.0 – Definition, overview & evaluation, Eur J Futures Res (2013) 1:15 DOI 10.1007/s40309-013-0015-4
[] Sylvia Ann Hewlett, Melinda Marshall, and Laura Sherbin (2013), How diversity can drive innovation. Harvard Business Review 91, 12 (2013), 30–30
[] Tony Diggle (2013), Water: How collective intelligence initiatives can address this challenge. Foresight 15, 5 (2013), 342–353. DOI:https://doi.org/10.1108/FS-05-2012-0032
[] Hélène Landemore and Jon Elster. 2012. Collective Wisdom: Principles and Mechanisms. Cambridge University Press. DOI:https://doi.org/10.1017/CBO9780511846427
[] Jerome C. Glenn (2013), Collective intelligence and an application by the millennium project. World Futures Review 5, 3 (2013), 235–243. DOI:https://doi.org/10.1177/1946756713497331
[] Detlef Schoder, Peter A. Gloor, and Panagiotis Takis Metaxas (2013), Social media and collective intelligence—Ongoing and future research streams. KI – Künstliche Intelligenz 27, 1 (1 Feb. 2013), 9–15. DOI:https://doi.org/10.1007/s13218-012-0228-x
[] V. Singh, G. Singh, and S. Pande (2013), Emergence, self-organization and collective intelligence—Modeling the dynamics of complex collectives in social and organizational settings. In 2013 UKSim 15th International Conference on Computer Modelling and Simulation. 182–189. DOI:https://doi.org/10.1109/UKSim.2013.77
[] A. Kornrumpf and U. Baumöl (2014), A design science approach to collective intelligence systems. In 2014 47th Hawaii International Conference on System Sciences. 361–370. DOI:https://doi.org/10.1109/HICSS.2014.53
[] Michael A. Peters and Richard Heraud. 2015. Toward a political theory of social innovation: Collective intelligence and the co-creation of social goods. 3, 3 (2015), 7–23. https://researchcommons.waikato.ac.nz/handle/10289/9569
[] Juho Salminen. 2015. The Role of Collective Intelligence in Crowdsourcing Innovation. PhD dissertation. Lappeenranta University of Technology
[] Aelita Skarzauskiene and Monika Maciuliene (2015), Modelling the index of collective intelligence in online community projects. In International Conference on Cyber Warfare and Security. Academic Conferences International Limited, 313
[] AYA H. KIMURA and ABBY KINCHY (2016), Citizen Science: Probing the Virtues and Contexts of Participatory Research, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099
[] Philip Tetlow, Dinesh Garg, Leigh Chase, Mark Mattingley-Scott, Nicholas Bronn, Kugendran Naidoo†, Emil Reinert (2022), Towards a Semantic Information Theory (Introducing Quantum Corollas), arXiv:2201.05478v1 [cs.IT] 14 Jan 2022, 28 pages
[] Melanie Mitchell, What Does It Mean to Align AI With Human Values?, quanta magazin, Quantized Columns, 19.Devember 2022, https://www.quantamagazine.org/what-does-it-mean-to-align-ai-with-human-values-20221213#
Comment by Gerd Doeben-Henisch:
[] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies. Oxford University Press, Oxford (UK), 1 edition, 2014.
[] Scott Aaronson, Reform AI Alignment, Update: 22.November 2022, https://scottaaronson.blog/?p=6821
[] Andrew Y. Ng, Stuart J. Russell, Algorithms for Inverse Reinforcement Learning, ICML 2000: Proceedings of the Seventeenth International Conference on Machine LearningJune 2000 Pages 663–670
[] Pat Langley (ed.), ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., 340 Pine Street, Sixth Floor, San Francisco, CA, United States, Conference 29 June 2000- 2 July 2000, 29.June 2000
Abstract: Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations Daniel S. Brown * 1 Wonjoon Goo * 1 Prabhat Nagarajan 2 Scott Niekum 1 You can read in the abstract: “A critical flaw of existing inverse reinforcement learning (IRL) methods is their inability to significantly outperform the demonstrator. This is because IRL typically seeks a reward function that makes the demonstrator appear near-optimal, rather than inferring the underlying intentions of the demonstrator that may have been poorly executed in practice. In this paper, we introduce a novel reward-learning-from-observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of (ap- proximately) ranked demonstrations in order to infer high-quality reward functions from a set of potentially poor demonstrations. When combined with deep reinforcement learning, T-REX outperforms state-of-the-art imitation learning and IRL methods on multiple Atari and MuJoCo bench- mark tasks and achieves performance that is often more than twice the performance of the best demonstration. We also demonstrate that T-REX is robust to ranking noise and can accurately extrapolate intention by simply watching a learner noisily improve at a task over time.”
In the abstract you can read: “For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent’s interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback.
In the abstract you can read: “Conceptual abstraction and analogy-making are key abilities underlying humans’ abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite of a long history of research on constructing AI systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing challenge tasks and evaluation measures in order to make quantifiable and generalizable progress
In the abstract you can read: “Since its beginning in the 1950s, the field of artificial intelligence has cycled several times between periods of optimistic predictions and massive investment (“AI spring”) and periods of disappointment, loss of confidence, and reduced funding (“AI winter”). Even with today’s seemingly fast pace of AI breakthroughs, the development of long-promised technologies such as self-driving cars, housekeeping robots, and conversational companions has turned out to be much harder than many people expected. One reason for these repeating cycles is our limited understanding of the nature and complexity of intelligence itself. In this paper I describe four fallacies in common assumptions made by AI researchers, which can lead to overconfident predictions about the field. I conclude by discussing the open questions spurred by these fallacies, including the age-old challenge of imbuing machines with humanlike common sense.”
[] Stuart Russell, (2019), Human Compatible: AI and the Problem of Control, Penguin books, Allen Lane; 1. Edition (8. Oktober 2019)
In the preface you can read: “This book is about the past , present , and future of our attempt to understand and create intelligence . This matters , not because AI is rapidly becoming a pervasive aspect of the present but because it is the dominant technology of the future . The world’s great powers are waking up to this fact , and the world’s largest corporations have known it for some time . We cannot predict exactly how the technology will develop or on what timeline . Nevertheless , we must plan for the possibility that machines will far exceed the human capacity for decision making in the real world . What then ? Everything civilization has to offer is the product of our intelligence ; gaining access to considerably greater intelligence would be the biggest event in human history . The purpose of the book is to explain why it might be the last event in human history and how to make sure that it is not .”
[] David Adkins, Bilal Alsallakh, Adeel Cheema, Narine Kokhlikyan, Emily McReynolds, Pushkar Mishra, Chavez Procope, Jeremy Sawruk, Erin Wang, Polina Zvyagina, (2022), Method Cards for Prescriptive Machine-Learning Transparency, 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN), CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA, pp. 90 – 100, Association for Computing Machinery, ACM ISBN 978-1-4503-9275-4/22/05, New York, NY, USA, https://doi.org/10.1145/3522664.3528600
In the abstract you can read: “Specialized documentation techniques have been developed to communicate key facts about machine-learning (ML) systems and the datasets and models they rely on. Techniques such as Datasheets, AI FactSheets, and Model Cards have taken a mainly descriptive approach, providing various details about the system components. While the above information is essential for product developers and external experts to assess whether the ML system meets their requirements, other stakeholders might find it less actionable. In particular, ML engineers need guidance on how to mitigate po- tential shortcomings in order to fix bugs or improve the system’s performance. We propose a documentation artifact that aims to provide such guidance in a prescriptive way. Our proposal, called Method Cards, aims to increase the transparency and reproducibil- ity of ML systems by allowing stakeholders to reproduce the models, understand the rationale behind their designs, and introduce adap- tations in an informed way. We showcase our proposal with an example in small object detection, and demonstrate how Method Cards can communicate key considerations that help increase the transparency and reproducibility of the detection model. We fur- ther highlight avenues for improving the user experience of ML engineers based on Method Cards.”
[] John H. Miller, (2022), Ex Machina: Coevolving Machines and the Origins of the Social Universe, The SFI Press Scholars Series, 410 pages Paperback ISBN: 978-1947864429 , DOI: 10.37911/9781947864429
In the announcement of the book you can read: “If we could rewind the tape of the Earth’s deep history back to the beginning and start the world anew—would social behavior arise yet again? While the study of origins is foundational to many scientific fields, such as physics and biology, it has rarely been pursued in the social sciences. Yet knowledge of something’s origins often gives us new insights into the present. In Ex Machina, John H. Miller introduces a methodology for exploring systems of adaptive, interacting, choice-making agents, and uses this approach to identify conditions sufficient for the emergence of social behavior. Miller combines ideas from biology, computation, game theory, and the social sciences to evolve a set of interacting automata from asocial to social behavior. Readers will learn how systems of simple adaptive agents—seemingly locked into an asocial morass—can be rapidly transformed into a bountiful social world driven only by a series of small evolutionary changes. Such unexpected revolutions by evolution may provide an important clue to the emergence of social life.”
In the abstract you can read: “Analyzing the spatial and temporal properties of information flow with a multi-century perspective could illuminate the sustainability of human resource-use strategies. This paper uses historical and archaeological datasets to assess how spatial, temporal, cognitive, and cultural limitations impact the generation and flow of information about ecosystems within past societies, and thus lead to tradeoffs in sustainable practices. While it is well understood that conflicting priorities can inhibit successful outcomes, case studies from Eastern Polynesia, the North Atlantic, and the American Southwest suggest that imperfect information can also be a major impediment to sustainability. We formally develop a conceptual model of Environmental Information Flow and Perception (EnIFPe) to examine the scale of information flow to a society and the quality of the information needed to promote sustainable coupled natural-human systems. In our case studies, we assess key aspects of information flow by focusing on food web relationships and nutrient flows in socio-ecological systems, as well as the life cycles, population dynamics, and seasonal rhythms of organisms, the patterns and timing of species’ migration, and the trajectories of human-induced environmental change. We argue that the spatial and temporal dimensions of human environments shape society’s ability to wield information, while acknowledging that varied cultural factors also focus a society’s ability to act on such information. Our analyses demonstrate the analytical importance of completed experiments from the past, and their utility for contemporary debates concerning managing imperfect information and addressing conflicting priorities in modern environmental management and resource use.”
This text is part of a philosophy of science analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive posts dedicated to the HMI-Analysis for this software.
POPPERs POSITION IN THE CHAPTERS 1-17
In my reading of the chapters 1-17 of Popper’s The Logic of Scientific Discovery [1] I see the following three main concepts which are interrelated: (i) the concept of a scientific theory, (ii) the point of view of a meta-theory about scientific theories, and (iii) possible empirical interpretations of scientific theories.
Scientific Theory
A scientific theory is according to Popper a collection of universal statements AX, accompanied by a concept of logical inference ⊢, which allows the deduction of a certain theorem t if one makes some additional concrete assumptions H.
Example: Theory T1 = <AX1,⊢>
AX1= {Birds can fly}
H1= {Peter is a bird}
⊢: Peter can fly
Because there exists a concrete object which is classified as a bird and this concrete bird with the name ‘Peter’ can fly one can infer that the universal statement could be verified by this concrete bird. But the question remains open whether all observable concrete objects classifiable as birds can fly.
One could continue with observations of several hundreds of concrete birds but according to Popper this would not prove the theory T1 completelytrue. Such a procedure can only support a numerical universality understood as a conjunction of finitely many observations about concrete birds like ‘Peter can fly’ & ‘Mary can fly’ & …. &’AH2 can fly’.(cf. p.62)
The only procedure which is applicable to a universal theory according to Popper is to falsify a theory by only one observation like ‘Doxy is a bird’ and ‘Doxy cannot fly’. Then one could construct the following inference:
AX1= {Birds can fly}
H2= {Doxy is a bird, Doxy cannot fly}
⊢: ‘Doxy can fly’ & ~’Doxy can fly’
If a statement A can be inferred and simultaneously the negation ~A then this is called a logical contradiction:
{AX1, H2} ⊢‘Doxy can fly’ & ~’Doxy can fly’
In this case the set {AX1, H2} is called inconsistent.
If a set of statements is classified as inconsistent then you can derive from this set everything. In this case you cannot any more distinguish between true or false statements.
Thus while the increase of the number of confirmed observations can only increase the trust in the axioms of a scientific theory T without enabling an absolute proof a falsification of a theory T can destroy the ability of this theory to distinguish between true and false statements.
Another idea associated with this structure of a scientific theory is that the universal statements using universal concepts are strictly speaking speculative ideas which deserve some faith that these concepts will be provable every time one will try it.(cf. p.33, 63)
Meta Theory, Logic of Scientific Discovery, Philosophy of Science
Talking about scientific theories has at least two aspects: scientific theories as objects and those who talk about these objects.
Those who talk about are usually Philosophers of Science which are only a special kind of Philosophers, e.g. a person like Popper.
Reading the text of Popper one can identify the following elements which seem to be important to describe scientific theories in a more broader framework:
A scientific theory from a point of view of Philosophy of Science represents a structure like the following one (minimal version):
MT=<S, A[μ], E, L, AX, ⊢, ET, E+, E-, true, false, contradiction, inconsistent>
In a shared empirical situation S there are some human actors A as experts producing expressions E of some language L. Based on their built-in adaptive meaning function μ the human actors A can relate properties of the situation S with expressions E of L. Those expressions E which are considered to be observable and classified to be true are called true expressions E+, others are called false expressions E-. Both sets of expressions are true subsets of E: E+ ⊂ E and E- ⊂ E. Additionally the experts can define some special set of expressions called axioms AX which are universal statements which allow the logical derivation of expressions called theorems of the theory T ET which are called logically true. If one combines the set of axioms AX with some set of empirically true expressions E+ as {AX, E+} then one can logically derive either only expressions which are logically true and as well empirically true, or one can derive logically true expressions which are empirically true and empirically false at the same time, see the example from the paragraph before:
{AX1, H2} ⊢‘Doxy can fly’ & ~’Doxy can fly’
Such a case of a logically derived contradiction A and ~A tells about the set of axioms AX unified with the empirical true expressions that this unified set confronted with the known true empirical expressions is becoming inconsistent: the axioms AX unified with true empirical expressions can not distinguish between true and false expressions.
Popper gives some general requirements for the axioms of a theory (cf. p.71):
Axioms must be free from contradiction.
The axioms must be independent , i.e . they must not contain any axiom deducible from the remaining axioms.
The axioms should be sufficient for the deduction of all statements belonging to the theory which is to be axiomatized.
While the requirements (1) and (2) are purely logical and can be proved directly is the requirement (3) different: to know whether the theory covers all statements which are intended by the experts as the subject area is presupposing that all aspects of an empirical environment are already know. In the case of true empirical theories this seems not to be plausible. Rather we have to assume an open process which generates some hypothetical universal expressions which ideally will not be falsified but if so, then the theory has to be adapted to the new insights.
Empirical Interpretation(s)
Popper assumes that the universal statements of scientific theories are linguistic representations, and this means they are systems of signs or symbols. (cf. p.60) Expressions as such have no meaning. Meaning comes into play only if the human actors are using their built-in meaning function and set up a coordinated meaning function which allows all participating experts to map properties of the empirical situation S into the used expressions as E+ (expressions classified as being actually true), or E- (expressions classified as being actually false) or AX (expressions having an abstract meaning space which can become true or false depending from the activated meaning function).
Examples:
Two human actors in a situation S agree about the fact, that there is ‘something’ which they classify as a ‘bird’. Thus someone could say ‘There is something which is a bird’ or ‘There is some bird’ or ‘There is a bird’. If there are two somethings which are ‘understood’ as being a bird then they could say ‘There are two birds’ or ‘There is a blue bird’ (If the one has the color ‘blue’) and ‘There is a red bird’ or ‘There are two birds. The one is blue and the other is red’. This shows that human actors can relate their ‘concrete perceptions’ with more abstract concepts and can map these concepts into expressions. According to Popper in this way ‘bottom-up’ only numerical universal concepts can be constructed. But logically there are only two cases: concrete (one) or abstract (more than one). To say that there is a ‘something’ or to say there is a ‘bird’ establishes a general concept which is independent from the number of its possible instances.
These concrete somethings each classified as a ‘bird’ can ‘move’ from one position to another by ‘walking’ or by ‘flying’. While ‘walking’ they are changing the position connected to the ‘ground’ while during ‘flying’ they ‘go up in the air’. If a human actor throws a stone up in the air the stone will come back to the ground. A bird which is going up in the air can stay there and move around in the air for a long while. Thus ‘flying’ is different to ‘throwing something’ up in the air.
The expression ‘A bird can fly’ understood as an expression which can be connected to the daily experience of bird-objects moving around in the air can be empirically interpreted, but only if there exists such a mapping called meaning function. Without a meaning function the expression ‘A bird can fly’ has no meaning as such.
To use other expressions like ‘X can fly’ or ‘A bird can Y’ or ‘Y(X)’ they have the same fate: without a meaning function they have no meaning, but associated with a meaning function they can be interpreted. For instance saying the the form of the expression ‘Y(X)’ shall be interpreted as ‘Predicate(Object)’ and that a possible ‘instance’ for a predicate could be ‘Can Fly’ and for an object ‘a bird’ then we could get ‘Can Fly(a Bird)’ translated as ‘The object ‘a Bird’ has the property ‘can fly” or shortly ‘A Bird can fly’. This usually would be used as a possible candidate for the daily meaning function which relates this expression to those somethings which can move up in the air.
Axioms and Empirical Interpretations
The basic idea with a system of axioms AX is — according to Popper — that the axioms as universal expressions represent a system of equations where the general terms should be able to be substituted by certain values. The set of admissible values is different from the set of inadmissible values. The relation between those values which can be substituted for the terms is called satisfaction: the values satisfy the terms with regard to the relations! And Popper introduces the term ‘model‘ for that set of admissible terms which can satisfy the equations.(cf. p.72f)
But Popper has difficulties with an axiomatic system interpreted as a system of equations since it cannot be refuted by the falsification of its consequences ; for these too must be analytic.(cf. p.73) His main problem with axioms is, that “the concepts which are to be used in the axiomatic system should be universal names, which cannot be defined by empirical indications, pointing, etc . They can be defined if at all only explicitly, with the help of other universal names; otherwise they can only be left undefined. That some universal names should remain undefined is therefore quite unavoidable; and herein lies the difficulty…” (p.74)
On the other hand Popper knows that “…it is usually possible for the primitive concepts of an axiomatic system such as geometry to be correlated with, or interpreted by, the concepts of another system , e.g . physics …. In such cases it may be possible to define the fundamental concepts of the new system with the help of concepts which were originally used in some of the old systems .”(p.75)
But the translation of the expressions of one system (geometry) in the expressions of another system (physics) does not necessarily solve his problem of the non-empirical character of universal terms. Especially physics is using also universal or abstract terms which as such have no meaning. To verify or falsify physical theories one has to show how the abstract terms of physics can be related to observable matters which can be decided to be true or not.
Thus the argument goes back to the primary problem of Popper that universal names cannot not be directly be interpreted in an empirically decidable way.
As the preceding examples (1) – (4) do show for human actors it is no principal problem to relate any kind of abstract expressions to some concrete real matters. The solution to the problem is given by the fact that expressions E of some language L never will be used in isolation! The usage of expressions is always connected to human actors using expressions as part of a language L which consists together with the set of possible expressions E also with the built-in meaning function μ which can map expressions into internal structures IS which are related to perceptions of the surrounding empirical situation S. Although these internal structures are processed internally in highly complex manners and are — as we know today — no 1-to-1 mappings of the surrounding empirical situation S, they are related to S and therefore every kind of expressions — even those with so-called abstract or universal concepts — can be mapped into something real if the human actors agree about such mappings!
Example:
Lets us have a look to another example.
If we take the system of axioms AX as the following schema: AX= {a+b=c}. This schema as such has no clear meaning. But if the experts interpret it as an operation ‘+’ with some arguments as part of a math theory then one can construct a simple (partial) model m as follows: m={<1,2,3>, <2,3,5>}. The values are again given as a set of symbols which as such must not ave a meaning but in common usage they will be interpreted as sets of numbers which can satisfy the general concept of the equation. In this secondary interpretation m is becoming a logically true (partial) model for the axiom Ax, whose empirical meaning is still unclear.
It is conceivable that one is using this formalism to describe empirical facts like the description of a group of humans collecting some objects. Different people are bringing objects; the individual contributions will be reported on a sheet of paper and at the same time they put their objects in some box. Sometimes someone is looking to the box and he will count the objects of the box. If it has been noted that A brought 1 egg and B brought 2 eggs then there should according to the theory be 3 eggs in the box. But perhaps only 2 could be found. Then there would be a difference between the logically derivedforecast of the theory 1+2 = 3 and the empirically measured value 1+2 = 2. If one would define all examples of measurement a+b=c’ as contradiction in that case where we assume a+b=c as theoretically given and c’ ≠ c, then we would have with ‘1+2 = 3′ & ~’1+2 = 3’ a logically derived contradiction which leads to the inconsistency of the assumed system. But in reality the usual reaction of the counting person would not be to declare the system inconsistent but rather to suggest that some unknown actor has taken against the agreed rules one egg from the box. To prove his suggestion he had to find this unknown actor and to show that he has taken the egg … perhaps not a simple task … But what will the next authority do: will the authority belief the suggestion of the counting person or will the authority blame the counter that eventually he himself has taken the missing egg? But would this make sense? Why should the counter write the notes how many eggs have been delivered to make a difference visible? …
Thus to interpret some abstract expression with regard to some observable reality is not a principal problem, but it can eventually be unsolvable by purely practical reasons, leaving questions of empirical soundness open.
SOURCES
[1] Karl Popper, The Logic of Scientific Discovery, First published 1935 in German as Logik der Forschung, then 1959 in English by Basic Books, New York (more editions have been published later; I am using the eBook version of Routledge (2002))
The topic Philosophy of Science [PoS] in the context of modern science has a history of more then 100 years and — in the view of the author — this topic has not yet settled in one grand view of science which is globally accepted.[1]-[7] [*]
CONTRIBUTIONS
A Global Public Theory Machine (with Collective Intelligence)
[*] From the many books the one which I like most as a good first introduction is that entitled The Structure of Scienctific Theories edited by Frederick Suppe (1977). [5] In the German philosophical discourse there exists the distinction between ‘Philosophy of Science’ (‘Wissenschaftsphilosophie’) and ‘Theory of Science’ (‘Wissenschaftstheorie’). [7] In this text this distinction will not be used.
[1] Wikipedia EN, Philosophy of Science: https://en.wikipedia.org/wiki/Philosophy_of_science
[2] Enyclopaedia Britannica, Philosophy of Science: https://www.britannica.com/topic/philosophy-of-science /* Very broad overview */
[3] Journal Philosophy of Science (Since 1934), published by the University of Chicago Press: https://www.journals.uchicago.edu/toc/phos/current
[4] Stanford Encylopedia of Philosophy, Philosophy of Science in Latin America: https://plato.stanford.edu/entries/phil-science-latin-america/ /* There exists no general topic of Philosophy of Science! */
[5] Frederick Suppe (Ed.), The Structure of Scientific Theories, University of Illinois Press, Urbana, 1977, 2nd edition 1979
[6] Jürgen Mittelstraß (Ed.), Enzylopädie Philosophie und Wissenschaftstheorie, Bd.1-4, Publisher J.Metzler, Stuttgart – Weimar (Germany), 1995 – 1996
[7] Hans Jörg Sandkühler (Ed.), Enzylopädie Philosophie, Bd. 1-3, Publisher Felix Meiner Verlag, Hamburg (Germany), 2010. Stichworte ‘Wissenschaftsphilosophie‘ und ‘Wissenschaftstheorie‘ in Bd.3
[8] Karl Popper, The Logic of Scientific Discovery, First published 1935 in German as Logik der Forschung, then 1959 in English by Basic Books, New York (more editions have been published later; I am using the eBook version of Routledge (2002))
[9] Jules Henri Poincaré (1854 – 1912),https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9, La science et l’hypothèse, Paris 1902, English: Science and Hypothesis, New York 1905, publisher The Walter Scott Publishing CO., LTD (See wikisource: https://en.wikisource.org/wiki/Science_and_Hypothesis )
[10] N.Bourbaki (1970), Theory of Sets, Series: ELEMENTS OF MATHEMATICS, Springer, Berlin — Heidelberg — New York (Engl. Translation from the French edition 1970)
[11] Bourbaki group in Wikipedia [EN]: https://en.wikipedia.org/wiki/Nicolas_Bourbaki
[12] Jules Henri Poincaré (1854 – 1912),https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9, La science et l’hypothèse, Paris 1902, English: Science and Hypothesis, New York 1905, publisher The Walter Scott Publishing CO., LTD (See wikisource: https://en.wikisource.org/wiki/Science_and_Hypothesis )
To support the development of exciting applications with the oksimo.R software as part of the general concept of ‘Citizen Science 2.0’ the oksimo team is running a blog [1] dedicated to all questions around the usage of the oksimo.R software. [2] Due to the dynamic development process there are different phases of different kinds of examples. Examples related to Level 1 of the oksimo.R software appeared before spring 2022. Examples with Level 2 appeared since spring 2022. Examples of Level 3 will start to appear during spring 2023. When examples of Level 3 will be available we will start working for Level 4.
More Recent oksimo.R Examples
With the writing of the first book related to the oksimo.R software all further examples will be published through this book accompanied with a webpage collecting all these examples. It is planned to finish a first experimental version of the text of the book (oksimo.org, uffmm.org) about summer 2023. After that it is planned to publish an official book with an international publisher.
Oksimo.R Examples with Level 2
Here a list of oksimo examples starting with simple examples with the oksimo software level 2 (while level 3 is already in preparation).
[1] The blog of the oksimo.R Team is primarily in German. But parts of the blog will also be reported or even directly translated into English texts as part of the uffmm.blog.
[2] The oksimo.R book can also be read as a ‘philosophical’ book, because the oksimo.R software is using everyday languages to deal with everyday problems (including typical ‘ordinary science’ cases as ‘sub-cases’ of everyday problems). There exists a great bulk of books and articles related to philosophical topics which until now have only a poor connection with the concepts of ‘software’, ’empirical theory’, ‘cognitive sciences’ as well as the different concepts of ‘intelligence’ outside philosophy. Thus the development of the oksimo.R paradigm and software is a great opportunity to bring all these different aspects of reality together to enable a more integrated (inter-disciplinary as well as trans-disciplinary) view.
Integrating Engineering and the Human Factor (info@uffmm.org) eJournal uffmm.org ISSN 2567-6458, February 25, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.deLast change: March 16, 2021 (Some minor corrections)
Since January 2021 an intense series of posts has been published how the new ideas manifested in the new software published in this journal can adequately be reflected in the DAAI theoretical framework. Because these ideas included in the beginning parts of philosophy, philosophy of science, philosophy of engineering, these posts have been first published in the German Blog of the author (cognitiveagent.org). This series of posts started with an online lecture for students of the University of Leipzig together with students of the ‘Hochschule für Technik, Wirtschaft und Kultur (HTWK)’ January 12, 2021. Here is the complete list of posts:
HMI analysis for the CM:MI paradigm illustrated with the oksimo software concept
As described in the original DAAI theory paper the whole topic of HMI is here understood as a job within the systems engineering paradigm.
The specification process is a kind of a ‘test’ whether the DAAI format of the HMI analysis works with this new application too.
To remember, the main points of the integrated engineering concept are the following ones:
A philosophical framework (Philosophy of Science, Philosophy of Engineering, …), which gives the fundamentals for such a process.
The engineering process as such where managers and engineers start the whole process and do it.
After the clarification of the problem to be solved and a minimal vision, where to go, it is the job of the HMI analysis to clarify which requirements have to be fulfilled, to find an optimal solution for the intended product/ service. In modern versions of the HMI analysis substantial parts of the context, i.e. substantial parts of the surrounding society, have to be included in the analysis.
Based on the HMI analysis in the logical design phase a mathematical structure has to be identified, which integrates all requirements sufficiently well. This mathematical structure has to be ‘map-able’ into a set of algorithms written in appropriate programming languages running on an appropriate platform (the mentioned phases Problem, Vision, HMI analysis, Logical Design are in reality highly iterative).
During the implementation phase the algorithms will be translated into a real working system.
Which Kinds of Experts?
While the original version of the DAAI paper is assuming as ‘experts’ only the typical manager and engineers of an engineering process including all the typical settings, the new extended version under the label CM:MI (Collective Man-Machine Intelligence) has been generalized to any kind of human person as an expert, which allows a maximum of diversity. No one is the ‘absolute expert’.
Collective Intelligence
As ‘intelligence’ is understood here the whole of knowledge, experience, and motivations which can be the moving momentum inside of a human person. As ‘collective’ is meant the situation, where more than one person is communicating with other persons to share it’s intelligence.
Man-Machine Symbiosis
Today there are discussions going around about the future of man and (intelligent) machines. Most of these discussions are very weak because they are lacking clear concepts of intelligent machines as well of what is a human person. In the CM:MI paradigm the human person (together with all other biological systems) is seen at the center of the future (by reasons based on modern theories of biological evolution) and the intelligent machines are seen as supporting devices (although it is assumed here to use ‘strong’ intelligence compared to the actual ‘weak’ machine intelligence today).
CM:MI by Design
Although we know, that groups of many people are ‘in principal’ capable of sharing intelligence to define problems, visions, constructing solutions, testing the solutions etc., we know too, that the practical limits of the brains and the communication are quite narrow. For special tasks a computer can be much, much better. Thus the CM:MI paradigm provides an environment for groups of people to do the shared planning and testing in a new way, only using normal language. Thus the software is designed to enable new kinds of shared knowledge about shared common modes of future worlds. Only with such a truly general framework the vision of a sustainable society as pointed out by the United Nations since 1992 can become real.
The starting point of view in this blog has been and still is the point of engineering, especially the perspective of man-machine interface [MMI], later as Man-Machine Interaction, then accompanied by human-computer interaction [HCI] or human-machine interaction [HMI]. While MMI often is discussed in isolation, not as part of engineering, this blog emphasizes a point of view where MMI is understood as an integrated part of systems engineering. The past years have shown, that this integration makes a great difference in the overall layout as well as in the details of the used methods. This integration widened the scope of MMI to the context of engineering in a way which teared down many artificial boundaries in dealing with the subject of MMI. The analysis part of MMI can take into account not only the intended users and a limited set of tasks required for the usage of a system but it can extend the scope to the different kinds of contexts of the intended users as well as the intended service/product as such: cultural patterns, sustainable perspectives, climate relevance, political implications, and more. This triggers the question, whether there are other established scientific disciplines which are sharing this scope with MMI. Traditionally experimental and cognitive psychology has always played an important role as part of the MMI analysis. Different special disciplines like physiology or neuro-psychology, linguistics, phonetics etc. have played some role too. More recently culture and society have been brought more into the focus of MMI. What about sociology? What about anthropology? The following text discusses a possible role of anthropology in the light of the recent book Why The World Needs Anthropologists?
INTRODUCTION AND CONCLUSION
This review has the addendum ‘Part 1’ pointing to the fact, that this text does not deal with the whole book first, but only with some parts, the introduction and the conclusion.
An Introduction
The introduction of the book is asking, why does the world needs anthropologists?, and the main pattern of the introduction looks back to the old picture of anthropology, and then seeks to identify, what could/is the new paradigm which should be followed.
The roots of anthropology are located in the colonial activities of the British Empire as well as in the federal activities of the USA, which both had a strong bias to serve the political power more than to evolve a really free science. And an enduring gap between the more theoretical anthropology and an applied one is thematised although there existed always a strong inter-dependency between both.
To leave the close connection with primarily governmental interests and to see the relation between the theory and the different Applications more positive than negative anthropology is understood as challenged to rebrand its appearance in the public and in their own practice.
The most vital forces for such a rebranding seem to be rooted in more engagements in societal problems of public interests and thereby challenging the theory to widen their concept and methods.
Besides the classical methods of anthropology (cultural relativism, ethnography, comparison, and contextual understanding) anthropology has to show that it can make sense beyond pure data, deciphering ambiguity, complexity, and ambivalence, helping with diversity, investigating the interface between culture, technology, and environment.
What Is Left Out
After the introduction the main chapters of the book are left out in this text until later. The chapters in the book are giving examples to the questions, why the world needs anthropology, what have been the motivations for active anthropologists to become one, how they have applied anthropology, and which five tips they would give for practicing and theorizing.
Conclusion
In the conclusion of the book not the five questions are the guiding principle but ‘five axis that matter greatly’, and these five axis are circumscribed as (i) navigate the ethics of change; (ii) own-it in the sense, that an anthropologist should have a self-esteem for his/ her/ x profession and can co-create it with others; (iii) expand the skill-set; (iv) collaborate, co-create and study-up; (v) recommend as being advisors and consultants.
The stronger commitment with actual societal problems leads anthropology at the crossroads of many processes which require new views, new methods. To gain new knowledge and to do a new practice is not always accompanied by known ethical schemata. Doing this induces ethical questions which have not been known before in this way. While a new practice is challenging the old knowledge and induces a pressure for change, new versions of knowing can trigger new forms of practice as well. Theory and application are a dynamic pair where each part learns from the other.
The long-lasting preference of academic anthropology, thinking predominantly in the mind-setting of white-western-man, is more and more resolved by extending anthropology from academia to application, from man into the diversity of genders, from western culture into all the other cultures, from single persons to assemblies of diverse gatherings living an ongoing discourse with a growing publicity.
This widening of anthropological subjects and methods calls naturally for more interdisciplinarity, transdisciplinarity, and of a constructive attitude which looks ahead to possible futures of processes.
Close to this are expressions like collaboration and co-creation with others. In the theory dimension this is reflected by multiperspectivity and a holistic view. In societal development processes — like urban planning — there are different driving forces acting working top-down or acting working bottom-up.
Recommending solutions based on anthropological thinking ending in a yes or no, can be of help and can be necessary because real world processes can not only wait of final answers (which are often not realistic), they need again and again decisions to proceed now.
REFLECTIONS FOLLOWING THE INTRODUCTION AND THE CONCLUSION
The just referred texts making a fresh impression of a discipline in a dynamic movement.
General Knowledge Architecture
For the point of view of MMI (Man-Machine Interface, later HMI Human-Machine Interaction, in my theory extended to DAAI Distributed Actor-Actor Interaction) embedded in systems engineering with an openness for the whole context of society and culture arises the question whether such a dynamic anthropology can be of help.
To clarify this question let us have a short look to the general architecture of knowledge.
Within the everyday world philosophy can be understood as the most general point of view of knowing and thinking. Traditionally logic and mathematics can be understood as part of philosophy although today this has been changed. But there are no real reasons for this departure: logic and mathematics are not empirical sciences and they are not engineering.
Empirical science can be understood as specialized extension of philosophical thinking with identifiable characteristics which allow to differentiate to some extend different disciplines. Traditionally all the different disciplines of empirical science have a more theoretical part and a more applied part. But systematically they depend from each other. A theory is only an empirical one, if there exists a clear relationship to the everyday world, and certain aspects of the everyday world are only theoretical entities (data) if there exists a relationship to an explicit theory which gives a formal explanation.
Asking for a systematic place for engineering it is often said, that it belongs to the applied dimension of empirical science. But engineering has realized processes, buildings, machines long before there was a scientific framework for to do this, and engineering uses in its engineering processes lots of knowledge which is not part of science. On the other side, yes, engineering is using scientific knowledge as far as it is usable and it is also giving back many questions to science which are not yet solved sufficiently. Therefore it is sound to locate engineering besides science, but being part of philosophy dealing with the practical dimensions of life.
What About Anthropology?
While philosophy (with logic and mathematics) is ‘on top’ of empirical science and engineering, it is an interesting question where to place anthropology?
While empirical science as well as engineering are inheriting all what philosophy provides remains the question whether anthropology is more an empirical science or more engineering or some kind of a hybrid system with roots in empirical science as well as in engineering?
Looking back into history it could arise the impression that anthropology is more a kind of an empirical science with strong roots in academia, but doing fieldwork to feed the theories.
Looking to the new book it could support the image that anthropology should be more like engineering: identifying open problems in society and trying to transform these problems — like engineers — into satisfying solutions, at least on the level of counseling.
Because in our societies the universities have traditionally a higher esteem then the engineers — although the engineers are all trained by highly demanding university courses — it could be a bias in the thinking of anthropologist not to think of their discipline as engineering.
If one looks to the real world than everything which makes human societies livable is realized by engineers. Yes, without science many of the today solutions wouldn’t be possible, but no single scientific theory has ever enabled directly some practical stuff. And without the engineers there would not exist any of the modern machines used for measurements and experiments for science. Thus both are intimately interrelated: science inspires engineering and engineering inspires and enables science, but both are genuinely different and science and engineering play their own fundamental role.
Thus if I am reading the new book as engineer (attention: I am also a philosopher and I am trained in the Humanities too!) then I think there are more arguments to understand anthropology as engineering than as a pure empirical science. In the light of my distributed actor-actor interaction paradigm, which is a ‘spinoff’ of engineering and societal thinking it seems very ‘naturally’ to think of anthropology as a kind of social engineering.
Let us discuss both perspectives a bit more, thereby not excluding the hybrid version.
1) Anthropology as Engineering
The basic idea of engineering is to enable a change process which is completely transparent in all respects: Why, Who, Where, When, How etc. The process starts with explicit preferences turning some known reality into a problem on account of some visions which have been imagined and which have become ranked higher than the given known reality. And then the engineers try to organized an appropriate change process which will lead from the given situation to a new situation until some date in the future where the then given situation — the envisioned goal state — has become real and the situation from the beginning, which has been ranked down, has disappeared, or is at least weakened in a way that one can say, yes, it has changed.
Usually engineers are known to enable change processes which enable the production of everyday things (tools, products, machines, houses, plants, ships, airplanes, …), but to the extend that the engineering is touching the everyday life deeper and deeper (e.g. the global digital revolution absorbing more and more from the real life processes by transforming them into digital realities forcing human persons to act digitally and not any more with their bodies in the everyday world) the sharp boundary between engineering products and the societal life of human persons is vanishing. In such a context engineering is becoming social engineering even if the majority of traditional engineers this doesn’t see yet in this way. As the traditional discipline MMI Man-Machine Interface and then expanded to HMI Human-Machine Interaction and further morphed into DAAI Distributed Actor-Actor Interaction this already manifests, that the realm of human persons, yes the whole of society is already included in engineering. The border between machines and human actors is already at least fuzzy and the mixing of technical devices and human actors (as well as all other biological actors) has already gained a degree which does not allow any longer a separation.
These ideas would argue for the option to see anthropology as social engineering: thematizing all the important visions which seem to be helpful or important for a good future of modern mankind, and to help to organize change processes, which will support approaching this better future. That these visions can fail, can be wrong is part of the ever lasting battle of the homo sapiens to gain the right knowledge.
2) Anthropology as an Empirical Science
… to be continued …
3) Anthropology as a Hybrid Couple of Science and Engineering
Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, Nov 8, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
In daily life we experience today a multitude of perspectives in all areas. While our bodies are embedded in real world scenarios our minds are filled up with perceptions, emotions, ideas, memories of all kinds. What links us to each other is language. Language gives us the power to overcome the isolation of our individual brains located in individual bodies. And by this, our language, we can distribute and share the inner states of our brains, pictures of life as we see it. And it is this open web of expressions which spreads to the air, to the newspapers and books, to the data bases in which the different views of the world are manifested.
SORTING IDEAS SCIENTIFICALLY
While our bodies touching reality outside the bodies, our brains are organizing different kinds of order, finally expressed — only some part of it — in expressions of some language. While our daily talk is following mostly automatically some naive patterns of ordering does empirical science try to order the expressions more consciously following some self-defined rules called methods, called scientific procedures to enable transparency, repeatability, decidability of the hypothesized truth of is symbolic structures.
But because empirical science wants to be rational by being transparent, repeatable, measurable, there must exist an open discourse which is dealing with science as an object: what are the ingredients of science? Under which conditions can science work? What does it mean to ‘measure’ something? And other questions like these.
PHILOSOPHY OF SCIENCE
That discipline which is responsible for such a discourse about science is not science itself but another instance of thinking and speaking which is called Philosophy ofScience. Philosophy of science deals with all aspects of science from the outside of science.
PHILOSOPHY
Philosophy of Science dealing with empirical sciences as an object has a special focus and it can be reflected too from another point of view dealing with Philosophy of Science as an object. This relationship reflects a general structure of human thinking: every time we have some object of our thinking we are practicing a different point of view talking about the actual object. While everyday thinking leads us directly to Philosophy as our active point of view an object like empirical science does allow an intermediate point of view called Philosophy of Science leading then to Philosophy again.
Philosophy is our last point of reflection. If we want to reflect the conditions of our philosophical thinking than our thinking along with the used language tries to turn back on itself but this is difficult. The whole history of Philosophy shows this unending endeavor as a consciousness trying to explain itself by being inside itself. Famous examples of this kind of thinking are e.g. Descartes, Kant, Fichte, Schelling, Hegel, and Husserl.
These examples show there exists no real way out.
PHILOSOPHY ENHANCED BY EMPIRICAL SCIENCES ? !
At a first glance it seems contradictory that Philosophy and Empirical Sciences could work ‘hand in hand’. But history has shown us, that this is to a certain extend possible; perhaps it is a major break through for the philosophical understanding of the world, especially also of men themselves.
Modern empirical sciences like Biology and Evolutionary Biology in cooperation with many other empirical disciplines have shown us, that the actual biological systems — including homo sapiens — are products of a so-called evolutionary process. And supported by modern empirical disciplines like Ethology, Psychology, Physiology, and Brain Sciences we could gain some first knowledge how our body works, how our brain, how our observable behavior is connected to this body and its brain.
While Philosopher like Kant or Hegel could investigate their own thinking only from the inside of their consciousness, the modern empirical sciences can investigate the human thinking from the outside. But until now there is a gap: We have no elaborated theory about the relationship between the inside of the consciousness and the outside knowledge about body and brain.
Thus what we need is a hybrid theory mapping the inside to the outside and revers. There are some first approaches headed under labels like Neuro-Psychology or Neuro-Phenomenology, but these are not yet completely clarified in their methodology in their relationship to Philosophy.
If one can describe to some extend the Phenomena of the consciousness from the inside as well as the working of the brain translated to its behavioral properties, then one can start first mappings like those, which have been used in this blog to establish the theory for the komega software.
SOCIOLOGY
Sociology is only one empirical discipline between many others. Although the theory of this blog is using many disciplines simultaneously Sociology is of special interest because it is that kind of empirical disciplines which is explicitly dealing with human societies with subsystems called cities.
The komega software which we are developing is understood here as enabling a system of interactions as part of a city understood as a system. If we understand Sociology as an empirical science according to some standard view of empirical science then it is possible to describe a city as an input-output system whose dynamics can become influenced by this komega software if citizens are using this software as part of their behavior.
STANDARD VIEW OF EMPIRICAL SCIENCE
Without some kind of a Standard View of Empirical Science it is not possible to design a discipline — e.g. Sociology — as an empirical discipline. Although it seems that everybody thinks that we have such a ‘Standard View of Empirical Science’, in the real world of today one must state that we do not have such a view. In the 80ties of the20th century it looked for some time as if we have it, but if you start searching the papers, books and schools today You will perceive a very fuzzy field called Philosophy of Science and within the so-called empirical sciences you will not found any coherent documented view of a ‘Standard View of Empirical Science’.
Because it is difficult to see how a process can look like which enables such a ‘Standard View of Empirical Science’ again, we will try to document the own assumptions for our theory as good as possible. Inevitably this will mostly have the character of only a ‘fragment’, an ‘incomplete outline’. Perhaps there will again be a time where sciences is back to have a commonly accepted view how science should look like to be called empirical science.
The context for this text is the whole block dedicated to the AAI (Actor-Actor Interaction) paradigm. The aim of this text is to give the big picture of all dimensions and components of this subject as it shows up during April 2019.
The first dimension introduced is the historical dimension, because this allows a first orientation in the course of events which lead to the actual situation. It starts with the early days of real computers in the thirties and forties of the 20 century.
The second dimension is the engineering dimension which describes the special view within which we are looking onto the overall topic of interactions between human persons and computers (or machines or technology or society). We are interested how to transform a given problem into a valuable solution in a methodological sound way called engineering.
The third dimension is the whole of society because engineering happens always as some process within a society. Society provides the resources which can be used and spends the preferences (values) what is understood as ‘valuable’, as ‘good’.
The fourth dimension is Philosophy as that kind of thinking which takes everything into account which can be thought and within thinking Philosophy clarifies conditions of thinking, possible tools of thinking and has to clarify when some symbolic expression becomes true.
HISTORY
In history we are looking back in the course of events. And this looking back is in a first step guided by the concepts of HCI (Human-Computer Interface) and HMI (Human-Machine Interaction).
It is an interesting phenomenon how the original focus of the interface between human persons and the early computers shifted to the more general picture of interaction because the computer as machine developed rapidly on account of the rapid development of the enabling hardware (HW) the enabling software (SW).
Within the general framework of hardware and software the so-called artificial intelligence (AI) developed first as a sub-topic on its own. Since the last 10 – 20 years it became in a way productive that it now seems to become a normal part of every kind of software. Software and smart software seem to be interchangeable. Thus the new wording of augmented or collective intelligence is emerging intending to bridge the possible gap between humans with their human intelligence and machine intelligence. There is some motivation from the side of society not to allow the impression that the smart (intelligent) machines will replace some day the humans. Instead one is propagating the vision of a new collective shape of intelligence where human and machine intelligence allows a symbiosis where each side gives hist best and receives a maximum in a win-win situation.
What is revealing about the actual situation is the fact that the mainstream is always talking about intelligence but not seriously about learning! Intelligence is by its roots a static concept representing some capabilities at a certain point of time, while learning is the more general dynamic concept that a system can change its behavior depending from actual external stimuli as well as internal states. And such a change includes real changes of some of its internal states. Intelligence does not communicate this dynamics! The most demanding aspect of learning is the need for preferences. Without preferences learning is impossible. Today machine learning is a very weak example of learning because the question of preferences is not a real topic there. One assumes that some reward is available, but one does not really investigate this topic. The rare research trying to do this job is stating that there is not the faintest idea around how a general continuous learning could happen. Human society is of no help for this problem while human societies have a clash of many, often opposite, values, and they have no commonly accepted view how to improve this situation.
ENGINEERING
Engineering is the art and the science to transform a given problem into a valuable and working solution. What is valuable decides the surrounding enabling society and this judgment can change during the course of time. Whether some solution is judged to be working can change during the course of time too but the criteria used for this judgment are more stable because of their adherence to concrete capabilities of technical solutions.
While engineering was and is always a kind of an art and needs such aspects like creativity, innovation, intuition etc. it is also and as far as possible a procedure driven by defined methods how to do things, and these methods are as far as possible backed up by scientific theories. The real engineer therefore synthesizes art, technology and science in a unique way which can not completely be learned in the schools.
In the past as well as in the present engineering has to happen in teams of many, often many thousands or even more, people which coordinate their brains by communication which enables in the individual brains some kind of understanding, of emerging world pictures, which in turn guide the perception, the decisions, and the concrete behavior of everybody. And these cognitive processes are embedded — in every individual team member — in mixtures of desires, emotions, as well as motivations, which can support the cognitive processes or obstruct them. Therefore an optimal result can only be reached if the communication serves all necessary cognitive processes and the interactions between the team members enable the necessary constructive desires, emotions, and motivations.
If an engineering process is done by a small group of dedicated experts — usually triggered by the given problem of an individual stakeholder — this can work well for many situations. It has the flavor of a so-called top-down approach. If the engineering deals with states of affairs where different kinds of people, citizens of some town etc. are affected by the results of such a process, the restriction to a small group of experts can become highly counterproductive. In those cases of a widespread interest it seems promising to include representatives of all the involved persons into the executing team to recognize their experiences and their kinds of preferences. This has to be done in a way which is understandable and appreciative, showing esteem for the others. This manner of extending the team of usual experts by situative experts can be termed bottom-up approach. In this usage of the term bottom-up this is not the opposite to top-down but is reflecting the extend in which members of a society are included insofar they are affected by the results of a process.
SOCIETY
Societies in the past and the present occur in a great variety of value systems, organizational structures, systems of power etc. Engineering processes within a society are depending completely on the available resources of a society and of its value systems.
The population dynamics, the needs and wishes of the people, the real territories, the climate, housing, traffic, and many different things are constantly producing demands to be solved if life shall be able and continue during the course of time.
The self-understanding and the self-management of societies is crucial for their ability to used engineering to improve life. This deserves communication and education to a sufficient extend, appropriate public rules of management, otherwise the necessary understanding and the freedom to act is lacking to use engineering in the right way.
PHILOSOPHY
Without communication no common constructive process can happen. Communication happens according to many implicit rules compressed in the formula who when can speak how about what with whom etc. Communication enables cognitive processes of for instance understanding, explanations, lines of arguments. Especially important for survival is the ability to make true descriptions and the ability to decide whether a statement is true or not. Without this basic ability communication will break down, coordination will break down, life will break down.
The basic discipline to clarify the rules and conditions of true communication, of cognition in general, is called Philosophy. All the more modern empirical disciplines are specializations of the general scope of Philosophy and it is Philosophy which integrates all the special disciplines in one, coherent framework (this is the ideal; actually we are far from this ideal).
Thus to describe the process of engineering driven by different kinds of actors which are coordinating themselves by communication is primarily the task of philosophy with all their sub-disciplines.
Thus some of the topics of Philosophy are language, text, theory, verification of a theory, functions within theories as algorithms, computation in general, inferences of true statements from given theories, and the like.
In this text I apply Philosophy as far as necessary. Especially I am introducing a new process model extending the classical systems engineering approach by including the driving actors explicitly in the formal representation of the process. Learning machines are included as standard tools to improve human thinking and communication. You can name this Augmented Social Learning Systems (ASLS). Compared to the wording Augmented Intelligence (AI) (as used for instance by the IBM marketing) the ASLS concept stresses that the primary point of reference are the biological systems which created and create machine intelligence as a new tool to enhance biological intelligence as part of biological learning systems. Compared to the wording Collective Intelligence (CI) (as propagated by the MIT, especially by Thomas W.Malone and colleagues) the spirit of the CI concept seems to be similar, but perhaps only a weak similarity.
Last change: 23.February 2019 (continued the text)
Last change: 24.February 2019 (extended the text)
CONTEXT
In the overview of the AAI paradigm version 2 you can find this section dealing with the philosophical perspective of the AAI paradigm. Enjoy reading (or not, then send a comment :-)).
THE DAILY LIFE PERSPECTIVE
The perspective of Philosophy is rooted in the everyday life perspective. With our body we occur in a space with other bodies and objects; different features, properties are associated with the objects, different kinds of relations an changes from one state to another.
From the empirical sciences we have learned to see more details of the everyday life with regard to detailed structures of matter and biological life, with regard to the long history of the actual world, with regard to many interesting dynamics within the objects, within biological systems, as part of earth, the solar system and much more.
A certain aspect of the empirical view of the world is the fact, that some biological systems called ‘homo sapiens’, which emerged only some 300.000 years ago in Africa, show a special property usually called ‘consciousness’ combined with the ability to ‘communicate by symbolic languages’.
Figure 1: General setting of the homo sapiens species (simplified)
As we know today the consciousness is associated with the brain, which in turn is embedded in the body, which is further embedded in an environment.
Thus those ‘things’ about which we are ‘conscious’ are not ‘directly’ the objects and events of the surrounding real world but the ‘constructions of the brain’ based on actual external and internal sensor inputs as well as already collected ‘knowledge’. To qualify the ‘conscious things’ as ‘different’ from the assumed ‘real things’ ‘outside there’ it is common to speak of these brain-generated virtual things either as ‘qualia’ or — more often — as ‘phenomena’ which are different to the assumed possible real things somewhere ‘out there’.
PHILOSOPHY AS FIRST PERSON VIEW
‘Philosophy’ has many facets. One enters the scene if we are taking the insight into the general virtual character of our primary knowledge to be the primary and irreducible perspective of knowledge. Every other more special kind of knowledge is necessarily a subspace of this primary phenomenological knowledge.
There is already from the beginning a fundamental distinction possible in the realm of conscious phenomena (PH): there are phenomena which can be ‘generated’ by the consciousness ‘itself’ — mostly called ‘by will’ — and those which are occurring and disappearing without a direct influence of the consciousness, which are in a certain basic sense ‘given’ and ‘independent’, which are appearing and disappearing according to ‘their own’. It is common to call these independent phenomena ’empirical phenomena’ which represent a true subset of all phenomena: PH_emp ⊂ PH. Attention: These empirical phenomena’ are still ‘phenomena’, virtual entities generated by the brain inside the brain, not directly controllable ‘by will’.
There is a further basic distinction which differentiates the empirical phenomena into those PH_emp_bdy which are controlled by some processes in the body (being tired, being hungry, having pain, …) and those PH_emp_ext which are controlled by objects and events in the environment beyond the body (light, sounds, temperature, surfaces of objects, …). Both subsets of empirical phenomena are different: PH_emp_bdy ∩ PH_emp_ext = 0. Because phenomena usually are occurring associated with typical other phenomena there are ‘clusters’/ ‘pattern’ of phenomena which ‘represent’ possible events or states.
Modern empirical science has ‘refined’ the concept of an empirical phenomenon by introducing ‘standard objects’ which can be used to ‘compare’ some empirical phenomenon with such an empirical standard object. Thus even when the perception of two different observers possibly differs somehow with regard to a certain empirical phenomenon, the additional comparison with an ’empirical standard object’ which is the ‘same’ for both observers, enhances the quality, improves the precision of the perception of the empirical phenomena.
From these considerations we can derive the following informal definitions:
Something is ‘empirical‘ if it is the ‘real counterpart’ of a phenomenon which can be observed by other persons in my environment too.
Something is ‘standardized empirical‘ if it is empirical and can additionally be associated with a before introduced empirical standard object.
Something is ‘weak empirical‘ if it is the ‘real counterpart’ of a phenomenon which can potentially be observed by other persons in my body as causally correlated with the phenomenon.
Something is ‘cognitive‘ if it is the counterpart of a phenomenon which is not empirical in one of the meanings (1) – (3).
It is a common task within philosophy to analyze the space of the phenomena with regard to its structure as well as to its dynamics. Until today there exists not yet a complete accepted theory for this subject. This indicates that this seems to be some ‘hard’ task to do.
BRIDGING THE GAP BETWEEN BRAINS
As one can see in figure 1 a brain in a body is completely disconnected from the brain in another body. There is a real, deep ‘gap’ which has to be overcome if the two brains want to ‘coordinate’ their ‘planned actions’.
Luckily the emergence of homo sapiens with the new extended property of ‘consciousness’ was accompanied by another exciting property, the ability to ‘talk’. This ability enabled the creation of symbolic languages which can help two disconnected brains to have some exchange.
But ‘language’ does not consist of sounds or a ‘sequence of sounds’ only; the special power of a language is the further property that sequences of sounds can be associated with ‘something else’ which serves as the ‘meaning’ of these sounds. Thus we can use sounds to ‘talk about’ other things like objects, events, properties etc.
The single brain ‘knows’ about the relationship between some sounds and ‘something else’ because the brain is able to ‘generate relations’ between brain-structures for sounds and brain-structures for something else. These relations are some real connections in the brain. Therefore sounds can be related to ‘something else’ or certain objects, and events, objects etc. can become related to certain sounds. But these ‘meaning relations’ can only ‘bridge the gap’ to another brain if both brains are using the same ‘mapping’, the same ‘encoding’. This is only possible if the two brains with their bodies share a real world situation RW_S where the perceptions of the both brains are associated with the same parts of the real world between both bodies. If this is the case the perceptions P(RW_S) can become somehow ‘synchronized’ by the shared part of the real world which in turn is transformed in the brain structures P(RW_S) —> B_S which represent in the brain the stimulating aspects of the real world. These brain structures B_S can then be associated with some sound structures B_A written as a relation MEANING(B_S, B_A). Such a relation realizes an encoding which can be used for communication. Communication is using sound sequences exchanged between brains via the body and the air of an environment as ‘expressions’ which can be recognized as part of a learned encoding which enables the receiving brain to identify a possible meaning candidate.
DIFFERENT MODES TO EXPRESS MEANING
Following the evolution of communication one can distinguish four important modes of expressing meaning, which will be used in this AAI paradigm.
VISUAL ENCODING
A direct way to express the internal meaning structures of a brain is to use a ‘visual code’ which represents by some kinds of drawing the visual shapes of objects in the space, some attributes of shapes, which are common for all people who can ‘see’. Thus a picture and then a sequence of pictures like a comic or a story board can communicate simple ideas of situations, participating objects, persons and animals, showing changes in the arrangement of the shapes in the space.
Figure 2: Pictorial expressions representing aspects of the visual and the auditory sens modes
Even with a simple visual code one can generate many sequences of situations which all together can ‘tell a story’. The basic elements are a presupposed ‘space’ with possible ‘objects’ in this space with different positions, sizes, relations and properties. One can even enhance these visual shapes with written expressions of a spoken language. The sequence of the pictures represents additionally some ‘timely order’. ‘Changes’ can be encoded by ‘differences’ between consecutive pictures.
FROM SPOKEN TO WRITTEN LANGUAGE EXPRESSIONS
Later in the evolution of language, much later, the homo sapiens has learned to translate the spoken language L_s in a written format L_w using signs for parts of words or even whole words. The possible meaning of these written expressions were no longer directly ‘visible’. The meaning was now only available for those people who had learned how these written expressions are associated with intended meanings encoded in the head of all language participants. Thus only hearing or reading a language expression would tell the reader either ‘nothing’ or some ‘possible meanings’ or a ‘definite meaning’.
Figure 3: A written textual version in parallel to a pictorial version
If one has only the written expressions then one has to ‘know’ with which ‘meaning in the brain’ the expressions have to be associated. And what is very special with the written expressions compared to the pictorial expressions is the fact that the elements of the pictorial expressions are always very ‘concrete’ visual objects while the written expressions are ‘general’ expressions allowing many different concrete interpretations. Thus the expression ‘person’ can be used to be associated with many thousands different concrete objects; the same holds for the expression ‘road’, ‘moving’, ‘before’ and so on. Thus the written expressions are like ‘manufacturing instructions’ to search for possible meanings and configure these meanings to a ‘reasonable’ complex matter. And because written expressions are in general rather ‘abstract’/ ‘general’ which allow numerous possible concrete realizations they are very ‘economic’ because they use minimal expressions to built many complex meanings. Nevertheless the daily experience with spoken and written expressions shows that they are continuously candidates for false interpretations.
FORMAL MATHEMATICAL WRITTEN EXPRESSIONS
Besides the written expressions of everyday languages one can observe later in the history of written languages the steady development of a specialized version called ‘formal languages’ L_f with many different domains of application. Here I am focusing on the formal written languages which are used in mathematics as well as some pictorial elements to ‘visualize’ the intended ‘meaning’ of these formal mathematical expressions.
Fig. 4: Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)
One prominent concept in mathematics is the concept of a ‘graph’. In the basic version there are only some ‘nodes’ (also called vertices) and some ‘edges’ connecting the nodes. Formally one can represent these edges as ‘pairs of nodes’. If N represents the set of nodes then N x N represents the set of all pairs of these nodes.
In a more specialized version the edges are ‘directed’ (like a ‘one way road’) and also can be ‘looped back’ to a node occurring ‘earlier’ in the graph. If such back-looping arrows occur a graph is called a ‘cyclic graph’.
Fig.5: Directed cyclic graph extended to represent ‘states of affairs’
If one wants to use such a graph to describe some ‘states of affairs’ with their possible ‘changes’ one can ‘interpret’ a ‘node’ as a state of affairs and an arrow as a change which turns one state of affairs S in a new one S’ which is minimally different to the old one.
As a state of affairs I understand here a ‘situation’ embedded in some ‘context’ presupposing some common ‘space’. The possible ‘changes’ represented by arrows presuppose some dimension of ‘time’. Thus if a node n’ is following a node n indicated by an arrow then the state of affairs represented by the node n’ is to interpret as following the state of affairs represented in the node n with regard to the presupposed time T ‘later’, or n < n’ with ‘<‘ as a symbol for a timely ordering relation.
Fig.6: Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token
The space can be any kind of a space. If one assumes as an example a 2-dimensional space configured as a grid –as shown in figure 6 — with two tokens at certain positions one can introduce a language to describe the ‘facts’ which constitute the state of affairs. In this example one needs ‘names for objects’, ‘properties of objects’ as well as ‘relations between objects’. A possible finite set of facts for situation 1 could be the following:
TOKEN(T1), BLACK(T1), POSITION(T1,1,1)
TOKEN(T2), WHITE(T2), POSITION(T2,2,1)
NEIGHBOR(T1,T2)
CELL(C1), POSITION(1,2), FREE(C1)
‘T1’, ‘T2’, as well as ‘C1’ are names of objects, ‘TOKEN’, ‘BACK’ etc. are names of properties, and ‘NEIGHBOR’ is a relation between objects. This results in the equation:
These facts describe the situation S1. If it is important to describe possible objects ‘external to the situation’ as important factors which can cause some changes then one can describe these objects as a set of facts in a separated ‘context’. In this example this could be two players which can move the black and white tokens and thereby causing a change of the situation. What is the situation and what belongs to a context is somewhat arbitrary. If one describes the agriculture of some region one usually would not count the planets and the atmosphere as part of this region but one knows that e.g. the sun can severely influence the situation in combination with the atmosphere.
Fig.7: Change of a state of affairs given as a state which will be enhanced by a new object
Let us stay with a state of affairs with only a situation without a context. The state of affairs is a ‘state’. In the example shown in figure 6 I assume a ‘change’ caused by the insertion of a new black token at position (2,2). Written in the language of facts L_fact we get:
Thus the new state S2 is generated out of the old state S1 by unifying S1 with the set of new facts: S2 = S1 ∪ {TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)}. All the other facts of S1 are still ‘valid’. In a more general manner one can introduce a change-expression with the following format:
This can be read as follows: The follow-up state S2 is generated out of the state S1 by adding to the state S1 the set of facts { … }.
This layout of a change expression can also be used if some facts have to be modified or removed from a state. If for instance by some reason the white token should be removed from the situation one could write:
These simple examples demonstrate another fact: while facts about objects and their properties are independent from each other do relational facts depend from the state of their object facts. The relation of neighborhood e.g. depends from the participating neighbors. If — as in the example above — the object token T2 disappears then the relation ‘NEIGHBOR(T1,T2)’ no longer holds. This points to a hierarchy of dependencies with the ‘basic facts’ at the ‘root’ of a situation and all the other facts ‘above’ basic facts or ‘higher’ depending from the basic facts. Thus ‘higher order’ facts should be added only for the actual state and have to be ‘re-computed’ for every follow-up state anew.
If one would specify a context for state S1 saying that there are two players and one allows for each player actions like ‘move’, ‘insert’ or ‘delete’ then one could make the change from state S1 to state S2 more precise. Assuming the following facts for the context:
PLAYER(PB1), PLAYER(PW1), HAS-THE-TURN(PB1)
In that case one could enhance the change statement in the following way:
This would read as follows: given state S1 the player PB1 inserts a black token at position (2,2); this yields a new state S2.
With or without a specified context but with regard to a set of possible change statements it can be — which is the usual case — that there is more than one option what can be changed. Some of the main types of changes are the following ones:
RANDOM
NOT RANDOM, which can be specified as follows:
With PROBABILITIES (classical, quantum probability, …)
DETERMINISTIC
Furthermore, if the causing object is an actor which can adapt structurally or even learn locally then this actor can appear in some time period like a deterministic system, in different collected time periods as an ‘oscillating system’ with different behavior, or even as a random system with changing probabilities. This make the forecast of systems with adaptive and/ or learning systems rather difficult.
Another aspect results from the fact that there can be states either with one actor which can cause more than one action in parallel or a state with multiple actors which can act simultaneously. In both cases the resulting total change has eventually to be ‘filtered’ through some additional rules telling what is ‘possible’ in a state and what not. Thus if in the example of figure 6 both player want to insert a token at position (2,2) simultaneously then either the rules of the game would forbid such a simultaneous action or — like in a computer game — simultaneous actions are allowed but the ‘geometry of a 2-dimensional space’ would not allow that two different tokens are at the same position.
Another aspect of change is the dimension of time. If the time dimension is not explicitly specified then a change from some state S_i to a state S_j does only mark the follow up state S_j as later. There is no specific ‘metric’ of time. If instead a certain ‘clock’ is specified then all changes have to be aligned with this ‘overall clock’. Then one can specify at what ‘point of time t’ the change will begin and at what point of time t*’ the change will be ended. If there is more than one change specified then these different changes can have different timings.
THIRD PERSON VIEW
Up until now the point of view describing a state and the possible changes of states is done in the so-called 3rd-person view: what can a person perceive if it is part of a situation and is looking into the situation. It is explicitly assumed that such a person can perceive only the ‘surface’ of objects, including all kinds of actors. Thus if a driver of a car stears his car in a certain direction than the ‘observing person’ can see what happens, but can not ‘look into’ the driver ‘why’ he is steering in this way or ‘what he is planning next’.
A 3rd-person view is assumed to be the ‘normal mode of observation’ and it is the normal mode of empirical science.
Nevertheless there are situations where one wants to ‘understand’ a bit more ‘what is going on in a system’. Thus a biologist can be interested to understand what mechanisms ‘inside a plant’ are responsible for the growth of a plant or for some kinds of plant-disfunctions. There are similar cases for to understand the behavior of animals and men. For instance it is an interesting question what kinds of ‘processes’ are in an animal available to ‘navigate’ in the environment across distances. Even if the biologist can look ‘into the body’, even ‘into the brain’, the cells as such do not tell a sufficient story. One has to understand the ‘functions’ which are enabled by the billions of cells, these functions are complex relations associated with certain ‘structures’ and certain ‘signals’. For this it is necessary to construct an explicit formal (mathematical) model/ theory representing all the necessary signals and relations which can be used to ‘explain’ the obsrvable behavior and which ‘explains’ the behavior of the billions of cells enabling such a behavior.
In a simpler, ‘relaxed’ kind of modeling one would not take into account the properties and behavior of the ‘real cells’ but one would limit the scope to build a formal model which suffices to explain the oservable behavior.
This kind of approach to set up models of possible ‘internal’ (as such hidden) processes of an actor can extend the 3rd-person view substantially. These models are called in this text ‘actor models (AM)’.
HIDDEN WORLD PROCESSES
In this text all reported 3rd-person observations are called ‘actor story’, independent whether they are done in a pictorial or a textual mode.
As has been pointed out such actor stories are somewhat ‘limited’ in what they can describe.
It is possible to extend such an actor story (AS) by several actor models (AM).
An actor story defines the situations in which an actor can occur. This includes all kinds of stimuli which can trigger the possible senses of the actor as well as all kinds of actions an actor can apply to a situation.
The actor model of such an actor has to enable the actor to handle all these assumed stimuli as well as all these actions in the expected way.
While the actor story can be checked whether it is describing a process in an empirical ‘sound’ way, the actor models are either ‘purely theoretical’ but ‘behavioral sound’ or they are also empirically sound with regard to the body of a biological or a technological system.
A serious challenge is the occurrence of adaptiv or/ and locally learning systems. While the actor story is a finite description of possible states and changes, adaptiv or/ and locally learning systeme can change their behavior while ‘living’ in the actor story. These changes in the behavior can not completely be ‘foreseen’!
COGNITIVE EXPERT PROCESSES
According to the preceding considerations a homo sapiens as a biological system has besides many properties at least a consciousness and the ability to talk and by this to communicate with symbolic languages.
Looking to basic modes of an actor story (AS) one can infer some basic concepts inherently present in the communication.
Without having an explicit model of the internal processes in a homo sapiens system one can infer some basic properties from the communicative acts:
Speaker and hearer presuppose a space within which objects with properties can occur.
Changes can happen which presuppose some timely ordering.
There is a disctinction between concrete things and abstract concepts which correspond to many concrete things.
There is an implicit hierarchy of concepts starting with concrete objects at the ‘root level’ given as occurence in a concrete situation. Other concepts of ‘higher levels’ refer to concepts of lower levels.
There are different kinds of relations between objects on different conceptual levels.
The usage of language expressions presupposes structures which can be associated with the expressions as their ‘meanings’. The mapping between expressions and their meaning has to be learned by each actor separately, but in cooperation with all the other actors, with which the actor wants to share his meanings.
It is assume that all the processes which enable the generation of concepts, concept hierarchies, relations, meaning relations etc. are unconscious! In the consciousness one can use parts of the unconscious structures and processes under strictly limited conditions.
To ‘learn’ dedicated matters and to be ‘critical’ about the quality of what one is learnig requires some disciplin, some learning methods, and a ‘learning-friendly’ environment. There is no guaranteed method of success.
There are lots of unconscious processes which can influence understanding, learning, planning, decisions etc. and which until today are not yet sufficiently cleared up.
An overview to the enhanced AAI theory version 2 you can find here. In this post we talk about the fourth chapter dealing with the epistemology of actors within an AAI analysis process.
EPISTEMOLOGY AND THE EMPIRICAL SCIENCES
Epistemology is a sub-discipline of general philosophy. While a special discipline in empirical science is defined by a certain sub-set of the real world RW by empirical measurement methods generating empirical data which can be interpreted by a formalized theory, philosophy is not restricted to a sub-field of the real world. This is important because an empirical discipline has no methods to define itself. Chemistry e.g. can define by which kinds of measurement it is gaining empirical data and it can offer different kinds of formal theories to interpret these data including inferences to forecast certain reactions given certain configurations of matters, but chemistry is not able to explain the way how a chemist is thinking, how the language works which a chemist is using etc. Thus empirical science presupposes a general framework of bodies, sensors, brains, languages etc. to be able to do a very specialized — but as such highly important — job. One can define ‘philosophy’ then as that kind of activity which tries to clarify all these conditions which are necessary to do science as well as how cognition works in the general case.
Given this one can imagine that philosophy is in principle a nearly ‘infinite’ task. To get not lost in this conceptual infinity it is recommended to start with concrete processes of communications which are oriented to generate those kinds of texts which can be shown as ‘related to parts of the empirical world’ in a decidable way. This kind of texts is here called ’empirically sound’ or ’empirically true’. It is to suppose that there will be texts for which it seems to be clear that they are empirically sound, others will appear ‘fuzzy’ for such a criterion, others even will appear without any direct relation to empirical soundness.
In empirical sciences one is using so-called empirical measurement procedures as benchmarks to decided whether one has empirical data or not, and it is commonly assumed that every ‘normal observer’ can use these data as every other ‘normal observer’. But because individual, single data have nearly no meaning on their own one needs relations, sets of relations (models) and even more complete theories, to integrate the data in a context, which allows some interpretation and some inferences for forecasting. But these relations, models, or theories can not directly be inferred from the real world. They have to be created by the observers as ‘working hypotheses’ which can fit with the data or not. And these constructions are grounded in highly complex cognitive processes which follow their own built-in rules and which are mostly not conscious. ‘Cognitive processes’ in biological systems, especially in human person, are completely generated by a brain and constitute therefore a ‘virtual world’ on their own. This cognitive virtual world is not the result of a 1-to-1 mapping from the real world into the brain states. This becomes important in that moment where the brain is mapping this virtual cognitive world into some symbolic language L. While the symbols of a language (sounds or written signs or …) as such have no meaning the brain enables a ‘coding’, a ‘mapping’ from symbolic expressions into different states of the brain. In the light’ of such encodings the symbolic expressions have some meaning. Besides the fact that different observers can have different encodings it is always an open question whether the encoded meaning of the virtual cognitive space has something to do with some part of the empirical reality. Empirical data generated by empirical measurement procedures can help to coordinate the virtual cognitive states of different observers with each other, but this coordination is not an automatic process. Empirically sound language expressions are difficult to get and therefore of a high value for the survival of mankind. To generate empirically sound formal theories is even more demanding and until today there exists no commonly accepted concept of the right format of an empirically sound theory. In an era which calls itself ‘scientific’ this is a very strange fact.
EPISTEMOLOGY OF THE AAI-EXPERTS
Applying these general considerations to the AAI experts trying to construct an actor story to describe at least one possible path from a start state to a goal state, one can pick up the different languages the AAI experts are using and asking back under which conditions these languages have some ‘meaning’ and under which conditions these meanings can be called ’empirically sound’?
In this book three different ‘modes’ of an actor story will be distinguished:
A textual mode using some ordinary everyday language, thus using spoken language (stored in an audio file) or written language as a text.
A pictorial mode using a ‘language of pictures’, possibly enhanced by fragments of texts.
A mathematical mode using graphical presentations of ‘graphs’ enhanced by symbolic expressions (text) and symbolic expressions only.
For every mode it has to be shown how an AAI expert can generate an actor story out of the virtual cognitive world of his brain and how it is possible to decided the empirical soundness of the actor story.
Integrating Engineering and the Human Factor (info@uffmm.org) eJournal uffmm.org ISSN 2567-6458