AAI THEORY V2 –A Philosophical Framework

eJournal: uffmm.org,
ISSN 2567-6458, 22.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: 23.February 2019 (continued the text)

Last change: 24.February 2019 (extended the text)

CONTEXT

In the overview of the AAI paradigm version 2 you can find this section  dealing with the philosophical perspective of the AAI paradigm. Enjoy reading (or not, then send a comment :-)).

THE DAILY LIFE PERSPECTIVE

The perspective of Philosophy is rooted in the everyday life perspective. With our body we occur in a space with other bodies and objects; different features, properties  are associated with the objects, different kinds of relations an changes from one state to another.

From the empirical sciences we have learned to see more details of the everyday life with regard to detailed structures of matter and biological life, with regard to the long history of the actual world, with regard to many interesting dynamics within the objects, within biological systems, as part of earth, the solar system and much more.

A certain aspect of the empirical view of the world is the fact, that some biological systems called ‘homo sapiens’, which emerged only some 300.000 years ago in Africa, show a special property usually called ‘consciousness’ combined with the ability to ‘communicate by symbolic languages’.

General setting of the homo sapiens species (simplified)
Figure 1: General setting of the homo sapiens species (simplified)

As we know today the consciousness is associated with the brain, which in turn is embedded in the body, which  is further embedded in an environment.

Thus those ‘things’ about which we are ‘conscious’ are not ‘directly’ the objects and events of the surrounding real world but the ‘constructions of the brain’ based on actual external and internal sensor inputs as well as already collected ‘knowledge’. To qualify the ‘conscious things’ as ‘different’ from the assumed ‘real things’ ‘outside there’ it is common to speak of these brain-generated virtual things either as ‘qualia’ or — more often — as ‘phenomena’ which are  different to the assumed possible real things somewhere ‘out there’.

PHILOSOPHY AS FIRST PERSON VIEW

‘Philosophy’ has many facets.  One enters the scene if we are taking the insight into the general virtual character of our primary knowledge to be the primary and irreducible perspective of knowledge.  Every other more special kind of knowledge is necessarily a subspace of this primary phenomenological knowledge.

There is already from the beginning a fundamental distinction possible in the realm of conscious phenomena (PH): there are phenomena which can be ‘generated’ by the consciousness ‘itself’  — mostly called ‘by will’ — and those which are occurring and disappearing without a direct influence of the consciousness, which are in a certain basic sense ‘given’ and ‘independent’,  which are appearing  and disappearing according to ‘their own’. It is common to call these independent phenomena ’empirical phenomena’ which represent a true subset of all phenomena: PH_emp  PH. Attention: These empirical phenomena’ are still ‘phenomena’, virtual entities generated by the brain inside the brain, not directly controllable ‘by will’.

There is a further basic distinction which differentiates the empirical phenomena into those PH_emp_bdy which are controlled by some processes in the body (being tired, being hungry, having pain, …) and those PH_emp_ext which are controlled by objects and events in the environment beyond the body (light, sounds, temperature, surfaces of objects, …). Both subsets of empirical phenomena are different: PH_emp_bdy PH_emp_ext = 0. Because phenomena usually are occurring  associated with typical other phenomena there are ‘clusters’/ ‘pattern’ of phenomena which ‘represent’ possible events or states.

Modern empirical science has ‘refined’ the concept of an empirical phenomenon by introducing  ‘standard objects’ which can be used to ‘compare’ some empirical phenomenon with such an empirical standard object. Thus even when the perception of two different observers possibly differs somehow with regard to a certain empirical phenomenon, the additional comparison with an ’empirical standard object’ which is the ‘same’ for both observers, enhances the quality, improves the precision of the perception of the empirical phenomena.

From these considerations we can derive the following informal definitions:

  1. Something is ‘empirical‘ if it is the ‘real counterpart’ of a phenomenon which can be observed by other persons in my environment too.
  2. Something is ‘standardized empirical‘ if it is empirical and can additionally be associated with a before introduced empirical standard object.
  3. Something is ‘weak empirical‘ if it is the ‘real counterpart’ of a phenomenon which can potentially be observed by other persons in my body as causally correlated with the phenomenon.
  4. Something is ‘cognitive‘ if it is the counterpart of a phenomenon which is not empirical in one of the meanings (1) – (3).

It is a common task within philosophy to analyze the space of the phenomena with regard to its structure as well as to its dynamics.  Until today there exists not yet a complete accepted theory for this subject. This indicates that this seems to be some ‘hard’ task to do.

BRIDGING THE GAP BETWEEN BRAINS

As one can see in figure 1 a brain in a body is completely disconnected from the brain in another body. There is a real, deep ‘gap’ which has to be overcome if the two brains want to ‘coordinate’ their ‘planned actions’.

Luckily the emergence of homo sapiens with the new extended property of ‘consciousness’ was accompanied by another exciting property, the ability to ‘talk’. This ability enabled the creation of symbolic languages which can help two disconnected brains to have some exchange.

But ‘language’ does not consist of sounds or a ‘sequence of sounds’ only; the special power of a language is the further property that sequences of sounds can be associated with ‘something else’ which serves as the ‘meaning’ of these sounds. Thus we can use sounds to ‘talk about’ other things like objects, events, properties etc.

The single brain ‘knows’ about the relationship between some sounds and ‘something else’ because the brain is able to ‘generate relations’ between brain-structures for sounds and brain-structures for something else. These relations are some real connections in the brain. Therefore sounds can be related to ‘something  else’ or certain objects, and events, objects etc.  can become related to certain sounds. But these ‘meaning relations’ can only ‘bridge the gap’ to another brain if both brains are using the same ‘mapping’, the same ‘encoding’. This is only possible if the two brains with their bodies share a real world situation RW_S where the perceptions of the both brains are associated with the same parts of the real world between both bodies. If this is the case the perceptions P(RW_S) can become somehow ‘synchronized’ by the shared part of the real world which in turn is transformed in the brain structures P(RW_S) —> B_S which represent in the brain the stimulating aspects of the real world.  These brain structures B_S can then be associated with some sound structures B_A written as a relation  MEANING(B_S, B_A). Such a relation  realizes an encoding which can be used for communication. Communication is using sound sequences exchanged between brains via the body and the air of an environment as ‘expressions’ which can be recognized as part of a learned encoding which enables the receiving brain to identify a possible meaning candidate.

DIFFERENT MODES TO EXPRESS MEANING

Following the evolution of communication one can distinguish four important modes of expressing meaning, which will be used in this AAI paradigm.

VISUAL ENCODING

A direct way to express the internal meaning structures of a brain is to use a ‘visual code’ which represents by some kinds of drawing the visual shapes of objects in the space, some attributes of  shapes, which are common for all people who can ‘see’. Thus a picture and then a sequence of pictures like a comic or a story board can communicate simple ideas of situations, participating objects, persons and animals, showing changes in the arrangement of the shapes in the space.

Pictorial expressions representing aspects of the visual and the auditory sens modes
Figure 2: Pictorial expressions representing aspects of the visual and the auditory sens modes

Even with a simple visual code one can generate many sequences of situations which all together can ‘tell a story’. The basic elements are a presupposed ‘space’ with possible ‘objects’ in this space with different positions, sizes, relations and properties. One can even enhance these visual shapes with written expressions of  a spoken language. The sequence of the pictures represents additionally some ‘timely order’. ‘Changes’ can be encoded by ‘differences’ between consecutive pictures.

FROM SPOKEN TO WRITTEN LANGUAGE EXPRESSIONS

Later in the evolution of language, much later, the homo sapiens has learned to translate the spoken language L_s in a written format L_w using signs for parts of words or even whole words.  The possible meaning of these written expressions were no longer directly ‘visible’. The meaning was now only available for those people who had learned how these written expressions are associated with intended meanings encoded in the head of all language participants. Thus only hearing or reading a language expression would tell the reader either ‘nothing’ or some ‘possible meanings’ or a ‘definite meaning’.

A written textual version in parallel to a pictorial version
Figure 3: A written textual version in parallel to a pictorial version

If one has only the written expressions then one has to ‘know’ with which ‘meaning in the brain’ the expressions have to be associated. And what is very special with the written expressions compared to the pictorial expressions is the fact that the elements of the pictorial expressions are always very ‘concrete’ visual objects while the written expressions are ‘general’ expressions allowing many different concrete interpretations. Thus the expression ‘person’ can be used to be associated with many thousands different concrete objects; the same holds for the expression ‘road’, ‘moving’, ‘before’ and so on. Thus the written expressions are like ‘manufacturing instructions’ to search for possible meanings and configure these meanings to a ‘reasonable’ complex matter. And because written expressions are in general rather ‘abstract’/ ‘general’ which allow numerous possible concrete realizations they are very ‘economic’ because they use minimal expressions to built many complex meanings. Nevertheless the daily experience with spoken and written expressions shows that they are continuously candidates for false interpretations.

FORMAL MATHEMATICAL WRITTEN EXPRESSIONS

Besides the written expressions of everyday languages one can observe later in the history of written languages the steady development of a specialized version called ‘formal languages’ L_f with many different domains of application. Here I am  focusing   on the formal written languages which are used in mathematics as well as some pictorial elements to ‘visualize’  the intended ‘meaning’ of these formal mathematical expressions.

Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)
Fig. 4: Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)

One prominent concept in mathematics is the concept of a ‘graph’. In  the basic version there are only some ‘nodes’ (also called vertices) and some ‘edges’ connecting the nodes.  Formally one can represent these edges as ‘pairs of nodes’. If N represents the set of nodes then N x N represents the set of all pairs of these nodes.

In a more specialized version the edges are ‘directed’ (like a ‘one way road’) and also can be ‘looped back’ to a node   occurring ‘earlier’ in the graph. If such back-looping arrows occur a graph is called a ‘cyclic graph’.

Directed cyclic graph extended to represent 'states of affairs'
Fig.5: Directed cyclic graph extended to represent ‘states of affairs’

If one wants to use such a graph to describe some ‘states of affairs’ with their possible ‘changes’ one can ‘interpret’ a ‘node’ as  a state of affairs and an arrow as a change which turns one state of affairs S in a new one S’ which is minimally different to the old one.

As a state of affairs I  understand here a ‘situation’ embedded in some ‘context’ presupposing some common ‘space’. The possible ‘changes’ represented by arrows presuppose some dimension of ‘time’. Thus if a node n’  is following a node n indicated by an arrow then the state of affairs represented by the node n’ is to interpret as following the state of affairs represented in the node n with regard to the presupposed time T ‘later’, or n < n’ with ‘<‘ as a symbol for a timely ordering relation.

Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token
Fig.6: Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token

The space can be any kind of a space. If one assumes as an example a 2-dimensional space configured as a grid –as shown in figure 6 — with two tokens at certain positions one can introduce a language to describe the ‘facts’ which constitute the state of affairs. In this example one needs ‘names for objects’, ‘properties of objects’ as well as ‘relations between objects’. A possible finite set of facts for situation 1 could be the following:

  1. TOKEN(T1), BLACK(T1), POSITION(T1,1,1)
  2. TOKEN(T2), WHITE(T2), POSITION(T2,2,1)
  3. NEIGHBOR(T1,T2)
  4. CELL(C1), POSITION(1,2), FREE(C1)

‘T1’, ‘T2’, as well as ‘C1’ are names of objects, ‘TOKEN’, ‘BACK’ etc. are names of properties, and ‘NEIGHBOR’ is a relation between objects. This results in the equation:

S1 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), TOKEN(T2), WHITE(T2), POSITION(T2,2,1), NEIGHBOR(T1,T2), CELL(C1), POSITION(1,2), FREE(C1)}

These facts describe the situation S1. If it is important to describe possible objects ‘external to the situation’ as important factors which can cause some changes then one can describe these objects as a set of facts  in a separated ‘context’. In this example this could be two players which can move the black and white tokens and thereby causing a change of the situation. What is the situation and what belongs to a context is somewhat arbitrary. If one describes the agriculture of some region one usually would not count the planets and the atmosphere as part of this region but one knows that e.g. the sun can severely influence the situation   in combination with the atmosphere.

Change of a state of affairs given as a state which will be enhanced by a new object
Fig.7: Change of a state of affairs given as a state which will be enhanced by a new object

Let us stay with a state of affairs with only a situation without a context. The state of affairs is     a ‘state’. In the example shown in figure 6 I assume a ‘change’ caused by the insertion of a new black token at position (2,2). Written in the language of facts L_fact we get:

  1. TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)

Thus the new state S2 is generated out of the old state S1 by unifying S1 with the set of new facts: S2 = S1 {TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)}. All the other facts of S1 are still ‘valid’. In a more general manner one can introduce a change-expression with the following format:

<S1, S2, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)})>

This can be read as follows: The follow-up state S2 is generated out of the state S1 by adding to the state S1 the set of facts { … }.

This layout of a change expression can also be used if some facts have to be modified or removed from a state. If for instance  by some reason the white token should be removed from the situation one could write:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)})>

Another notation for this is S2 = S1 – {TOKEN(T2), WHITE(T2), POSITION(2,1)}.

The resulting state S2 would then look like:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1)}

And a combination of subtraction of facts and addition of facts would read as follows:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)}, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would result in the final state S2:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1),TOKEN(T3), BLACK(T3), POSITION(2,2)}

These simple examples demonstrate another fact: while facts about objects and their properties are independent from each other do relational facts depend from the state of their object facts. The relation of neighborhood e.g. depends from the participating neighbors. If — as in the example above — the object token T2 disappears then the relation ‘NEIGHBOR(T1,T2)’ no longer holds. This points to a hierarchy of dependencies with the ‘basic facts’ at the ‘root’ of a situation and all the other facts ‘above’ basic facts or ‘higher’ depending from the basic facts. Thus ‘higher order’ facts should be added only for the actual state and have to be ‘re-computed’ for every follow-up state anew.

If one would specify a context for state S1 saying that there are two players and one allows for each player actions like ‘move’, ‘insert’ or ‘delete’ then one could make the change from state S1 to state S2 more precise. Assuming the following facts for the context:

  1. PLAYER(PB1), PLAYER(PW1), HAS-THE-TURN(PB1)

In that case one could enhance the change statement in the following way:

<S1, S2, PB1,insert(TOKEN(T3,2,2)),add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would read as follows: given state S1 the player PB1 inserts a  black token at position (2,2); this yields a new state S2.

With or without a specified context but with regard to a set of possible change statements it can be — which is the usual case — that there is more than one option what can be changed. Some of the main types of changes are the following ones:

  1. RANDOM
  2. NOT RANDOM, which can be specified as follows:
    1. With PROBABILITIES (classical, quantum probability, …)
    2. DETERMINISTIC

Furthermore, if the causing object is an actor which can adapt structurally or even learn locally then this actor can appear in some time period like a deterministic system, in different collected time periods as an ‘oscillating system’ with different behavior, or even as a random system with changing probabilities. This make the forecast of systems with adaptive and/ or learning systems rather difficult.

Another aspect results from the fact that there can be states either with one actor which can cause more than one action in parallel or a state with multiple actors which can act simultaneously. In both cases the resulting total change has eventually to be ‘filtered’ through some additional rules telling what  is ‘possible’ in a state and what not. Thus if in the example of figure 6 both player want to insert a token at position (2,2) simultaneously then either  the rules of the game would forbid such a simultaneous action or — like in a computer game — simultaneous actions are allowed but the ‘geometry of a 2-dimensional space’ would not allow that two different tokens are at the same position.

Another aspect of change is the dimension of time. If the time dimension is not explicitly specified then a change from some state S_i to a state S_j does only mark the follow up state S_j as later. There is no specific ‘metric’ of time. If instead a certain ‘clock’ is specified then all changes have to be aligned with this ‘overall clock’. Then one can specify at what ‘point of time t’ the change will begin and at what point of time t*’ the change will be ended. If there is more than one change specified then these different changes can have different timings.

THIRD PERSON VIEW

Up until now the point of view describing a state and the possible changes of states is done in the so-called 3rd-person view: what can a person perceive if it is part of a situation and is looking into the situation.  It is explicitly assumed that such a person can perceive only the ‘surface’ of objects, including all kinds of actors. Thus if a driver of a car stears his car in a certain direction than the ‘observing person’ can see what happens, but can not ‘look into’ the driver ‘why’ he is steering in this way or ‘what he is planning next’.

A 3rd-person view is assumed to be the ‘normal mode of observation’ and it is the normal mode of empirical science.

Nevertheless there are situations where one wants to ‘understand’ a bit more ‘what is going on in a system’. Thus a biologist can be  interested to understand what mechanisms ‘inside a plant’ are responsible for the growth of a plant or for some kinds of plant-disfunctions. There are similar cases for to understand the behavior of animals and men. For instance it is an interesting question what kinds of ‘processes’ are in an animal available to ‘navigate’ in the environment across distances. Even if the biologist can look ‘into the body’, even ‘into the brain’, the cells as such do not tell a sufficient story. One has to understand the ‘functions’ which are enabled by the billions of cells, these functions are complex relations associated with certain ‘structures’ and certain ‘signals’. For this it is necessary to construct an explicit formal (mathematical) model/ theory representing all the necessary signals and relations which can be used to ‘explain’ the obsrvable behavior and which ‘explains’ the behavior of the billions of cells enabling such a behavior.

In a simpler, ‘relaxed’ kind of modeling  one would not take into account the properties and behavior of the ‘real cells’ but one would limit the scope to build a formal model which suffices to explain the oservable behavior.

This kind of approach to set up models of possible ‘internal’ (as such hidden) processes of an actor can extend the 3rd-person view substantially. These models are called in this text ‘actor models (AM)’.

HIDDEN WORLD PROCESSES

In this text all reported 3rd-person observations are called ‘actor story’, independent whether they are done in a pictorial or a textual mode.

As has been pointed out such actor stories are somewhat ‘limited’ in what they can describe.

It is possible to extend such an actor story (AS)  by several actor models (AM).

An actor story defines the situations in which an actor can occur. This  includes all kinds of stimuli which can trigger the possible senses of the actor as well as all kinds of actions an actor can apply to a situation.

The actor model of such an actor has to enable the actor to handle all these assumed stimuli as well as all these actions in the expected way.

While the actor story can be checked whether it is describing a process in an empirical ‘sound’ way,  the actor models are either ‘purely theoretical’ but ‘behavioral sound’ or they are also empirically sound with regard to the body of a biological or a technological system.

A serious challenge is the occurrence of adaptiv or/ and locally learning systems. While the actor story is a finite  description of possible states and changes, adaptiv or/ and locally learning systeme can change their behavior while ‘living’ in the actor story. These changes in the behavior can not completely be ‘foreseen’!

COGNITIVE EXPERT PROCESSES

According to the preceding considerations a homo sapiens as a biological system has besides many properties at least a consciousness and the ability to talk and by this to communicate with symbolic languages.

Looking to basic modes of an actor story (AS) one can infer some basic concepts inherently present in the communication.

Without having an explicit model of the internal processes in a homo sapiens system one can infer some basic properties from the communicative acts:

  1. Speaker and hearer presuppose a space within which objects with properties can occur.
  2. Changes can happen which presuppose some timely ordering.
  3. There is a disctinction between concrete things and abstract concepts which correspond to many concrete things.
  4. There is an implicit hierarchy of concepts starting with concrete objects at the ‘root level’ given as occurence in a concrete situation. Other concepts of ‘higher levels’ refer to concepts of lower levels.
  5. There are different kinds of relations between objects on different conceptual levels.
  6. The usage of language expressions presupposes structures which can be associated with the expressions as their ‘meanings’. The mapping between expressions and their meaning has to be learned by each actor separately, but in cooperation with all the other actors, with which the actor wants to share his meanings.
  7. It is assume that all the processes which enable the generation of concepts, concept hierarchies, relations, meaning relations etc. are unconscious! In the consciousness one can  use parts of the unconscious structures and processes under strictly limited conditions.
  8. To ‘learn’ dedicated matters and to be ‘critical’ about the quality of what one is learnig requires some disciplin, some learning methods, and a ‘learning-friendly’ environment. There is no guaranteed method of success.
  9. There are lots of unconscious processes which can influence understanding, learning, planning, decisions etc. and which until today are not yet sufficiently cleared up.

 

 

 

 

 

 

 

 

ACTOR-ACTOR INTERACTION ANALYSIS – A rough Outline of the Blueprint

eJournal: uffmm.org,
ISSN 2567-6458, 13.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last corrections: 14.February 2019 (add some more keywords; added  emphasizes for central words)

Change: 5.May 2019 (adding the the aspect of simulation and gaming; extending the view of the driving actors)

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about the blueprint  of the whole  AAI analysis process. Here I leave out the topic of actor models (AM); the aspect of  simulation and gaming is mentioned only shortly. For these topics see other posts.

THE AAI ANALYSIS BLUEPRINT

Blueprint of the whole AAI analysis process including the epistemological assumptions. Not shown here is the whole topic of actor models (AM) and as well simulation.
Blueprint of the whole AAI analysis process including the epistemological assumptions. Not shown here is the whole topic of actor models (AM) and as well simulation.

The Actor-Actor Interaction (AAI) analysis is understood here as part of an  embracing  systems engineering process (SEP), which starts with the statement of a problem (P) which includes a vision (V) of an improved alternative situation. It has then to be analyzed how such a new improved situation S+ looks like; how one can realize certain tasks (T)  in an improved way.

DRIVING ACTORS

The driving actors for such an AAI analysis are at least one  stakeholder (STH) which communicates a problem P and an envisioned solution (ES) to an  expert (EXPaai) with a sufficient AAI experience. This expert will take   the lead in the process of transforming the problem and the envisioned  solution into a working solution (WS).

In the classical industrial case the stakeholder can be a group of managers from some company and the expert is also represented by a whole team of experts from different disciplines, including the AAI perspective as leading perspective.

In another case which  I will call here the  communal case — e.g. a whole city —      the stakeholder as well as the experts are members of the communal entity.   As   in the before mentioned cases there is some commonly accepted problem P combined  with a first envisioned solution ES, which shall be analyzed: what is needed to make it working? Can it work at all? What are costs? And many other questions can arise. The challenge to include all relevant experience and knowledge from all participants is at the center of the communication and to transform this available knowledge into some working solution which satisfies all stated requirements for all participants is a central  condition for the success of the project.

EPISTEMOLOGY

It has to be taken into account that the driving actors are able to do this job because they  have in their bodies brains (BRs) which in turn include  some consciousness (CNS). The processes and states beyond the consciousness are here called ‘unconscious‘ and the set of all these unconscious processes is called ‘the Unconsciousness’ (UCNS).

For more details to the cognitive processes see the post to the philosophical framework as well as the post bottom-up process. Both posts shall be integrated into one coherent view in the future.

SEMIOTIC SUBSYSTEM

An important set of substructures of the unconsciousness are those which enable symbolic language systems with so-called expressions (L) on one side and so-called non-expressions (~L) on the other. Embedded in a meaning relation (MNR) does the set of non-expressions ~L  function as the meaning (MEAN) of the expressions L, written as a mapping MNR: L <—> ~L. Depending from the involved sensors the expressions L can occur either as acoustic events L_spk, or as visual patterns written L_txt or visual patterns as pictures L_pict or even in other formats, which will not discussed here. The non-expressions can occur in every format which the brain can handle.

While written (symbolic) expressions L are only associated with the intended meaning through encoded mappings in the brain,  the spoken expressions L_spk as well as the pictorial ones L_pict can show some similarities with the intended meaning. Within acoustic  expressions one can ‘imitate‘ some sounds which are part of a meaning; even more can the pictorial expressions ‘imitate‘ the visual experience of the intended meaning to a high degree, but clearly not every kind of meaning.

DEFINING THE MAIN POINT OF REFERENCE

Because the space of possible problems and visions it nearly infinite large one has to define for a certain process the problem of the actual process together with the vision of a ‘better state of the affairs’. This is realized by a description of he problem in a problem document D_p as well as in a vision statement D_v. Because usually a vision is not without a given context one has to add all the constraints (C) which have to be taken into account for the possible solution.  Examples of constraints are ‘non-functional requirements’ (NFRs) like “safety” or “real time” or “without barriers” (for handicapped people). Part of the non-functional requirements are also definitions of win-lose states as part of a game.

AAI ANALYSIS – BASIC PROCEDURE

If the AAI check has been successful and there is at least one task T to be done in an assumed environment ENV and there are at least one executing actor A_exec in this task as well as an assisting actor A_ass then the AAI analysis can start.

ACTOR STORY (AS)

The main task is to elaborate a complete description of a process which includes a start state S* and a goal state S+, where  the participating executive actors A_exec can reach the goal state S+ by doing some actions. While the imagined process p_v  is a virtual (= cognitive/ mental) model of an intended real process p_e, this intended virtual model p_e can only be communicated by a symbolic expressions L embedded in a meaning relation. Thus the elaboration/ construction of the intended process will be realized by using appropriate expressions L embedded in a meaning relation. This can be understood as a basic mapping of sensor based perceptions of the supposed real world into some abstract virtual structures automatically (unconsciously) computed by the brain. A special kind of this mapping is the case of measurement.

In this text especially three types of symbolic expressions L will be used: (i) pictorial expressions L_pict, (ii) textual expressions of a natural language L_txt, and (iii) textual expressions of a mathematical language L_math. The meaning part of these symbolic expressions as well as the expressions itself will be called here an actor story (AS) with the different modes  pictorial AS (PAS), textual AS (TAS), as well as mathematical AS (MAS).

The basic elements of an  actor story (AS) are states which represent sets of facts. A fact is an expression of some defined language L which can be decided as being true in a real situation or not (the past and the future are special cases for such truth clarifications). Facts can be identified as actors which can act by their own. The transformation from one state to a follow up state has to be described with sets of change rules. The combination of states and change rules defines mathematically a directed graph (G).

Based on such a graph it is possible to derive an automaton (A) which can be used as a simulator. A simulator allows simulations. A concrete simulation takes a start state S0 as the actual state S* and computes with the aid of the change rules one follow up state S1. This follow up state becomes then the new actual state S*. Thus the simulation constitutes a continuous process which generally can be infinite. To make the simulation finite one has to define some stop criteria (C*). A simulation can be passive without any interruption or interactive. The interactive mode allows different external actors to select certain real values for the available variables of the actual state.

If in the problem definition certain win-lose states have been defined then one can turn an interactive simulation into a game where the external actors can try to manipulate the process in a way as to reach one of the defined win-states. As soon as someone (which can be a team) has reached a win-state the responsible actor (or team) has won. Such games can be repeated to allow accumulation of wins (or loses).

Gaming allows a far better experience of the advantages or disadvantages of some actor story as a rather lose simulation. Therefore the probability to detect aspects of an actor story with their given constraints is by gaming quite high and increases the probability to improve the whole concept.

Based on an actor story with a simulator it is possible to increase the cognitive power of exploring the future even more.  There exists the possibility to define an oracle algorithm as well as different kinds of intelligent algorithms to support the human actor further. This has to be described in other posts.

TAR AND AAR

If the actor story is completed (in a certain version v_i) then one can extract from the story the input-output profiles of every participating actor. This list represents the task-induced actor requirements (TAR).  If one is looking for concrete real persons for doing the job of an executing actor the TAR can be used as a benchmark for assessing candidates for this job. The profiles of the real persons are called here actor-actor induced requirements (AAR), that is the real profile compared with the ideal profile of the TAR. If the ‘distance’ between AAR and TAR is below some threshold then the candidate has either to be rejected or one can offer some training to improve his AAR; the other option is to  change the conditions of the TAR in a way that the TAR is more closer to the AARs.

The TAR is valid for the executive actors as well as for the assisting actors A_ass.

CONSTRAINTS CHECK

If the actor story has in some version V_i a certain completion one has to check whether the different constraints which accompany the vision document are satisfied through the story: AS_vi |- C.

Such an evaluation is only possible if the constraints can be interpreted with regard to the actor story AS in version vi in a way, that the constraints can be decided.

For many constraints it can happen that the constraints can not or not completely be decided on the level of the actor story but only in a later phase of the systems engineering process, when the actor story will be implemented in software and hardware.

MEASURING OF USABILITY

Using the actor story as a benchmark one can test the quality of the usability of the whole process by doing usability tests.

 

 

 

 

 

 

 

 

 

 

 

AAI THEORY V2 – Actor Story (AS)

eJournal: uffmm.org,
ISSN 2567-6458, 28.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

— Outdated —

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about  the generation of the actor story (AS).

ACTOR STORY

To get from the problem P to an improved configuration S measured by some expectation  E needs a process characterized by a set of necessary states Q which are connected by necessary changes X. Such a process can be described with the aid of  an actor story AS.

  1. The target of an actor story (AS) is a full specification of all identified necessary tasks T which lead from a start state q* to a goal state q+, including all possible and necessary changes X between the different states M.
  2. A state is here considered as a finite set of facts (F) which are structured as an expression from some language L distinguishing names of objects (like  ‘D1’, ‘Un1’, …) as well as properties of objects (like ‘being open’, ‘being green’, …) or relations between objects (like ‘the user stands before the door’). There can also e a ‘negation’ like ‘the door is not open’. Thus a collection of facts like ‘There is a door D1’ and ‘The door D1 is open’ can represent a state.
  3. Changes from one state q to another successor state q’ are described by the object whose action deletes previous facts or creates new facts.
  4. In this approach at least three different modes of an actor story will be distinguished:
    1. A textual mode generating a Textual Actor Story (TAS): In a textual mode a text in some everyday language (e.g. in English) describes the states and changes in plain English. Because in the case of a written text the meaning of the symbols is hidden in the heads of the writers it can be of help to parallelize the written text with the pictorial mode.
    2. A pictorial mode generating a Pictorial Actor Story (PAS). In a pictorial mode the drawings represent the main objects with their properties and relations in an explicit visual way (like a Comic Strip). The drawings can be enhanced by fragments of texts.
    3. A mathematical mode generating a Mathematical Actor Story (MAS): this can be done either (i) by  a pictorial graph with nodes and edges as arrows associated with formal expressions or (ii)  by a complete formal structure without any pictorial elements.
    4. For every mode it has to be shown how an AAI expert can generate an actor story out of the virtual cognitive world of his brain and how it is possible to decide the empirical soundness of the actor story.

 

AAI THEORY V2 – DEFINING THE CONTEXT

eJournal: uffmm.org,
ISSN 2567-6458, 24.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about the second chapter where you have to define the context of the problem, which should be analyzed.

DEFINING THE CONTEXT OF PROBLEM P

  1. A defined problem P identifies at least one property associated with  a configuration which has a lower level x than a value y inferred by an accepted standard E.
  2. The property P is always part of some environment ENV which interacts with the problem P.
  3. To approach an improved configuration S measured by  some standard E starting with a  problem P one  needs a process characterized by a set of necessary states Q which are connected by necessary changes X.
  4. Such a process can be described by an actor story AS.
  5. All properties which belong to the whole actor story and therefore have to be satisfied by every state q of the actor story  are called  non-functional process requirements (NFPRs). If required properties are are associate with only one state but for the whole state, then these requirements are called non-functional state requirements (NFSRs).
  6. An actor story can include many different sequences, where every sequence is called a path PTH.  A finite set of paths can represent a task T which has to be fulfilled. Within the environment of the defined problem P it mus be possible to identify at least one task T to be realized from some start state to some goal state. The realization of a task T is assumed to be ‘driven’ by input-output-systems which are called actors A.
  7. Additionally it mus be possible to identify at least one executing actor A_exec doing a  task and at least one actor assisting A_ass the executing actor to fulfill the task.
  8. A state q represents all needed actors as part of the associated environment ENV. Therefore a  state q can be analyzed as a network of elements interacting with each other. But this is only one possible structure for an analysis besides others.
  9. For the   analysis of a possible solution one can distinguish at least two overall strategies:
    1. Top-down: There exists a group of experts EXPs which will analyze a possible solution, will test these, and then will propose these as a solution for others.
    2. Bottom-up: There exists a group of experts EXPs too but additionally there exists a group of customers CTMs which will be guided by the experts to use their own experience to find a possible solution.

EXAMPLE

The mayor of a city has identified as a  problem the relationship between the actual population number POP,    the amount of actual available  living space LSP0, and the  amount of recommended living space LSPr by some standard E.  The population of his city is steadily interacting with populations in the environment: citizens are moving into the environment MIGR- and citizens from the environment are arriving MIGR+. The population,  the city as well as the environment can be characterized by a set of parameters <P1, …, Pn> called a configuration which represents a certain state q at a certain point of time t. To convert the actual configuration called a start state q0 to a new configuration S called a goal state q+ with better values requires the application of a defined set of changes Xs which change the start state q0 stepwise into a sequence of states qi which finally will end up in the desired goal state q+. A description of all these states necessary for the conversion of the start state q0 into the goal state q+ is called here an actor story AS. Because a democratic elected  mayor of the city wants to be ‘liked’ by his citizens he will require that this conversion process should end up in a goal state which is ‘not harmful’ for his citizens, which should support a ‘secure’ and ‘safety’ environment, ‘good transportation’ and things like that. This illustrates non-functional state requirements (NFSRs). Because the mayor wants also not to much trouble during the conversion process he will also require some limits for the whole conversion process, this is for the whole actor story. This illustrates non-functional process requirements (NFPRs). To realize the intended conversion process the mayor needs several executing actors which are doing the job and several other assistive actors helping the executing actors. To be able to use the available time and resources ‘effectively’ the executing actors need defined tasks which have to be realized to come from one state to the next. Often there are more than one sequences of states possible either alternatively or in parallel. A certain state at a certain point of time t can be viewed as a network where all participating actors are in many ways connected with each other, interacting in several ways and thereby influencing each other. This realizes different kinds of communications with different kinds of contents and allows the exchange of material and can imply the change of the environment. Until today the mayors of cities use as their preferred strategy to realize conversion processes selected small teams of experts doing their job in a top-down manner leaving the citizens more or less untouched, at least without a serious participation in the whole process. From now on it is possible and desirable to twist the strategy from top-down to bottom up. This implies that the selected experts enable a broad communication with potentially all citizens which are touched by a conversion and including  the knowledge, experience, skills, visions etc. of these citizens  by applying new methods possible in the new digital age.

 

 

ADVANCED AAI-THEORY

eJournal: uffmm.org,
ISSN 2567-6458, 21.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Here You can find a new version of this post

CONTEXT

The last official update of the AAI theory dates back to Oct-2, 2018. Since that time many new thoughts have been detected and have been configured for further extensions and improvements. Here I try to give an overview of all the actual known aspects of the expanded AAI theory as a possible guide for the further elaborations of the main text.

CLARIFYING THE PROBLEM

  1. Generally it is assumed that the AAI theory is embedded in a general systems engineering approach starting with the clarification of a problem.
  2. Two cases will be distinguished:
    1. A stakeholder is associated with a certain domain of affairs with some prominent aspect/ parameter P and the stakeholder wants to clarify whether P poses some ‘problem’ in this domain. This presupposes some explained ‘expectations’ E how it should be and some ‘findings’ x pointing to the fact that P is ‘sufficiently different’ from some y>x. If the stakeholder judges that this difference is ‘important’, than P matching x will be classified as a problem, which will be documented in a ‘problem document D_p’. One interpret this this analysis as a ‘measurement M’ written as M(P,E) = x and x<y.
    2. Given a problem document D_p a stakeholder invites some experts to find a ‘solution’ which transfers the old ‘problem P’ into a ‘configuration S’ which at least should ‘minimize the problem P’. Thus there must exist some ‘measurements’ of the given problem P with regard to certain ‘expectations E’ functioning as a ‘norm’ as M(P,E)=x and some measurements of the new configuration S with regard to the same expectations E as M(S,E)=y and a metric which allows the judgment y > x.
  3. From this follows that already in the beginning of the analysis of a possible solution one has to refer to some measurement process M, otherwise there exists no problem P.

CHECK OF FRAMING CONDITIONS

  1. The definition of a problem P presupposes a domain of affairs which has to be characterized in at least two respects:
    1. A minimal description of an environment ENV of the problem P and
    2. a list of so-called non-functional requirements (NFRs).
  2. Within the environment it mus be possible to identify at least one task T to be realized from some start state to some end state.
  3. Additionally it mus be possible to identify at least one executing actor A_exec doing this task and at least one actor assisting A_ass the executing actor to fulfill the task.
  4. For the  following analysis of a possible solution one can distinguish two strategies:
    1. Top-down: There exists a group of experts EXPs which will analyze a possible solution, will test these, and then will propose these as a solution for others.
    2. Bottom-up: There exists a group of experts EXPs too but additionally there exists a group of customers CTMs which will be guided by the experts to use their own experience to find a possible solution.

ACTOR STORY (AS)

  1. The goal of an actor story (AS) is a full specification of all identified necessary tasks T which lead from a start state q* to a goal state q+, including all possible and necessary changes between the different states M.
  2. A state is here considered as a finite set of facts (F) which are structured as an expression from some language L distinguishing names of objects (LIKE ‘d1’, ‘u1’, …) as well as properties of objects (like ‘being open’, ‘being green’, …) or relations between objects (like ‘the user stands before the door’). There can also e a ‘negation’ like ‘the door is not open’. Thus a collection of facts like ‘There is a door D1’ and ‘The door D1 is open’ can represent a state.
  3. Changes from one state q to another successor state q’ are described by the object whose action deletes previous facts or creates new facts.
  4. In this approach at least three different modes of an actor story will be distinguished:
    1. A pictorial mode generating a Pictorial Actor Story (PAS). In a pictorial mode the drawings represent the main objects with their properties and relations in an explicit visual way (like a Comic Strip).
    2. A textual mode generating a Textual Actor Story (TAS): In a textual mode a text in some everyday language (e.g. in English) describes the states and changes in plain English. Because in the case of a written text the meaning of the symbols is hidden in the heads of the writers it can be of help to parallelize the written text with the pictorial mode.
    3. A mathematical mode generating a Mathematical Actor Story (MAS): n the mathematical mode the pictorial and the textual modes are translated into sets of formal expressions forming a graph whose nodes are sets of facts and whose edges are labeled with change-expressions.

TASK INDUCED ACTOR-REQUIREMENTS (TAR)

If an actor story AS is completed, then one can infer from this story all the requirements which are directed at the executing as well as the assistive actors of the story. These requirements are targeting the needed input- as well as output-behavior of the actors from a 3rd person point of view (e.g. what kinds of perception are required, what kinds of motor reactions, etc.).

ACTOR INDUCED ACTOR-REQUIREMENTS (AAR)

Depending from the kinds of actors planned for the real work (biological systems, animals or humans; machines, different kinds of robots), one has to analyze the required internal structures of the actors needed to enable the required perceptions and responses. This has to be done in a 1st person point of view.

ACTOR MODELS (AMs)

Based on the AARs one has to construct explicit actor models which are fulfilling the requirements.

USABILITY TESTING (UTST)

Using the actor as a ‘norm’ for the measurement one has to organized an ‘usability test’ in he way, that a real executing test actor having the required profiles has to use a real assisting actor in the context of the specified actor story. Place in a start state of the actor story the executing test actor has to show that and how he will reach the defined goal state of the actor story. For this he has to use a real assistive actor which usually is an experimental device (a mock-up), which allows the test of the story.

Because an executive actor is usually a ‘learning actor’ one has to repeat the usability test n-times to see, whether the learning curve approaches a minimum. Additionally to such objective tests one should also organize an interview to get some judgments about the subjective states of the test persons.

SIMULATION

With an increasing complexity of an actor story AS it becomes important to built a simulator (SIM) which can take as input the start state of the actor story together with all possible changes. Then the simulator can compute — beginning with the start state — all possible successor states. In the interactive mode participating actors will explicitly be asked to interact with the simulator.

Having a simulator one can use a simulator as part of an usability test to mimic the behavior of an assistive actor. This mode can also be used for training new executive actors.

A TOP-DOWN ACTOR STORY

The elaboration of an actor story will usually be realized in a top-down style: some AAI experts will develop the actor story based on their experience and will only ask for some test persons if they have elaborated everything so far that they can define some tests.

A BOTTOM-UP ACTOR STORY

In a bottom-up style the AAI experts collaborate from the beginning with a group of common users from the application domain. To do this they will (i) extract the knowledge which is distributed in the different users, then (ii) they will start some modeling from these different facts to (iii) enable some basic simulations. This simple simulation (iv) will be enhanced to an interactive simulation which allows serious gaming either (iv.a) to test the model or to enable the users (iv.b) to learn the space of possible states. The test case will (v) generate some data which can be used to evaluate the model with regard to pre-defined goals. Depending from these findings (vi) one can try to improve the model further.

THE COGNITIVE SPACE

To be able to construct executive as well as assistive actors which are close to the way how human persons do communicate one has to set up actor models which are as close as possible with the human style of cognition. This requires the analysis of phenomenal experience as well as the psychological behavior as well as the analysis of a needed neuron-physiological structures.

STATE DYNAMICS

To model in an actor story the possible changes from one given state to another one (or to many successor states) one needs eventually besides explicit deterministic changes different kinds of random rules together with adaptive ones or decision-based behavior depending from a whole network of changing parameters.

QUANTUM THEORY (QT). Basic elements

eJournal: uffmm.org, ISSN 2567-6458, 2.January 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email:
gerd@doeben-henisch.de

CONTEXT

This is a continuation from the post WHY QT FOR AAI? explaining the motivation why to look to quantum theory (QT) in the case of the AAI paradigm. After approaching QT from a philosophy of science perspective (see the post QUANTUM THEORY (QT). BASIC PROPERTIES) giving a ‘birds view’ of the relationship between a QT and the presupposed ‘real world’ and digging a bit into the first person view inside an observer we are here interested in the formal machinery of QT. For this we follow Grifftiths in his chapter 1.

QT BASIC ELEMENTS

MEASUREMENT

  1. The starting point of a quantum theory QT are ‘phenomena‘, which “lack any description in classical physics”, a kind of things “which human beings cannot observe directly”. To measure such phenomena one needs highly sophisticated machines, which poses the problem, that the interpretation of possible ‘measurement data’ in terms of a quantum theory depends highly on the understanding of the working of the used measurement apparatus. (cf. p.8)
  2. This problem is well known in philosophy of science: (i) one wants to built a new theory T. (ii) For this theory one needs appropriate measurement data MD. (iii) The measurement as such needs a well defined procedure including different kinds of pre-defined objects and artifacts. The description of the procedure including the artifacts (which can be machines) is a theory of its own called measurement theory T*. (iv) Thus one needs a theory T* to enable a new theory T.
  3. In the case of QT one has the special case that QT itself has to be part of the measurement theory T*, i.e. QT subset T*. But, as Griffiths points out, the measurement problem in QT is even deeper; it is not only the conceptual dependency of QT from its measurement theory T*, but in the case of QT does the measurement apparatus directly interact with the target objects of QT because the measurement apparatus is itself part of the atomic and sub-atomic world which is the target. (cf. p.8) This has led to include the measurement as ‘stochastic time development’ explicitly into the QT. (cf. p.8) In his book Griffiths follows the strategy to deal with the ‘collapse of the wave function’ within the theoretical level, because it does not take place “in the experimental physicist’s laboratory”. (cf. p.9)
  4. As a consequence of these considerations Griffiths develops the fundamental principles in the chapters 2-16 without making any reference to measurement.

PRE-KNOWLEDGE

  1. Besides the special problem of measurement in quantum mechanics there is the general problem of measurement for every kind of empirical discipline which requires a perception of the real world guided by a scientific bias called ‘scientific knowledge’! Without a theoretical pre-knowledge there is no scientific observation possible. A scientific observation needs already a pre-theory T* defining the measurement procedure as well as the pre-defined standard object as well as – eventually — an ‘appropriate’ measurement device. Furthermore, to be able to talk about some measurement data as ‘data related to an object of QT’ one needs additionally a sufficient ‘pre-knowledge’ of such an object which enables the observer to decide whether the measured data are to be classified as ‘related to the object of QT. The most convenient way to enable this is to have already a proposal for a QT as the ‘knowledge guide’ how one ‘should look’ to the measured data.

QT STATES

  1. Related to the phenomena of quantum mechanics the phenomena are in QT according to Griffiths understood as ‘particles‘ whose ‘state‘ is given by a ‘complex-valued wave function ψ(x)‘, and the collection of all possible wave functions is assumed to be a ‘complex linear vector space‘ with an ‘inner product’, known as a ‘Hilbert space‘. “Two wave functions φ(x) and ψ(x) represent ‘distinct physical states’ … if and only if they are ‘orthogonal’ in the sense that their ‘inner product is zero’. Otherwise φ(x) and ψ(x) represent incompatible states of the quantum system …” .(p.2)
  2. “A quantum property … corresponds to a subspace of the quantum Hilbert space or the projector onto this subspace.” (p.2)
  3. A sample space of mutually-exclusive possibilities is a decomposition of the identity as a sum of mutually commuting projectors. One and only one of these projectors can be a correct description of a quantum system at a given time.cf. p.3)
  4. Quantum sample spaces can be mutually incompatible. (cf. p.3)
  5. “In … quantum mechanics [a physical variable] is represented by a Hermitian operator.… a real-valued function defined on a particular sample space, or decomposition of the identity … a quantum system can be said to have a value … of a physical variable represented by the operator F if and only if the quantum wave function is in an eigenstate of F … . Two physical variables whose operators do not commute correspond to incompatible sample spaces… “.(cf. p.3)
  6. “Both classical and quantum mechanics have dynamical laws which enable one to say something about the future (or past) state of a physical system if its state is known at a particular time. … the quantum … dynamical law … is the (time-dependent) Schrödinger equation. Given some wave function ψ_0 at a time t_0 , integration of this equation leads to a unique wave function ψ_t at any other time t. At two times t and t’ these uniquely defined wave functions are related by a … time development operator T(t’ , t) on the Hilbert space. Consequently we say that integrating the Schrödinger equation leads to unitary time development.” (p.3)
  7. “Quantum mechanics also allows for a stochastic or probabilistic time development … . In order to describe this in a systematic way, one needs the concept of a quantum history … a sequence of quantum events (wave functions or sub-spaces of the Hilbert space) at successive times. A collection of mutually … exclusive histories forms a sample space or family of histories, where each history is associated with a projector on a history Hilbert space. The successive events of a history are, in general, not related to one another through the Schrödinger equation. However, the Schrödinger equation, or … the time development operators T(t’ , t), can be used to assign probabilities to the different histories belonging to a particular family.” (p.3f)

HILBERT SPACE: FINITE AND INFINITE

  1. “The wave functions for even such a simple system as a quantum particle in one dimension form an infinite-dimensional Hilbert space … [but] one does not have to learn functional analysis in order to understand the basic principles of quantum theory. The majority of the illustrations used in Chs. 2–16 are toy models with a finite-dimensional Hilbert space to which the usual rules of linear algebra apply without any qualification, and for these models there are no mathematical subtleties to add to the conceptual difficulties of quantum theory … Nevertheless, they provide many useful insights into general quantum principles.”. (p.4f)

CALCULUS AND PROBABILITY

  1. Griffiths (2003) makes considerable use of toy models with a simple discretized time dependence … To obtain … unitary time development, one only needs to solve a simple difference equation, and this can be done in closed form on the back of an envelope. (cf. p.5f)
  2. Probability theory plays an important role in discussions of the time development of quantum systems. … when using toy models the simplest version of probability theory, based on a finite discrete sample space, is perfectly adequate.” (p.6)
  3. “The basic concepts of probability theory are the same in quantum mechanics as in other branches of physics; one does not need a new “quantum probability”. What distinguishes quantum from classical physics is the issue of choosing a suitable sample space with its associated event algebra. … in any single quantum sample space the ordinary rules for probabilistic reasoning are valid. ” (p.6)

QUANTUM REASONING

  1. The important difference compared to classical mechanics is the fact that “an initial quantum state does not single out a particular framework, or sample space of stochastic histories, much less determine which history in the framework will actually occur.” (p.7) There are multiple incompatible frameworks possible and to use the ordinary rules of propositional logic presupposes to apply these to a single framework. Therefore it is important to understand how to choose an appropriate framework.(cf. p.7)

NEXT

These are the basic ingredients which Griffiths mentions in chapter 1 of his book 2013. In the following these ingredients have to be understood so far, that is becomes clear how to relate the idea of a possible history of states (cf. chapters 8ff) where the future of a successor state in a sequence of timely separated states is described by some probability.

REFERENCES

  • R.B. Griffiths. Consistent Quantum Theory. Cambridge University Press, New York, 2003