AAI THEORY V2 – USABILITY AND USEFULNESS

eJournal: uffmm.org
ISSN 2567-6458, 4.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

An overview of the enhanced AAI theory  version 2 you can find here.  In this post we talk about the sixth chapter dealing with usability and usefulness.

USABILITY AND USEFULNESS

In the AAI paradigm the concept of usability is seen as a sub-topic of the more broader concept of usefulness. Furthermore Usefulness  as well as usability are understood as measurements comparing some target with some presupposed norm.

Example: If someone wants to buy a product A whose prize fits well with the available budget and this product A shows only  an average usability then the product is probably ‘more useful’ for the buyer than another product B which does not fit with the budget although it  has a better usability. A conflict can  arise if the weaker value of the usability of product A causes during the usage of product A ‘bad effects’ onto the user of product A which in turn produce additional negative costs which enhance the original ‘nice price’ to a degree where the product A becomes finally  ‘more costly’ than product B.

Therefore  the concept usefulness will be  defined independently from the concept usability and depends completely  from the person or company who is searching for the solution of a problem. The concept of usability depends directly on the real structure of an  actor, a biological one or a non-biological one. Thus independent of the definition of the actual usefulness the given structure of an actor implies certain capabilities with regard to input, output as well as to  internal   processing. Therefore if an X seems to be highly useful for someone and to get X  needs a certain actor story to become realized with certain actors then it can matter whether this process includes a ‘good usability’ for the participating actors or not.

In the AAI paradigm both concepts usefulness as well as usability will be analyzed to provide a  chance to check the contributions of both concepts  in some predefined duration of usage. This allows the analysis of the sustainability of the wanted usefulness restricted to  usability as a parameter. There can be even more parameters   included in the evaluation of the actor story  to enhance the scope of   sustainability. Depending from the definition of the concept of resilience one can interpret the concept of sustainability used in this AAI paradigm as compatible with the resilience concept too.

MEASUREMENT

To speak about ‘usefulness’, ‘usability’, ‘sustainability’ (or ‘resilience’) requires some kind of a scale of values with an   ordering relation R allowing to state about  some values x,y   whether R(x,y) or R(y,x) or EQUAL(x,y). The values used in the scale have to be generated by some defined process P which is understood as a measurement process M which basically compares some target X with some predefined norm N and gives as a result a pair (v,N) telling a number v associated with the applied norm N. Written: M : X x N —> V x N.

A measurement procedure M must be transparent and repeatable in the sense that the repeated application of the measurement procedure M will generate the same results than before. Associated with the measurement procedure there can exist many additional parameters like ‘location’, ‘time’, ‘temperature’, ‘humidity’,  ‘used technologies’, etc.

Because there exist targets X which are not static it can be a problem when and how often one has to measure these targets to get some reliable value. And this problem becomes even worse if the target includes adaptive systems which are changing constantly like in the case of  biological systems.

All biological systems have some degree of learnability. Thus if a human actor is acting as part of an actor story  the human actor will learn every time he is working through the process. Thus making errors during his first run of the process does not imply that he will repeat these errors the next time. Usually one can observe a learning curve associated with n-many runs which show — mostly — a decrease in errors, a decrease in processing time, and — in general — a change of all parameters, which can be measured. Thus a certain actor story can receive a good usability value after a defined number of usages.  But there are other possible subjective parameters like satisfaction, being excited, being interested and the like which can change in the opposite direction, because to become well adapted to  the process can be boring which in turn can lead to less concentrations with many different negative consequences.

 

 

 

 

AAI THEORY V2 – DEFINING THE CONTEXT

eJournal: uffmm.org,
ISSN 2567-6458, 24.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about the second chapter where you have to define the context of the problem, which should be analyzed.

DEFINING THE CONTEXT OF PROBLEM P

  1. A defined problem P identifies at least one property associated with  a configuration which has a lower level x than a value y inferred by an accepted standard E.
  2. The property P is always part of some environment ENV which interacts with the problem P.
  3. To approach an improved configuration S measured by  some standard E starting with a  problem P one  needs a process characterized by a set of necessary states Q which are connected by necessary changes X.
  4. Such a process can be described by an actor story AS.
  5. All properties which belong to the whole actor story and therefore have to be satisfied by every state q of the actor story  are called  non-functional process requirements (NFPRs). If required properties are are associate with only one state but for the whole state, then these requirements are called non-functional state requirements (NFSRs).
  6. An actor story can include many different sequences, where every sequence is called a path PTH.  A finite set of paths can represent a task T which has to be fulfilled. Within the environment of the defined problem P it mus be possible to identify at least one task T to be realized from some start state to some goal state. The realization of a task T is assumed to be ‘driven’ by input-output-systems which are called actors A.
  7. Additionally it mus be possible to identify at least one executing actor A_exec doing a  task and at least one actor assisting A_ass the executing actor to fulfill the task.
  8. A state q represents all needed actors as part of the associated environment ENV. Therefore a  state q can be analyzed as a network of elements interacting with each other. But this is only one possible structure for an analysis besides others.
  9. For the   analysis of a possible solution one can distinguish at least two overall strategies:
    1. Top-down: There exists a group of experts EXPs which will analyze a possible solution, will test these, and then will propose these as a solution for others.
    2. Bottom-up: There exists a group of experts EXPs too but additionally there exists a group of customers CTMs which will be guided by the experts to use their own experience to find a possible solution.

EXAMPLE

The mayor of a city has identified as a  problem the relationship between the actual population number POP,    the amount of actual available  living space LSP0, and the  amount of recommended living space LSPr by some standard E.  The population of his city is steadily interacting with populations in the environment: citizens are moving into the environment MIGR- and citizens from the environment are arriving MIGR+. The population,  the city as well as the environment can be characterized by a set of parameters <P1, …, Pn> called a configuration which represents a certain state q at a certain point of time t. To convert the actual configuration called a start state q0 to a new configuration S called a goal state q+ with better values requires the application of a defined set of changes Xs which change the start state q0 stepwise into a sequence of states qi which finally will end up in the desired goal state q+. A description of all these states necessary for the conversion of the start state q0 into the goal state q+ is called here an actor story AS. Because a democratic elected  mayor of the city wants to be ‘liked’ by his citizens he will require that this conversion process should end up in a goal state which is ‘not harmful’ for his citizens, which should support a ‘secure’ and ‘safety’ environment, ‘good transportation’ and things like that. This illustrates non-functional state requirements (NFSRs). Because the mayor wants also not to much trouble during the conversion process he will also require some limits for the whole conversion process, this is for the whole actor story. This illustrates non-functional process requirements (NFPRs). To realize the intended conversion process the mayor needs several executing actors which are doing the job and several other assistive actors helping the executing actors. To be able to use the available time and resources ‘effectively’ the executing actors need defined tasks which have to be realized to come from one state to the next. Often there are more than one sequences of states possible either alternatively or in parallel. A certain state at a certain point of time t can be viewed as a network where all participating actors are in many ways connected with each other, interacting in several ways and thereby influencing each other. This realizes different kinds of communications with different kinds of contents and allows the exchange of material and can imply the change of the environment. Until today the mayors of cities use as their preferred strategy to realize conversion processes selected small teams of experts doing their job in a top-down manner leaving the citizens more or less untouched, at least without a serious participation in the whole process. From now on it is possible and desirable to twist the strategy from top-down to bottom up. This implies that the selected experts enable a broad communication with potentially all citizens which are touched by a conversion and including  the knowledge, experience, skills, visions etc. of these citizens  by applying new methods possible in the new digital age.

 

 

WHY QT FOR AAI?

eJournal: uffmm.org, ISSN 2567-6458, 2.January 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email:
gerd@doeben-henisch.de

CONTEXT

This is a continuation from the post QUANTUM THEORY (QT). BASIC PROPERTIES, where basic properties of quantum theory (QT) according to ch.27 of Griffiths (2003) have been reported. Before we dig deeper into the QT matter here a remark why we should do this at all because the main topic of the uffmm.org blog is the Actor-Actor Interaction (AAI) paradigm dealing with actors including a subset of actors which have the complexity of biological systems at least as complex as exemplars of the kind of human sapiens.

WHY QT IN THE CASE OF AAI

As Griffiths (2003) points out in his chapter 1 and chapter 27 quantum theory deals with objects which are not perceivable by the normal human sensory apparatus. It needs special measurement procedures and instrumentation to measure events related to quantum objects. Therefore the level of analysis in quantum theory is quite ‘low’ compared to the complexity hierarchies of biological systems.

Baars and Edelman (2012) address the question of the relationship of QT and biological phenomena, especially those connected to the phenomenon of human consciousness, explicitly. Their conclusion is very clear: “Current quantum-level proposals do not explain the prominent empirical features of consciousness”. (Baars and Edelman (2012):p.286)

Behind this short statement we have to accept the deep insights of modern (evolutionary and micro) biology that a main characteristics of biological systems has to be seen in their ability to overcome the fluctuating and unstable quantum properties by a more and more complex machinery which posses its own logic and its own specific dynamics.

Therefore the level of analysis for the behavior of biological systems is usually ‘far above’ the level of quantum theory.

Why then at all bother with QT in the case of the AAI paradigm?

If one looks to the AAI paradigm then one detects the concept of the actor story (AS) which assumes that reality can be conceived — and then be described – as a ‘process’ which can be analyzed as a ‘sequence of states’ characterized by decidable ‘facts’ which can ‘change in time’. A ‘change’ can occur either by some changing time measured by ‘time points’ generated by a ‘time machine’ called ‘clock’ or by some ‘inherent change’ observable as a change in some ‘facts’.

Restricting the description of the transitions of such a sequence of states to properties of classical probability theory, one detects severe limits of the descriptive power of a CPT description compared to what has to be done in an AAI analysis. (see for this the post BACKGROUND INFORMATION 27.Dec.2018: The AAI-paradigm and Quantum Logic. The Limits of Classic Probability). The limits result from the fact that actors within the AAI paradigm are in many cases ‘not static’ and ‘not deterministic’ systems which can change their structures and behavior functions in a way that the basic assumptions of CPT are no longer valid.

It remains the question whether a probability theory PT which is based on quantum theory QT is in some sense ‘better adapted’ to the AAI paradigm than Classical PT.

This question is the main perspective guiding the further encounter with QT.

See next.

 

 

 

 

 

 

 

 

 

 

 

 

 

QUELLEN

  • Bernard J. Baars and David B. Edelman. Consciousness, biology, and quantum hypotheses. Physics of Life Review, 9(3):285 – 294, 2012. D O I: 10.1016/j.plrev.2012.07.001. Epub. URL http://www.ncbi.nlm.nih.gov/pubmed/22925839
  • R.B. Griffiths. Consistent Quantum Theory. Cambridge University Press, New York, 2003

 

AASE – Actor-Actor Systems Engineering. Theory & Applications. Micro-Edition (Vers.9)

eJournal: uffmm.org, ISSN 2567-6458
13.June  2018
Email: info@uffmm.org
Authors: Gerd Doeben-Henisch, Zeynep Tuncer,  Louwrence Erasmus
Email: doeben@fb2.fra-uas.de
Email: gerd@doeben-henisch.de

PDF

CONTENTS

1 History: From HCI to AAI …
2 Different Views …
3 Philosophy of the AAI-Expert …
4 Problem (Document) …
5 Check for Analysis …
6 AAI-Analysis …
6.1 Actor Story (AS) . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1 Textual Actor Story (TAS) . . . . . . . . . . . . . . .
6.1.2 Pictorial Actor Story (PAT) . . . . . . . . . . . . . .
6.1.3 Mathematical Actor Story (MAS) . . . . . . . . . . .
6.1.4 Simulated Actor Story (SAS) . . . . . . . . . . . . .
6.1.5 Task Induced Actor Requirements (TAR) . . . . . . .
6.1.6 Actor Induced Actor Requirements (UAR) . . . . . .
6.1.7 Interface-Requirements and Interface-Design . . . .
6.2 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Actor and Actor Story . . . . . . . . . . . . . . . . .
6.2.2 Actor Model . . . . . . . . . . . . . . . . . . . . . .
6.2.3 Actor as Input-Output System . . . . . . . . . . . .
6.2.4 Learning Input-Output Systems . . . . . . . . . . . .
6.2.5 General AM . . . . . . . . . . . . . . . . . . . . . .
6.2.6 Sound Functions . . . . . . . . . . . . . . . . . . .
6.2.7 Special AM . . . . . . . . . . . . . . . . . . . . . .
6.2.8 Hypothetical Model of a User – The GOMS Paradigm
6.2.9 Example: An Electronically Locked Door . . . . . . .
6.2.10 A GOMS Model Example . . . . . . . . . . . . . . .
6.2.11 Further Extensions . . . . . . . . . . . . . . . . . .
6.2.12 Design Principles; Interface Design . . . . . . . . .
6.3 Simulation of Actor Models (AMs) within an Actor Story (AS) .
6.4 Assistive Actor-Demonstrator . . . . . . . . . . . . . . . . . .
6.5 Approaching an Optimum Result . . . . .
7 What Comes Next: The Real System
7.1 Logical Design, Implementation, Validation . . . .
7.2 Conceptual Gap In Systems Engineering? . . .
8 The AASE-Paradigm …
References

Abstract

This text is based on the the paper “AAI – Actor-Actor Interaction. A Philosophy of Science View” from 3.Oct.2017 and version 11 of the paper “AAI – Actor-Actor Interaction. An Example Template” and it   transforms these views in the new paradigm ‘Actor- Actor Systems Engineering’ understood as a theory as well as a paradigm for and infinite set of applications. In analogy to the slogan ’Object-Oriented Software Engineering (OO SWE)’ one can understand the new acronym AASE as a systems engineering approach where the actor-actor interactions are the base concepts for the whole engineering process. Furthermore it is a clear intention to view the topic AASE explicitly from the point of view of a theory (as understood in Philosophy of Science) as well as from the point of view of possible applications (as understood in systems engineering). Thus the classical term of Human-Machine Interaction (HMI) or even the older Human-Computer Interaction (HCI) is now embedded within the new AASE approach. The same holds for the fuzzy discipline of Artificial Intelligence (AI) or the subset of AI called Machine Learning (ML). Although the AASE-approach is completely in its beginning one can already see how powerful this new conceptual framework  is.

 

 

ACTOR-ACTOR INTERACTION. Philosophy of the Actor

eJournal: uffmm.org, ISSN 2567-6458
16.March 2018
Email: info@uffmm.org
Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Frankfurt University of Applied Sciences (FRA-UAS)
Institut for New Media (INM, Frankfurt)

PDF

CONTENTS

I   A Vision as a Problem to be Solved … 1
II   Language, Meaning & Ontology …  2
     II-A   Language Levels . . . . . . . . .  . . 2
     II-B  Common Empirical Matter .  . . . . . 2
     II-C   Perceptual Levels . . . . . . .  . . . . 3
     II-D   Space & Time . . . . . . . .  . . . . . 4
     II-E    Different Language Modes . . . 4
     II-F    Meaning of Expressions & Ontology … 4
     II-G   True Expressions . . . . . . .  . . . .  5
     II-H   The Congruence of Meaning  . . . .  5
III   Actor Algebra … 6
IV   World Algebra  … 7
V    How to continue … 8
VI References … 8

Abstract

As preparation for this text one should read the chapter about the basic layout of an Actor-Actor Analysis (AAA) as part of an systems engineering process (SEP). In this text it will be described which internal conditions one has to assume for an actor who uses a language to talk about his observations oft he world to someone else in a verifiable way. Topics which are explained in this text are e.g. ’language’,’meaning’, ’ontology’, ’consciousness’, ’true utterance’, ’synonymous expression.

INTELLIGENT MACHINES – INTRODUCTION

Scientific Workplace For an Integrated Engineering of the Future
eJournal uffmm.org ISSN 2567-6458 (info@uffmm.org)

by
Gerd Doeben-Henisch
(gerd@doeben-henisch.de)

PDF

OVERVIEW

A short story telling You, (i) how we interface the intelligent machines (IM) part with the actor-actor interaction (AAI) part, (ii) a first working definition of intelligent machines (IM) in this text, and (iii) defining intelligence and how one can this measure.

IM WITHIN AAI

In this blog we see IM not isolated, as a stand alone endeavor, but as embedded in a discipline called actor-actor interaction (AAI)(Comment: For a more detailed description see the AAI-part in this blog). AAI investigates complex tasks and looks how different kinds of actors are interacting in these contexts with technical systems. As far as the participating systems have been technical systems one spoke here of a system interface (SI) as that part of a technical system, which is interacting with the human actor. In the case of biological systems (mostly humans, but it could be animals as well), one spoke of the user interface (UI). In this text we generalize both cases by the general concept of an actor — biological and non-biological –, which has some actor interface (ActI), and this actor interface embraces all properties which are relevant for the interactions of the actor.

For the analysis of the behavior of actors in such task-environments one can distinguish two important concepts: the actor story (AS) describing the context as an observable process, as well as different actor models (AM). Actor models are special extensions of an actor story because an actor model describes the observable behavior of actors as a behavior function (BF) with a set of assumptions about possible internal states of the actors. The assumptions about possible internal states (IS) are either completely arbitrary or empirically motivated.

The embedding of IM within AAI can be realized through the concept of an actor model (UM) and the actor story (AS). Whatever is important for something which is called an intelligent machine application (IMA) can be defined as an actor model within an actor story. This embedding of IM within AAI offers many advantages.

This has to be explained with some more details.

An Intelligent Machine (IM) in an Actor Story

Let us assume that there exists a mathematical-graph representation of an actor story written as AS_{L_{ε}}. Such a graph has nodes which represent situations. Formally these are sets of properties, probably more fine-grained by subsets which represent different kinds of actors embedded in this situation as well as different kinds of non-actors.

Actors can be classified (as introduced above) as either biological actors (BA) or non-biological actors (NBA). Both kinds of actors can — in another reading — be subsumed under the general term of input-output-systems (IO-SYS). An input-output system can be a learning system or non-learning. Another basic property is that of being intelligent or non-intelligent. Being a learning system and being an intelligent system is usually strongly connected, but this must not necessarily be so. Being a learning system can be associated with being non-intelligent and being intelligent can be connected with being non-learning.(cf. Figure 1)

Classification of input-output systems according to learning, intelligence and beeing biological or not biological
Classification of input-output systems according to learning, intelligence and being biological or non-biological

While biological systems are always learning and intelligent, one can find non-biological systems of all types: non-learning and non-intelligent, non-intelligent and learning, non-learning and intelligent, and learning and intelligent.

Learning System

To classify a system as a learning system this requires the general ability to change the behavior of this system in time thus that there exists a time-span (t1,t2) after which the behavior to certain critical stimuli has changed compared to the time before (cf. Shettleworth (1994)). From this requirement it follows, that a learning system is an input-output system with at least one internal state which can change. Thus we have the general assumption:

Def: Learning System (LS)

  1. LS(x) iff
  2. x=<I, O, IS, phi >
  3. phi: I x IS —> IS x O
  4. I := Input
  5. O := Output
  6. IS := Internal statesSome x is a learning system (LS) if it is a structure containing sets for input (I), Output (O), as well as internal states (IS). These sets are operated by a behavior function \phi which maps inputs and actual internal states to output as well as back to internal states. The set of possible learning functions is infinite.

    Intelligent System

    The term ‘intelligent’ and ‘intelligence’ is until now not standardized. This means that everybody is using it at little bit arbitrarily.

    In this text we take the basic idea of a scientific usage of the term ‘intelligence’ from experimental psychology, which has developed clearly defined operational concepts since the end of the 19. Century which have been proved as quite stable in their empirical applications.\footnote{For an introduction in the field of psychological intelligence concepts see HilgardEt:1979, Rost:2009, Rost:2013

    The central idea of the psychological concept of the usage of the term ‘intelligence’ is to associate the usage of the term ‘intelligence’ with observable behavior of those actors, which shall be classified according defined methods of measurement.

    In the case of experimental psychology the actors have been biological systems, mainly humans, in the first years of the research school children of certain ages. Because nobody did know what ‘intelligence’ means ‘as such’ one agreed to accept the observable behavior of children in certain task environments as ‘manifestations’ of a ‘presupposed unknown intelligence’. Thus the ability of children to solve defined tasks in a certain defined manner became a norm for what is called ‘intelligence’. Solving the tasks in a certain time with less than a certain amount of errors was used as a ‘baseline’ and all behavior deviating from the baseline was ‘better’ or ‘poorer’.

    Thus the ‘content’ of the ‘meaning’ of the term ‘intelligence’ has been delegated to historical patterns of behavior which were common in a certain time-span in a certain geographical and cultural region.

    While these behavior patterns can change during the course of time the general method of measurement is invariant.

    In the time since then experimental psychology has modified and elaborated this first concept in some directions.

    One direction is the modification of the kind of tasks which are used for the tests. With regard to the cultural context one has modified the content, thereby looking to find such kinds of task which seem to be ‘invariant’ with regard to the presupposed intelligence factor. This is an ongoing process.

    The other direction is the focus on the actors as such. Because biological systems like humans change the development of their intelligence with age one has tried to find out ‘typical tasks for every age’. This too is an ongoing process.

    This history of experimental psychology gives very interesting examples how one can approach the problem of the usage and the measurement of some X which we call ‘intelligence’.

    In the context of an AAI-approach we have not only biological systems, but also non-biological systems. Thus most of the elaborated parameters of psychology for human actors are not general enough.

    One possible strategy to generalize the intelligence-paradigm of experimental psychology could be to ‘free’ the selection of task sets from the narrow human cultures of the past and require only ‘clearly defined task sets with defined interfaces and defined contexts’. All these tasks sets can be arranged either in one super-set or in a parametrized field of sets. The sum of all these sets defines then a space of possible behavior and associated with this a space of possible measurable intelligence.

    A task has then to be given as an actor story according to the AAI-paradigm. Such a specified actor story allows the formal definition of a complexity measure which can be used to measure the ‘amount of intelligence necessary to solve such a task’.

    With such a more general and extendable approach to the measurement of observable intelligence one can compare all kinds of systems with each other. With such an approach one can further show objectively, where biological and non-biological systems differ, where they are similar, and to which extend they differ.

    Measuring Intelligence by Actor Stories

    Presupposing actor stories (AS) (ideally formalized as mathematical graphs) on can define a first operational general measurement of intelligence.

    Def: Task-Intelligence of a task τ (TInt(τ))

        1. Every defined task τ represents a graph g with one shortest path pmin(τ)= π_{min} from a start node to a goal node.
        2. Every such shortest path π_{min} has a certain number of nodes path-nodes(π_{min})=ν.
        3. The number of solved nodes (ν_{solved}) can become related against the total number of nodes ν as ν_{solved}/ν. We take TInt(τ)= ν_{solved}/ν. It follows that TInt(τ) is between 0 and 1: 0 ≤ TInt(τ)≤ 1.
        4. To every task is attached a maximal duration Δ_{max}; all nodes which are solved within this maximal duration time Δ_{max} are declared as ‘solved’, all the others as ‘un-solved’.

    The usual case will require more than one task to be realized. Thus we introduce the concept of a task field (TF).

    Def: Task-Field of type x (TF_{x})
    Def: Task-Field Intelligence (TFInt)

    A task-field TF of type x includes a finite set of individual tasks like TF_{x} = { τ{x.1}, τ{x.2}, … , τ{x.n} } with n ≥ 2. The sum of all individual task intelligence values TInt(τ{x.i}) has to be normalized to 1, i.e. (TInt(τ{x.1}) + TInt(τ{x.2}) + … + TInt(τ{x.n}))/ n (with 0 in the nominator not allowed). Thus the value of the intelligence of a task field of type x TFInt(TF_{x}) is again in the domain of [0,1].

    Because the different tasks in a task field TF can be of different difficulty it should be possible to introduce some weighting for the individual task intelligence values. This should not change the general mechanism.

    Def: Combined Task-Fields (TF)

    In face of the huge variety of possible task fields in this world it can make sens to introduce more general layers by grouping task fields of different types together to larger combined fields, like TF_{x,…,z} = TF_{x} ∪ TF_{y} ∪ … ∪ TF_{z}. The task field intelligence TFInt of such combined task fields would be computed as before.

    Def: Omega Task-Field at time t (TF_{ω}(t))

    The most comprehensive assembly of such combinations shall here be called the Omega-Task-Field at time t TF_{ω}(t). This indicates the known maximum of intelligence measurements at that point of time.

    Measurement Comments

    With these assumptions the term intelligence will be restricted to clearly defined domains either to an individual task, to a task-field of type x, or to some grouped task-fields or being related to the actual omega task-field. In every such domain the intelligence value is in the realm of [0,1] or written as some value between 0 or 100%.

    Independent of the type of an actor — biological or not — one can measure the intelligence of such an actor with the same domains of defined tasks. As a result one can easily compare all known actors with regard to such defined task domains.

    Because the acting actors can be quite different by their input-output capabilities it follows that every actor has to organize some interface which enables him to use the defined task. There are no special restrictions to the format of such an interface, but there is one requirement which has to be observed strictly: the interface as such is not allowed to do any kind of computation beyond providing only the necessary input from the task domain or to provide the necessary output to the domain. Only then are the different tests able to reveal some difference between the different actors.

    If the tests show differences between certain types of actors with regard to a certain task or a task-field then this is a chance to develop smart assistive interfaces which can help the actor in question to overcome his weakness compared to the other type of actor. Thus this kind of measuring intelligence can be a strong supporter for a better world in the future.

    Another consequence of the differing intelligence values can be to look to the inner structure of an actor with weaker values and asking how one could improve his capabilities. This can be done e.g. by different kinds of trainings or by improving his system structures.