THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 1

eJournal: uffmm.org
ISSN 2567-6458, 22.March – 23.March 2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

THE OKSIMO EVENT SPACE

The characterization of the oksimo software paradigm starts with an informal characterization  of the oksimo software event space.

EVENT SPACE

An event space is a space which can be filled up by observable events fitting to the species-specific internal processed environment representations [1], [2] here called internal environments [ENVint]. Thus the same external environment [ENV] can be represented in the presence of  10 different species  in 10 different internal formats. Thus the expression ‘environment’ [ENV] is an abstract concept assuming an objective reality which is common to all living species but indeed it is processed by every species in a species-specific way.

In a human culture the usual point of view [ENVhum] is simultaneous with all the other points of views [ENVa] of all the other other species a.

In the ideal case it would be possible to translate all species-specific views ENVa into a symbolic representation which in turn could then be translated into the human point of view ENVhum. Then — in the ideal case — we could define the term environment [ENV] as the sum of all the different species-specific views translated in a human specific language: ∑ENVa = ENV.

But, because such a generalized view of the environment is until today not really possible by  practical reasons we will use here for the beginning only expressions related to the human specific point of view [ENVhum] using as language an ordinary language [L], here  the English language [LEN]. Every scientific language — e.g. the language of physics — is understood here as a sub language of the ordinary language.

EVENTS

An event [EV] within an event space [ENVa] is a change [X] which can be observed at least from the  members of that species [SP] a which is part of that environment ENV which enables  a species-specific event space [ENVa]. Possibly there can be other actors around in the environment ENV from different species with their specific event space [ENVa] where the content of the different event spaces  can possible   overlap with regard to  certain events.

A behavior is some observable movement of the body of some actor.

Changes X can be associated with certain behavior of certain actors or with non-actor conditions.

Thus when there are some human or non-human  actors in an environment which are moving than they show a behavior which can eventually be associated with some observable changes.

CHANGE

Besides being   associated with observable events in the (species specific) environment the expression  change is understood here as a kind of inner state in an actor which can compare past (stored) states Spast with an actual state SnowIf the past and actual state differ in some observable aspect Diff(Spast, Snow) ≠ 0, then there exists some change X, or Diff(Spast, Snow) = X. Usually the actor perceiving a change X will assume that this internal structure represents something external to the brain, but this must not necessarily be the case. It is of help if there are other human actors which confirm such a change perception although even this does not guarantee that there really is a  change occurring. In the real world it is possible that a whole group of human actors can have a wrong interpretation.

SYMBOLIC COMMUNICATION AND MEANING

It is a specialty of human actors — to some degree shared by other non-human biological actors — that they not only can built up internal representations ENVint of the reality external to the  brain (the body itself or the world beyond the body) which are mostly unconscious, partially conscious, but also they can built up structures of expressions of an internal language Lint which can be mimicked to a high degree by expressions in the body-external environment ENV called expressions of an ordinary language L.

For this to work one  has  to assume that there exists an internal mapping from internal representations ENVint into the expressions of the internal language   Lint as

meaning : ENVint <—> Lint.

and

speaking: Lint —> L

hearing: Lint <— L

Thus human actors can use their ordinary language L to activate internal encodings/ decodings with regard to the internal representations ENVint  gained so far. This is called here symbolic communication.

NO SPEECH ACTS

To classify the occurrences of symbolic expressions during a symbolic communication  is a nearly infinite undertaking. First impressions of the unsolvability of such a classification task can be gained if one reads the Philosophical Investigations of Ludwig Wittgenstein. [5] Later trials from different philosophers and scientists  — e.g. under the heading of speech acts [4] — can  not fully convince until today.

Instead of assuming here a complete scientific framework to classify  occurrences of symbolic expressions of an ordinary language L we will only look to some examples and discuss these.

KINDS OF EXPRESSIONS

In what follows we will look to some selected examples of symbolic expressions and discuss these.

(Decidable) Concrete Expressions [(D)CE]

It is assumed here that two human actors A and B  speaking the same ordinary language L  are capable in a concrete situation S to describe objects  OBJ and properties PROP of this situation in a way, that the hearer of a concrete expression E can decide whether the encoded meaning of that expression produced by the speaker is part of the observable situation S or not.

Thus, if A and B are together in a room with a wooden  white table and there is a enough light for an observation then   B can understand what A is saying if he states ‘There is a white wooden table.

To understand means here that both human actors are able to perceive the wooden white table as an object with properties, their brains will transform these external signals into internal neural signals forming an inner — not 1-to-1 — representation ENVint which can further be mapped by the learned meaning function into expressions of the inner language Lint and mapped further — by the speaker — into the external expressions of the learned ordinary language L and if the hearer can hear these spoken expressions he can translate the external expressions into the internal expressions which can be mapped onto the learned internal representations ENVint. In everyday situations there exists a high probability that the hearer then can respond with a spoken ‘Yes, that’s true’.

If this happens that some human actor is uttering a symbolic expression with regard to some observable property of the external environment  and the other human actor does respond with a confirmation then such an utterance is called here a decidable symbolic expression of the ordinary language L. In this case one can classify such an expression  as being true. Otherwise the expression  is classified as being not true.

The case of being not true is not a simple case. Being not true can mean: (i) it is actually simply not given; (ii) it is conceivable that the meaning could become true if the external situation would be  different; (iii) it is — in the light of the accessible knowledge — not conceivable that the meaning could become true in any situation; (iv) the meaning is to fuzzy to decided which case (i) – (iii) fits.

Cognitive Abstraction Processes

Before we talk about (Undecidable) Universal Expressions [(U)UE] it has to clarified that the internal mappings in a human actor are not only non-1-to-1 mappings but they are additionally automatic transformation processes of the kind that concrete perceptions of concrete environmental matters are automatically transformed by the brain into different kinds of states which are abstracted states using the concrete incoming signals as a  trigger either to start a new abstracted state or to modify an existing abstracted state. Given such abstracted states there exist a multitude of other neural processes to process these abstracted states further embedded  in numerous  different relationships.

Thus the assumed internal language Lint does not map the neural processes  which are processing the concrete events as such but the processed abstracted states! Language expressions as such can never be related directly to concrete material because this concrete material  has no direct  neural basis.  What works — completely unconsciously — is that the brain can detect that an actual neural pattern nn has some similarity with a  given abstracted structure NN  and that then this concrete pattern nn  is internally classified as an instance of NN. That means we can recognize that a perceived concrete matter nn is in ‘the light of’ our available (unconscious) knowledge an NN, but we cannot argue explicitly why. The decision has been processed automatically (unconsciously), but we can become aware of the result of this unconscious process.

Universal (Undecidable) Expressions [U(U)E]

Let us repeat the expression ‘There is a white wooden table‘ which has been used before as an example of a concrete decidable expression.

If one looks to the different parts of this expression then the partial expressions ‘white’, ‘wooden’, ‘table’ can be mapped by a learned meaning function φ into abstracted structures which are the result of internal processing. This means there can be countable infinite many concrete instances in the external environment ENV which can be understood as being white. The same holds for the expressions ‘wooden’ and ‘table’. Thus the expressions ‘white’, ‘wooden’, ‘table’ are all related to abstracted structures and therefor they have to be classified as universal expressions which as such are — strictly speaking —  not decidable because they can be true in many concrete situations with different concrete matters. Or take it otherwise: an expression with a meaning function φ pointing to an abstracted structure is asymmetric: one expression can be related to many different perceivable concrete matters but certain members of  a set of different perceived concrete matters can be related to one and the same abstracted structure on account of similarities based on properties embedded in the perceived concrete matter and being part of the abstracted structure.

In a cognitive point of view one can describe these matters such that the expression — like ‘table’ — which is pointing to a cognitive  abstracted structure ‘T’ includes a set of properties Π and every concrete perceived structure ‘t’ (caused e.g. by some concrete matter in our environment which we would classify as a ‘table’) must have a ‘certain amount’ of properties Π* that one can say that the properties  Π* are entailed in the set of properties Π of the abstracted structure T, thus Π* ⊆ Π. In what circumstances some speaker-hearer will say that something perceived concrete ‘is’ a table or ‘is not’ a table will depend from the learning history of this speaker-hearer. A child in the beginning of learning a language L can perhaps call something   a ‘chair’ and the parents will correct the child and will perhaps  say ‘no, this is table’.

Thus the expression ‘There is a white wooden table‘ as such is not true or false because it is not clear which set of concrete perceptions shall be derived from the possible internal meaning mappings, but if a concrete situation S is given with a concrete object with concrete properties then a speaker can ‘translate’ his/ her concrete perceptions with his learned meaning function φ into a composed expression using universal expressions.  In such a situation where the speaker is  part of  the real situation S he/ she  can recognize that the given situation is an  instance of the abstracted structures encoded in the used expression. And recognizing this being an instance interprets the universal expression in a way  that makes the universal expression fitting to a real given situation. And thereby the universal expression is transformed by interpretation with φ into a concrete decidable expression.

SUMMING UP

Thus the decisive moment of turning undecidable universal expressions U(U)E into decidable concrete expressions (D)CE is a human actor A behaving as a speaker-hearer of the used  language L. Without a speaker-hearer every universal expressions is undefined and neither true nor false.

makedecidable :  S x Ahum x E —> E x {true, false}

This reads as follows: If you want to know whether an expression E is concrete and as being concrete is  ‘true’ or ‘false’ then ask  a human actor Ahum which is part of a concrete situation S and the human actor shall  answer whether the expression E can be interpreted such that E can be classified being either ‘true’ or ‘false’.

The function ‘makedecidable()’ is therefore  the description (like a ‘recipe’) of a real process in the real world with real actors. The important factors in this description are the meaning functions inside the participating human actors. Although it is not possible to describe these meaning functions directly one can check their behavior and one can define an abstract model which describes the observable behavior of speaker-hearer of the language L. This is an empirical model and represents the typical case of behavioral models used in psychology, biology, sociology etc.

SOURCES

[1] Jakob Johann Freiherr von Uexküll (German: [ˈʏkskʏl])(1864 – 1944) https://en.wikipedia.org/wiki/Jakob_Johann_von_Uexk%C3%BCll

[2] Jakob von Uexküll, 1909, Umwelt und Innenwelt der Tiere. Berlin: J. Springer. (Download: https://ia802708.us.archive.org/13/items/umweltundinnenwe00uexk/umweltundinnenwe00uexk.pdf )

[3] Wikipedia EN, Speech acts: https://en.wikipedia.org/wiki/Speech_act

[4] Ludwig Josef Johann Wittgenstein ( 1889 – 1951): https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

[5] Ludwig Wittgenstein, 1953: Philosophische Untersuchungen [PU], 1953: Philosophical Investigations [PI], translated by G. E. M. Anscombe /* For more details see: https://en.wikipedia.org/wiki/Philosophical_Investigations */

HMI ANALYSIS, Part 4: Tool based Actor Story Development with Testing and Gaming

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, March 3-4, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 4, 2021, 07:49h (Minor corrections; relating to the UN SDGs)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 4: Tool based Actor Story Development with Testing and Gaming

Context

This text is preceded by the following texts:

INFO GRAPH

Overview about different scenarios which will be possible for the development, simulation, testing and gaming of actor stories using the oksimo software tool

Introduction

In the preceding post it has been explained, how one can format an actor story [AS] as a theory in the  format  of  an Evaluated Theory Tε with Algorithmic Intelligence:   Tε,α=<M,∑,ε,α>.

In the following text it will be explained which kinds of different scenarios will be possible to elaborate, to simulate, to test, and to enable gaming with  an actor story theory by using the oksimo software tool.

UNIVERSAL TEAM

The classical distinctions between certain types of managers, special experts and the rest of the world is given up here in favor of a stronger generalization: everybody is a potential expert with regard to a future, which nobody knows. This is emphasized by the fact, that everybody can use its usual mother tongue, a normal language, every language. Nothing more is needed.

BASIC MODELS (S, X)

As minimal elements for all possible applications it is assumed here that the experts define at least a given situation (state) [S] and a set of change rules [X].

The given state S is  either (i)  taken as it is or (ii)  as a state which  should be improved. In both cases the initial state S is called the start state [S0].

The change rules X describe possible changes which transform a given state S into a changed successor state S’.

A pair of S and X as (S,X) is called a basic model M(S,X). One can define as many models as one wants.

A DIRECTION BY A VISION V

A vision [V] can describe a possible state SV  in an assumed future. If such a state SV is given, then this state becomes a goal state SGoal In this case  we assume V ≠ 0. If no explicit goal is given, then we assume V = 0.

DEVELOPMENT BY GOALS

If a vision is given (V ≠ 0), then the vision can be used to induce a direction which can/ shall be approached by creating a set X, which enables the generation of a sequence of states with the start state S0 as first state followed by successor state Si until the goal state SGoal has been reached or at least it holds that the goal state is a subset of the reached state: SGoalSn.

It is possible to use many basic models M(S,X) in parallel and for each model Mi one can define a different goal Vi (the typical situation in a pluralistic society).

Thus there can be many basic theories T(M,V) in parallel.

STEADY STATES (V = 0)

If no explicit visions are defined (V = 0) then every direction of change is allowed. A basic steady state theory T(M,V) with V = 0 can   be written as T(M,0). Whether such a case can be of interest is not clear at the moment.

BASIC INTERACTION PATTERNS

The following interaction modes are assumed as typical cases:

  1. N-1: Within an online session an interactive webpage with the oksimo software is active and the whole group can interact with the oksimo software tool.
  2. N-N-1: N-many participants can individually login into the interactive oksimo website and being logged in they can collaborate within the oksimo software with one project.
  3. N-N-N: N-many participants can individually login into the interactive oksimo website and there everybody can run its own process or can collaborate in various ways.

The default case is case (1). The exact dates for the availability of modes (2) – (3) depends from how fast the roadmap can be realized.

BASIC APPLICATIONS
  1. Exploring Simulation-Based Development [ESBD] (V ≠ 0): If the main goal is to find a path from a given state today S (Now) to an envisioned state V in the future then one has  to collect appropriate change rules X to approach the final goal state SGoal better and better. Activating the simulator ∑ during search and construction phase at will can be of great help, especially if the documents (S, X, V) are becoming more and more complex.
  2. Embedded Simulation-Based  Testing [ESBT] (V ≠ 0): If a basic  actor story theory T(M,) is given with a given goal (V ≠ 0) then it is of great help if the simulation is done in interactive mode where the simulator is not applying the change rules by itself but by asking different logged in users which rule they want to apply and how. These tests show not only which kinds of errors will occur but they can also show during n-many repetitions to which degree an user  can learn to behave task-conform. If the tests will not show the expected outcomes then this can point  to possible deficiencies of the software as well to specialties of the user.
  3. Embedded Simulation-Based Gaming [ESBTG] (V ≠ 0):  The case of gaming is partially  different to the case of testing.  Although it is assumed here too that at least one vision (goal) is given, it is additionally assumed that  there exists  a competition between different players or different teams. Different to testing exists in gaming according to the goal(s) the role of a winner: that player/ team which has reached a defined  goal state before the other player/ teams,  has won. As a side-effect of gaming one can also evaluate the playing environment and give some feedback to the developers.
ALGORITHMIC INTELLIGENCE
  1. Case ESBD, T(S,X,V,∑,ε,α): Because a normal simulation with the simulator always does  produce only one path from the start state to the goal state it is desirable to have an algorithm α which would run on demand as many times as wanted and thereby the algorithm α would search for all possible paths and at the same time it would look for those derivations, where the goal state satisfies with  ε certain special requirements. Thus the result from the application of α onto a given model M with the vision V would generate the set SV* of all those final states which satisfy the special requirements.
  2. Case ESBG, T(S,X,V,∑,ε,α):   The case of gaming allows at least three kinds of interesting applications for algorithmic intelligence: (i) Introduce non-biological players with learning capabilities which can act simultaneously with the biological players; (ii) Introduce non-biological players with learning capabilities which have to learn how to support, to assist, to train biological player. This second case addresses the challenging task to develop algorithmic tutors for several kinds of learning tasks. (iii) Another variant of case (ii) is to enable the development of a personal algorithmic assistant who works only with one person on a long-term basis.

The kinds of algorithmic Intelligence in (2)(i)-(iii) are different to the  mentioned algorithmic intelligence α in (1).

TYPES OF ACTORS

As the default standard case of an actor it is assumed that there are biological actors, usually human persons, which will not be analyzed with their inner structure [IS]. While the behavior of every system — and  therefore any biological system too — can be described with a behavior function φ: I x IS —> IS x O (if one has all the necessary knowledge), in the default case of biological systems  no behavior function φ is specified, φ = 0. During interactive simulations biological systems act by themselves.

If non-biological actors are used — e.g. automata with a certain machine program (an algorithm) — then one can use these only if one has a fully specified behavior function φ. From this follows that a  change rule which is associated with a non-biological actor has in its Eplus and in its Eminus part not a concrete expression but a variable, which will be computed during the simulation by the non-biological actor depending from its input and its behavior function φ: φ(input)IS=(Eplus, Eminus)IS.

FINAL COMMENT

Everybody who has read the parts (1) – (4) has now a general knowledge about the motivation to develop the oksimo software tool to support human kind to have a better communication and thinking of possible futures and a first understanding (hopefully :-)) how this tool can work. Reading the UN sustainable development goals [SDGs] [1] you will learn, that the SDG4 (Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all) is fundamental to all other SDGs. The oksimo software tool is one tool to be of help to reach these goals.

REFERENCES

[1] The 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, provides a shared blueprint for peace and prosperity for people and the planet, now and into the future. At its heart are the 17 Sustainable Development Goals (SDGs), which are an urgent call for action by all countries – developed and developing – in a global partnership. They recognize that ending poverty and other deprivations must go hand-in-hand with strategies that improve health and education, reduce inequality, and spur economic growth – all while tackling climate change and working to preserve our oceans and forests. See PDF: https://sdgs.un.org/sites/default/files/publication/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf

[2] UN, SDG4, PDF, Argumentation why the SDG4 ist fundamental for all other SDGs: https://sdgs.un.org/sites/default/files/publications/2275sdbeginswitheducation.pdf

 

 

 

 

 

 

 

 

KOMEGA REQUIREMENTS No.1. Basic Application Scenario

KOMEGA REQUIREMENTS No.1. Basic Application Scenario

ISSN 2567-6458, 26.July – 11.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF TEXT:

requirements-no1-v3-11Aug2020 (published: Aug-11, 2020; this version replaces the version from 7.August 2020)

requirements-no1-v2-2-7Aug2020 (published: Aug-7, 2020; this version replaces the version from 6.August 2020)

requirements-no1-v2-6Aug2020 (published: Aug-6, 2020; this version replaces the version from 25.July 2020)

requirements-no1-25july2020-v1-pub (published: July-26, 2020)

PHILOSOPHY LAB

eJournal: uffmm.org

ISSN 2567-6458, July 13,  2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Changes: July 20.2019 (Rewriting the introduction)

CONTEXT

This Philosophy Lab section of the uffmm science blog is the last extension of the uffmm blog, happening July 2019. It has been provoked by the meta reflections about the AAI engineering approach.

SCOPE OF SECTION

This section deals with  the following topics:

  1. How can we talk about science including the scientist (and engineer!) as the main actors? In a certain sense one can say that science is mainly a specific way how to communicate and to verify the communication content. This presupposes that there is something called knowledge located in the heads of the actors.
  2. The presupposed knowledge usually is targeting different scopes encoded in different languages. The language enables or delimits meaning and meaning objects can either enable or  delimit a certain language. As part of the society and as exemplars of the homo sapiens species scientists participate in the main behavior tendencies to assimilate majority behavior and majority meanings. This can reduce the realm of knowledge in many ways. Biological life in general is the opposite to physical entropy by generating auotopoietically during the course of time  more and more complexity. This is due to a built-in creativity and the freedom to select. Thus life is always oscillating between conformity and experiment.
  3. The survival of modern societies depends highly on the ability   to communicate with maximal sharing of experience by exploring fast and extensively possible state spaces with their pros and cons. Knowledge must be round the clock visible to all, computablemodular, constructive, in the format of interactive games with transparent rules. Machines should be re-formatted as primarily helping humans, not otherwise around.
  4. To enable such new open and dynamic knowledge spaces one has to redefine computing machines extending the Turing machine (TM) concept to a  world machine (WM) concept which offers several new services for social groups, whole cities or countries. In the future there is no distinction between man and machine because there is a complete symbiotic unification because  the machines have become an integral part of a personality, the extension of the body in some new way; probably  far beyond the cyborg paradigm.
  5. The basic creativity and freedom of biological life has been further developed in a fundamental all embracing spirituality of life in the universe which is targeting a re-creation of the whole universe by using the universe for the universe.

 

AAI-THEORY V2 – BLUEPRINT: Bottom-up

eJournal: uffmm.org,
ISSN 2567-6458, 27.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: 28.February 2019 (Several corrections)

CONTEXT

An overview to the enhanced AAI theory version 2 you can find here. In this post we talk about the special topic how to proceed in a bottom-up approach.

BOTTOM-UP: THE GENERAL BLUEPRINT
Outine of the process how to generate an AS
Figure 1: Outline of the process how to generate an AS with a bottom-up approach

As the introductory figure shows it is assumed here that there is a collection of citizens and experts which offer their individual knowledge, experiences, and skills to ‘put them on the table’ challenged by a given problem P.

This knowledge is in the beginning not structured. The first step in the direction of an actor story (AS) is to analyze the different contributions in a way which shows distinguishable elements with properties and relations. Such a set of first ‘objects’ and ‘relations’ characterizes a set of facts which define a ‘situation’ or a ‘state’ as a collection of ‘facts’. Such a situation/ state can also be understood as a first simple ‘model‘ as response to a given problem. A model is as such ‘static‘; it describes what ‘is’ at a certain point of ‘time’.

In a next step the group has to identify possible ‘changes‘ which can be associated with at least one fact. There can be many possible changes which eventually  need different durations to come into effect. These effects can happen  as ‘exclusive alternatives’ or in ‘parallel’. Apply the possible changes to a  situation  generates   ‘successors’ to the actual situation. A sequence of situations generated by applied changes is  usually called a ‘simulation‘.

If one allows the interaction between real actors with a simulation by associating  a real actor to one of the actors ‘inside the simulation’ one is turning the simulation into an ‘interactive simulation‘ which represents basically a ‘computer game‘ (short: ‘egame‘).

One can use interactive simulations e.g. to (i) learn about the dynamics of a model, to (ii) test the assumptions of a model, to (iii) test the knowledge and skills of the real actors.

Making new experiences with a  simulation allows a continuous improvement of the model and its change rules.

Additionally one can include more citizens and experts into this process and one can use available knowledge from databases and libraries.

EPISTEMOLOGY OF CONCEPTS
Epistemology of concepts used in an AAI Analysis rprocess
Fig.2: Epistemology of concepts used in an AAI Analysis process

As outlined in the preceding section about the blueprint of a bottom-up process there will be a heavy   usage of concepts to describe state of affairs.

The literature about this topic in philosophy as well as many scientific disciplines is overwhelmingly and therefore this small text here can only be a ‘pointer’ into a complex topic. Nevertheless I will use exactly this pointer to explore this topic further.

While the literature is mainly dealing with  more or less specific partial models, I am trying here to point out a very general framework which fits to a more genera philosophical — especially epistemological — view as well as gives respect to many results of scientific disciplines.

The main dimensions here are (i) the outside external empirical world, which connects via sensors to the (ii) internal body, especially the brain,  which works largely ‘unconscious‘, and then (iii) the ‘conscious‘ part of he brain.

The most important relationship between the ‘conscious’ and the ‘unconscious’ part of the brain is the ability of the unconscious brain to transform automatically incoming concrete sens-experiences into more   ‘abstract’ structures, which have at least three sub-dimensions: (i) different concrete material, (ii) a sub-set of extracted common properties, (iii) different sets of occurring contexts associated with the different subsets. This enables the brain to extract only a ‘few’ abstract structures (= abstract concepts)  to deal with ‘many’  concrete events. Thus the abstract concept ‘chair’ can cover many different concrete chairs which have only a few properties in common. Additionally the chairs can occur in different ‘contexts’ associating them with different ‘relations’ which can  specify  possible different ‘usages’   of  the concept ‘chair’.

Thus, if the actor perceives something which ‘matches’ some ‘known’ concept then the actor is  not only conscious about the empirical concrete phenomenon but also simultaneously about the abstract concept which will automatically be activated. ‘Immediately’ the actor ‘knows’ that this empirical something is e.g. a ‘chair’. Concrete: this concrete something is matching an abstract concept ‘chair’ which can as such cover many other concrete things too which can be as concrete somethings partially different from another concrete something.

From this follows an interesting side effect: while an actor can easily decide, whether a concrete something is there  (“it is the case, that” = “it is true”) or not (“it is not the case, that” = “it isnot true” = “it is false”), an actor can not directly decide whether an abstract concept like ‘chair’ as such is ‘true’ in the sense, that the concept ‘as a whole’ corresponds to concrete empirical occurrences. This depends from the fact that an abstract concept like ‘chair’ can match with a  nearly infinite set of possible concrete somethings which are called ‘possible instances’ of the abstract concept. But a human actor can directly   ‘check’ only a ‘few’ concrete somethings. Therefore the usage of abstract concepts like ‘chair’, ‘house’, ‘bottle’ etc. implies  inherently an ‘open set’ of ‘possible’ concrete  exemplars and therefor is the usage of such concepts necessarily a ‘hypothetical’ usage.  Because we can ‘in principle’ check the real extensions of these abstract concepts   in everyday life as long there is the ‘freedom’ to do  such checks,  we are losing the ‘truth’ of our concepts and thereby the basis for a  realistic cooperation, if this ‘freedom of checking’ is not possible.

If some incoming perception is ‘not yet known’,  because nothing given in the unconsciousness does ‘match’,  it is in a basic sens ‘new’ and the brain will automatically generate a ‘new concept’.

THE DIMENSION OF MEANING

In Figure 2 one can find two other components: the ‘meaning relation’ which maps concepts into ‘language expression’.

Language expressions inside the brain correspond to a diversity of visual, auditory, tactile or other empirical event sequences, which are in use for communicative acts.

These language expressions are usually not ‘isolated structures’ but are embedded in relations which map the expression structures to conceptual structures including  the different substantiations of the abstract concepts and the associated contexts. By these relations the expressions are attached to the conceptual structures which are called the ‘meaning‘ of the expressions and vice versa the expressions are called the ‘language articulation’ of the meaning structures.

As far as conceptual structures are related via meaning relations to language expressions then  a perception can automatically cause the ‘activation’ of the associated language expressions, which in turn can be uttered in some way. But conceptual structures   can exist  (especially with children) without an available  meaning relation.

When language expressions are used within a communicative act then  their usage can activate in all participants of the communication the ‘learned’ concepts as their intended meanings. Heaving the meaning activated in someones ‘consciousness’ this is a real phenomenon for that actor. But from the occurrence of  concepts alone does not automatically follow, that a  concept is ‘backed up’ by some ‘real matter’ in the external world. Someone can utter that it is raining, in the hearer of this utterance the intended concepts can become activated, but in the outside external world no rain is happening. In this case one has to state that the utterance of the language expressions “Look, its raining” has no counterpart in the real world, therefore we call the utterance in this case ‘false‘ or  ‘not true‘.

THE DIMENSION OF TIME
The dimension of time based on past experience and combinatoric thinking
Fig.3: The dimension of time based on past experience and combinatoric thinking

The preceding figure 2 of the conceptual space is not yet complete. There is another important dimension based on the ability of the unconscious brain to ‘store’ certain structures in a ‘timely order’ which enables an actor — under certain conditions ! — to decide whether a certain structure X occurred in the consciousness ‘before’ or ‘after’ or ‘at the same time’ as another structure Y.

Evidently the unconscious brain is able do exactly this:  (i) it can arrange the different structures under certain conditions in a ‘timely order’;  (ii)  it can detect ‘differences‘ between timely succeeding structures;  the brain (iii) can conceptualize these changes as ‘change concepts‘ (‘rules of change’), and it can  can classify different kinds of change like ‘deterministic’, ‘non-deterministic’ with different kinds of probabilities, as well as ‘arbitrary’ as in the case of ‘free learning systems‘. Free learning systems are able to behave in a ‘deterministic-like manner’, but they can also change their patterns on account of internal learning and decision processes in nearly any direction.

Based on memories of conceptual structures and derived change concepts (rules of change) the unconscious brain is able to generate different kinds of ‘possible configurations’, whose quality is  depending from the degree of dependencies within the  ‘generating  criteria’: (i) no special restrictions; (ii) empirical restrictions; (iii) empirical restrictions for ‘upcoming states’ (if all drinkable water would be consumed, then one cannot plan any further with drinkable water).

 

 

 

 

 

 

 

AAI THEORY V2 –A Philosophical Framework

eJournal: uffmm.org,
ISSN 2567-6458, 22.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: 23.February 2019 (continued the text)

Last change: 24.February 2019 (extended the text)

CONTEXT

In the overview of the AAI paradigm version 2 you can find this section  dealing with the philosophical perspective of the AAI paradigm. Enjoy reading (or not, then send a comment :-)).

THE DAILY LIFE PERSPECTIVE

The perspective of Philosophy is rooted in the everyday life perspective. With our body we occur in a space with other bodies and objects; different features, properties  are associated with the objects, different kinds of relations an changes from one state to another.

From the empirical sciences we have learned to see more details of the everyday life with regard to detailed structures of matter and biological life, with regard to the long history of the actual world, with regard to many interesting dynamics within the objects, within biological systems, as part of earth, the solar system and much more.

A certain aspect of the empirical view of the world is the fact, that some biological systems called ‘homo sapiens’, which emerged only some 300.000 years ago in Africa, show a special property usually called ‘consciousness’ combined with the ability to ‘communicate by symbolic languages’.

General setting of the homo sapiens species (simplified)
Figure 1: General setting of the homo sapiens species (simplified)

As we know today the consciousness is associated with the brain, which in turn is embedded in the body, which  is further embedded in an environment.

Thus those ‘things’ about which we are ‘conscious’ are not ‘directly’ the objects and events of the surrounding real world but the ‘constructions of the brain’ based on actual external and internal sensor inputs as well as already collected ‘knowledge’. To qualify the ‘conscious things’ as ‘different’ from the assumed ‘real things’ ‘outside there’ it is common to speak of these brain-generated virtual things either as ‘qualia’ or — more often — as ‘phenomena’ which are  different to the assumed possible real things somewhere ‘out there’.

PHILOSOPHY AS FIRST PERSON VIEW

‘Philosophy’ has many facets.  One enters the scene if we are taking the insight into the general virtual character of our primary knowledge to be the primary and irreducible perspective of knowledge.  Every other more special kind of knowledge is necessarily a subspace of this primary phenomenological knowledge.

There is already from the beginning a fundamental distinction possible in the realm of conscious phenomena (PH): there are phenomena which can be ‘generated’ by the consciousness ‘itself’  — mostly called ‘by will’ — and those which are occurring and disappearing without a direct influence of the consciousness, which are in a certain basic sense ‘given’ and ‘independent’,  which are appearing  and disappearing according to ‘their own’. It is common to call these independent phenomena ’empirical phenomena’ which represent a true subset of all phenomena: PH_emp  PH. Attention: These empirical phenomena’ are still ‘phenomena’, virtual entities generated by the brain inside the brain, not directly controllable ‘by will’.

There is a further basic distinction which differentiates the empirical phenomena into those PH_emp_bdy which are controlled by some processes in the body (being tired, being hungry, having pain, …) and those PH_emp_ext which are controlled by objects and events in the environment beyond the body (light, sounds, temperature, surfaces of objects, …). Both subsets of empirical phenomena are different: PH_emp_bdy PH_emp_ext = 0. Because phenomena usually are occurring  associated with typical other phenomena there are ‘clusters’/ ‘pattern’ of phenomena which ‘represent’ possible events or states.

Modern empirical science has ‘refined’ the concept of an empirical phenomenon by introducing  ‘standard objects’ which can be used to ‘compare’ some empirical phenomenon with such an empirical standard object. Thus even when the perception of two different observers possibly differs somehow with regard to a certain empirical phenomenon, the additional comparison with an ’empirical standard object’ which is the ‘same’ for both observers, enhances the quality, improves the precision of the perception of the empirical phenomena.

From these considerations we can derive the following informal definitions:

  1. Something is ‘empirical‘ if it is the ‘real counterpart’ of a phenomenon which can be observed by other persons in my environment too.
  2. Something is ‘standardized empirical‘ if it is empirical and can additionally be associated with a before introduced empirical standard object.
  3. Something is ‘weak empirical‘ if it is the ‘real counterpart’ of a phenomenon which can potentially be observed by other persons in my body as causally correlated with the phenomenon.
  4. Something is ‘cognitive‘ if it is the counterpart of a phenomenon which is not empirical in one of the meanings (1) – (3).

It is a common task within philosophy to analyze the space of the phenomena with regard to its structure as well as to its dynamics.  Until today there exists not yet a complete accepted theory for this subject. This indicates that this seems to be some ‘hard’ task to do.

BRIDGING THE GAP BETWEEN BRAINS

As one can see in figure 1 a brain in a body is completely disconnected from the brain in another body. There is a real, deep ‘gap’ which has to be overcome if the two brains want to ‘coordinate’ their ‘planned actions’.

Luckily the emergence of homo sapiens with the new extended property of ‘consciousness’ was accompanied by another exciting property, the ability to ‘talk’. This ability enabled the creation of symbolic languages which can help two disconnected brains to have some exchange.

But ‘language’ does not consist of sounds or a ‘sequence of sounds’ only; the special power of a language is the further property that sequences of sounds can be associated with ‘something else’ which serves as the ‘meaning’ of these sounds. Thus we can use sounds to ‘talk about’ other things like objects, events, properties etc.

The single brain ‘knows’ about the relationship between some sounds and ‘something else’ because the brain is able to ‘generate relations’ between brain-structures for sounds and brain-structures for something else. These relations are some real connections in the brain. Therefore sounds can be related to ‘something  else’ or certain objects, and events, objects etc.  can become related to certain sounds. But these ‘meaning relations’ can only ‘bridge the gap’ to another brain if both brains are using the same ‘mapping’, the same ‘encoding’. This is only possible if the two brains with their bodies share a real world situation RW_S where the perceptions of the both brains are associated with the same parts of the real world between both bodies. If this is the case the perceptions P(RW_S) can become somehow ‘synchronized’ by the shared part of the real world which in turn is transformed in the brain structures P(RW_S) —> B_S which represent in the brain the stimulating aspects of the real world.  These brain structures B_S can then be associated with some sound structures B_A written as a relation  MEANING(B_S, B_A). Such a relation  realizes an encoding which can be used for communication. Communication is using sound sequences exchanged between brains via the body and the air of an environment as ‘expressions’ which can be recognized as part of a learned encoding which enables the receiving brain to identify a possible meaning candidate.

DIFFERENT MODES TO EXPRESS MEANING

Following the evolution of communication one can distinguish four important modes of expressing meaning, which will be used in this AAI paradigm.

VISUAL ENCODING

A direct way to express the internal meaning structures of a brain is to use a ‘visual code’ which represents by some kinds of drawing the visual shapes of objects in the space, some attributes of  shapes, which are common for all people who can ‘see’. Thus a picture and then a sequence of pictures like a comic or a story board can communicate simple ideas of situations, participating objects, persons and animals, showing changes in the arrangement of the shapes in the space.

Pictorial expressions representing aspects of the visual and the auditory sens modes
Figure 2: Pictorial expressions representing aspects of the visual and the auditory sens modes

Even with a simple visual code one can generate many sequences of situations which all together can ‘tell a story’. The basic elements are a presupposed ‘space’ with possible ‘objects’ in this space with different positions, sizes, relations and properties. One can even enhance these visual shapes with written expressions of  a spoken language. The sequence of the pictures represents additionally some ‘timely order’. ‘Changes’ can be encoded by ‘differences’ between consecutive pictures.

FROM SPOKEN TO WRITTEN LANGUAGE EXPRESSIONS

Later in the evolution of language, much later, the homo sapiens has learned to translate the spoken language L_s in a written format L_w using signs for parts of words or even whole words.  The possible meaning of these written expressions were no longer directly ‘visible’. The meaning was now only available for those people who had learned how these written expressions are associated with intended meanings encoded in the head of all language participants. Thus only hearing or reading a language expression would tell the reader either ‘nothing’ or some ‘possible meanings’ or a ‘definite meaning’.

A written textual version in parallel to a pictorial version
Figure 3: A written textual version in parallel to a pictorial version

If one has only the written expressions then one has to ‘know’ with which ‘meaning in the brain’ the expressions have to be associated. And what is very special with the written expressions compared to the pictorial expressions is the fact that the elements of the pictorial expressions are always very ‘concrete’ visual objects while the written expressions are ‘general’ expressions allowing many different concrete interpretations. Thus the expression ‘person’ can be used to be associated with many thousands different concrete objects; the same holds for the expression ‘road’, ‘moving’, ‘before’ and so on. Thus the written expressions are like ‘manufacturing instructions’ to search for possible meanings and configure these meanings to a ‘reasonable’ complex matter. And because written expressions are in general rather ‘abstract’/ ‘general’ which allow numerous possible concrete realizations they are very ‘economic’ because they use minimal expressions to built many complex meanings. Nevertheless the daily experience with spoken and written expressions shows that they are continuously candidates for false interpretations.

FORMAL MATHEMATICAL WRITTEN EXPRESSIONS

Besides the written expressions of everyday languages one can observe later in the history of written languages the steady development of a specialized version called ‘formal languages’ L_f with many different domains of application. Here I am  focusing   on the formal written languages which are used in mathematics as well as some pictorial elements to ‘visualize’  the intended ‘meaning’ of these formal mathematical expressions.

Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)
Fig. 4: Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)

One prominent concept in mathematics is the concept of a ‘graph’. In  the basic version there are only some ‘nodes’ (also called vertices) and some ‘edges’ connecting the nodes.  Formally one can represent these edges as ‘pairs of nodes’. If N represents the set of nodes then N x N represents the set of all pairs of these nodes.

In a more specialized version the edges are ‘directed’ (like a ‘one way road’) and also can be ‘looped back’ to a node   occurring ‘earlier’ in the graph. If such back-looping arrows occur a graph is called a ‘cyclic graph’.

Directed cyclic graph extended to represent 'states of affairs'
Fig.5: Directed cyclic graph extended to represent ‘states of affairs’

If one wants to use such a graph to describe some ‘states of affairs’ with their possible ‘changes’ one can ‘interpret’ a ‘node’ as  a state of affairs and an arrow as a change which turns one state of affairs S in a new one S’ which is minimally different to the old one.

As a state of affairs I  understand here a ‘situation’ embedded in some ‘context’ presupposing some common ‘space’. The possible ‘changes’ represented by arrows presuppose some dimension of ‘time’. Thus if a node n’  is following a node n indicated by an arrow then the state of affairs represented by the node n’ is to interpret as following the state of affairs represented in the node n with regard to the presupposed time T ‘later’, or n < n’ with ‘<‘ as a symbol for a timely ordering relation.

Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token
Fig.6: Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token

The space can be any kind of a space. If one assumes as an example a 2-dimensional space configured as a grid –as shown in figure 6 — with two tokens at certain positions one can introduce a language to describe the ‘facts’ which constitute the state of affairs. In this example one needs ‘names for objects’, ‘properties of objects’ as well as ‘relations between objects’. A possible finite set of facts for situation 1 could be the following:

  1. TOKEN(T1), BLACK(T1), POSITION(T1,1,1)
  2. TOKEN(T2), WHITE(T2), POSITION(T2,2,1)
  3. NEIGHBOR(T1,T2)
  4. CELL(C1), POSITION(1,2), FREE(C1)

‘T1’, ‘T2’, as well as ‘C1’ are names of objects, ‘TOKEN’, ‘BACK’ etc. are names of properties, and ‘NEIGHBOR’ is a relation between objects. This results in the equation:

S1 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), TOKEN(T2), WHITE(T2), POSITION(T2,2,1), NEIGHBOR(T1,T2), CELL(C1), POSITION(1,2), FREE(C1)}

These facts describe the situation S1. If it is important to describe possible objects ‘external to the situation’ as important factors which can cause some changes then one can describe these objects as a set of facts  in a separated ‘context’. In this example this could be two players which can move the black and white tokens and thereby causing a change of the situation. What is the situation and what belongs to a context is somewhat arbitrary. If one describes the agriculture of some region one usually would not count the planets and the atmosphere as part of this region but one knows that e.g. the sun can severely influence the situation   in combination with the atmosphere.

Change of a state of affairs given as a state which will be enhanced by a new object
Fig.7: Change of a state of affairs given as a state which will be enhanced by a new object

Let us stay with a state of affairs with only a situation without a context. The state of affairs is     a ‘state’. In the example shown in figure 6 I assume a ‘change’ caused by the insertion of a new black token at position (2,2). Written in the language of facts L_fact we get:

  1. TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)

Thus the new state S2 is generated out of the old state S1 by unifying S1 with the set of new facts: S2 = S1 {TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)}. All the other facts of S1 are still ‘valid’. In a more general manner one can introduce a change-expression with the following format:

<S1, S2, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)})>

This can be read as follows: The follow-up state S2 is generated out of the state S1 by adding to the state S1 the set of facts { … }.

This layout of a change expression can also be used if some facts have to be modified or removed from a state. If for instance  by some reason the white token should be removed from the situation one could write:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)})>

Another notation for this is S2 = S1 – {TOKEN(T2), WHITE(T2), POSITION(2,1)}.

The resulting state S2 would then look like:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1)}

And a combination of subtraction of facts and addition of facts would read as follows:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)}, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would result in the final state S2:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1),TOKEN(T3), BLACK(T3), POSITION(2,2)}

These simple examples demonstrate another fact: while facts about objects and their properties are independent from each other do relational facts depend from the state of their object facts. The relation of neighborhood e.g. depends from the participating neighbors. If — as in the example above — the object token T2 disappears then the relation ‘NEIGHBOR(T1,T2)’ no longer holds. This points to a hierarchy of dependencies with the ‘basic facts’ at the ‘root’ of a situation and all the other facts ‘above’ basic facts or ‘higher’ depending from the basic facts. Thus ‘higher order’ facts should be added only for the actual state and have to be ‘re-computed’ for every follow-up state anew.

If one would specify a context for state S1 saying that there are two players and one allows for each player actions like ‘move’, ‘insert’ or ‘delete’ then one could make the change from state S1 to state S2 more precise. Assuming the following facts for the context:

  1. PLAYER(PB1), PLAYER(PW1), HAS-THE-TURN(PB1)

In that case one could enhance the change statement in the following way:

<S1, S2, PB1,insert(TOKEN(T3,2,2)),add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would read as follows: given state S1 the player PB1 inserts a  black token at position (2,2); this yields a new state S2.

With or without a specified context but with regard to a set of possible change statements it can be — which is the usual case — that there is more than one option what can be changed. Some of the main types of changes are the following ones:

  1. RANDOM
  2. NOT RANDOM, which can be specified as follows:
    1. With PROBABILITIES (classical, quantum probability, …)
    2. DETERMINISTIC

Furthermore, if the causing object is an actor which can adapt structurally or even learn locally then this actor can appear in some time period like a deterministic system, in different collected time periods as an ‘oscillating system’ with different behavior, or even as a random system with changing probabilities. This make the forecast of systems with adaptive and/ or learning systems rather difficult.

Another aspect results from the fact that there can be states either with one actor which can cause more than one action in parallel or a state with multiple actors which can act simultaneously. In both cases the resulting total change has eventually to be ‘filtered’ through some additional rules telling what  is ‘possible’ in a state and what not. Thus if in the example of figure 6 both player want to insert a token at position (2,2) simultaneously then either  the rules of the game would forbid such a simultaneous action or — like in a computer game — simultaneous actions are allowed but the ‘geometry of a 2-dimensional space’ would not allow that two different tokens are at the same position.

Another aspect of change is the dimension of time. If the time dimension is not explicitly specified then a change from some state S_i to a state S_j does only mark the follow up state S_j as later. There is no specific ‘metric’ of time. If instead a certain ‘clock’ is specified then all changes have to be aligned with this ‘overall clock’. Then one can specify at what ‘point of time t’ the change will begin and at what point of time t*’ the change will be ended. If there is more than one change specified then these different changes can have different timings.

THIRD PERSON VIEW

Up until now the point of view describing a state and the possible changes of states is done in the so-called 3rd-person view: what can a person perceive if it is part of a situation and is looking into the situation.  It is explicitly assumed that such a person can perceive only the ‘surface’ of objects, including all kinds of actors. Thus if a driver of a car stears his car in a certain direction than the ‘observing person’ can see what happens, but can not ‘look into’ the driver ‘why’ he is steering in this way or ‘what he is planning next’.

A 3rd-person view is assumed to be the ‘normal mode of observation’ and it is the normal mode of empirical science.

Nevertheless there are situations where one wants to ‘understand’ a bit more ‘what is going on in a system’. Thus a biologist can be  interested to understand what mechanisms ‘inside a plant’ are responsible for the growth of a plant or for some kinds of plant-disfunctions. There are similar cases for to understand the behavior of animals and men. For instance it is an interesting question what kinds of ‘processes’ are in an animal available to ‘navigate’ in the environment across distances. Even if the biologist can look ‘into the body’, even ‘into the brain’, the cells as such do not tell a sufficient story. One has to understand the ‘functions’ which are enabled by the billions of cells, these functions are complex relations associated with certain ‘structures’ and certain ‘signals’. For this it is necessary to construct an explicit formal (mathematical) model/ theory representing all the necessary signals and relations which can be used to ‘explain’ the obsrvable behavior and which ‘explains’ the behavior of the billions of cells enabling such a behavior.

In a simpler, ‘relaxed’ kind of modeling  one would not take into account the properties and behavior of the ‘real cells’ but one would limit the scope to build a formal model which suffices to explain the oservable behavior.

This kind of approach to set up models of possible ‘internal’ (as such hidden) processes of an actor can extend the 3rd-person view substantially. These models are called in this text ‘actor models (AM)’.

HIDDEN WORLD PROCESSES

In this text all reported 3rd-person observations are called ‘actor story’, independent whether they are done in a pictorial or a textual mode.

As has been pointed out such actor stories are somewhat ‘limited’ in what they can describe.

It is possible to extend such an actor story (AS)  by several actor models (AM).

An actor story defines the situations in which an actor can occur. This  includes all kinds of stimuli which can trigger the possible senses of the actor as well as all kinds of actions an actor can apply to a situation.

The actor model of such an actor has to enable the actor to handle all these assumed stimuli as well as all these actions in the expected way.

While the actor story can be checked whether it is describing a process in an empirical ‘sound’ way,  the actor models are either ‘purely theoretical’ but ‘behavioral sound’ or they are also empirically sound with regard to the body of a biological or a technological system.

A serious challenge is the occurrence of adaptiv or/ and locally learning systems. While the actor story is a finite  description of possible states and changes, adaptiv or/ and locally learning systeme can change their behavior while ‘living’ in the actor story. These changes in the behavior can not completely be ‘foreseen’!

COGNITIVE EXPERT PROCESSES

According to the preceding considerations a homo sapiens as a biological system has besides many properties at least a consciousness and the ability to talk and by this to communicate with symbolic languages.

Looking to basic modes of an actor story (AS) one can infer some basic concepts inherently present in the communication.

Without having an explicit model of the internal processes in a homo sapiens system one can infer some basic properties from the communicative acts:

  1. Speaker and hearer presuppose a space within which objects with properties can occur.
  2. Changes can happen which presuppose some timely ordering.
  3. There is a disctinction between concrete things and abstract concepts which correspond to many concrete things.
  4. There is an implicit hierarchy of concepts starting with concrete objects at the ‘root level’ given as occurence in a concrete situation. Other concepts of ‘higher levels’ refer to concepts of lower levels.
  5. There are different kinds of relations between objects on different conceptual levels.
  6. The usage of language expressions presupposes structures which can be associated with the expressions as their ‘meanings’. The mapping between expressions and their meaning has to be learned by each actor separately, but in cooperation with all the other actors, with which the actor wants to share his meanings.
  7. It is assume that all the processes which enable the generation of concepts, concept hierarchies, relations, meaning relations etc. are unconscious! In the consciousness one can  use parts of the unconscious structures and processes under strictly limited conditions.
  8. To ‘learn’ dedicated matters and to be ‘critical’ about the quality of what one is learnig requires some disciplin, some learning methods, and a ‘learning-friendly’ environment. There is no guaranteed method of success.
  9. There are lots of unconscious processes which can influence understanding, learning, planning, decisions etc. and which until today are not yet sufficiently cleared up.

 

 

 

 

 

 

 

 

AAI THEORY V2 – USABILITY AND USEFULNESS

eJournal: uffmm.org
ISSN 2567-6458, 4.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

REMARK (5.May 2019)

This text  has to be reviewed again on account of the new aspect of gaming as  discussed in the post Engineering and Society.

CONTEXT

An overview of the enhanced AAI theory  version 2 you can find here.  In this post we talk about the sixth chapter dealing with usability and usefulness.

USABILITY AND USEFULNESS

In the AAI paradigm the concept of usability is seen as a sub-topic of the more broader concept of usefulness. Furthermore Usefulness  as well as usability are understood as measurements comparing some target with some presupposed norm.

Example: If someone wants to buy a product A whose prize fits well with the available budget and this product A shows only  an average usability then the product is probably ‘more useful’ for the buyer than another product B which does not fit with the budget although it  has a better usability. A conflict can  arise if the weaker value of the usability of product A causes during the usage of product A ‘bad effects’ onto the user of product A which in turn produce additional negative costs which enhance the original ‘nice price’ to a degree where the product A becomes finally  ‘more costly’ than product B.

Therefore  the concept usefulness will be  defined independently from the concept usability and depends completely  from the person or company who is searching for the solution of a problem. The concept of usability depends directly on the real structure of an  actor, a biological one or a non-biological one. Thus independent of the definition of the actual usefulness the given structure of an actor implies certain capabilities with regard to input, output as well as to  internal   processing. Therefore if an X seems to be highly useful for someone and to get X  needs a certain actor story to become realized with certain actors then it can matter whether this process includes a ‘good usability’ for the participating actors or not.

In the AAI paradigm both concepts usefulness as well as usability will be analyzed to provide a  chance to check the contributions of both concepts  in some predefined duration of usage. This allows the analysis of the sustainability of the wanted usefulness restricted to  usability as a parameter. There can be even more parameters   included in the evaluation of the actor story  to enhance the scope of   sustainability. Depending from the definition of the concept of resilience one can interpret the concept of sustainability used in this AAI paradigm as compatible with the resilience concept too.

MEASUREMENT

To speak about ‘usefulness’, ‘usability’, ‘sustainability’ (or ‘resilience’) requires some kind of a scale of values with an   ordering relation R allowing to state about  some values x,y   whether R(x,y) or R(y,x) or EQUAL(x,y). The values used in the scale have to be generated by some defined process P which is understood as a measurement process M which basically compares some target X with some predefined norm N and gives as a result a pair (v,N) telling a number v associated with the applied norm N. Written: M : X x N —> V x N.

A measurement procedure M must be transparent and repeatable in the sense that the repeated application of the measurement procedure M will generate the same results than before. Associated with the measurement procedure there can exist many additional parameters like ‘location’, ‘time’, ‘temperature’, ‘humidity’,  ‘used technologies’, etc.

Because there exist targets X which are not static it can be a problem when and how often one has to measure these targets to get some reliable value. And this problem becomes even worse if the target includes adaptive systems which are changing constantly like in the case of  biological systems.

All biological systems have some degree of learnability. Thus if a human actor is acting as part of an actor story  the human actor will learn every time he is working through the process. Thus making errors during his first run of the process does not imply that he will repeat these errors the next time. Usually one can observe a learning curve associated with n-many runs which show — mostly — a decrease in errors, a decrease in processing time, and — in general — a change of all parameters, which can be measured. Thus a certain actor story can receive a good usability value after a defined number of usages.  But there are other possible subjective parameters like satisfaction, being excited, being interested and the like which can change in the opposite direction, because to become well adapted to  the process can be boring which in turn can lead to less concentrations with many different negative consequences.

 

 

 

 

AAI THEORY V2 – DEFINING THE CONTEXT

eJournal: uffmm.org,
ISSN 2567-6458, 24.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about the second chapter where you have to define the context of the problem, which should be analyzed.

DEFINING THE CONTEXT OF PROBLEM P

  1. A defined problem P identifies at least one property associated with  a configuration which has a lower level x than a value y inferred by an accepted standard E.
  2. The property P is always part of some environment ENV which interacts with the problem P.
  3. To approach an improved configuration S measured by  some standard E starting with a  problem P one  needs a process characterized by a set of necessary states Q which are connected by necessary changes X.
  4. Such a process can be described by an actor story AS.
  5. All properties which belong to the whole actor story and therefore have to be satisfied by every state q of the actor story  are called  non-functional process requirements (NFPRs). If required properties are are associate with only one state but for the whole state, then these requirements are called non-functional state requirements (NFSRs).
  6. An actor story can include many different sequences, where every sequence is called a path PTH.  A finite set of paths can represent a task T which has to be fulfilled. Within the environment of the defined problem P it mus be possible to identify at least one task T to be realized from some start state to some goal state. The realization of a task T is assumed to be ‘driven’ by input-output-systems which are called actors A.
  7. Additionally it mus be possible to identify at least one executing actor A_exec doing a  task and at least one actor assisting A_ass the executing actor to fulfill the task.
  8. A state q represents all needed actors as part of the associated environment ENV. Therefore a  state q can be analyzed as a network of elements interacting with each other. But this is only one possible structure for an analysis besides others.
  9. For the   analysis of a possible solution one can distinguish at least two overall strategies:
    1. Top-down: There exists a group of experts EXPs which will analyze a possible solution, will test these, and then will propose these as a solution for others.
    2. Bottom-up: There exists a group of experts EXPs too but additionally there exists a group of customers CTMs which will be guided by the experts to use their own experience to find a possible solution.

EXAMPLE

The mayor of a city has identified as a  problem the relationship between the actual population number POP,    the amount of actual available  living space LSP0, and the  amount of recommended living space LSPr by some standard E.  The population of his city is steadily interacting with populations in the environment: citizens are moving into the environment MIGR- and citizens from the environment are arriving MIGR+. The population,  the city as well as the environment can be characterized by a set of parameters <P1, …, Pn> called a configuration which represents a certain state q at a certain point of time t. To convert the actual configuration called a start state q0 to a new configuration S called a goal state q+ with better values requires the application of a defined set of changes Xs which change the start state q0 stepwise into a sequence of states qi which finally will end up in the desired goal state q+. A description of all these states necessary for the conversion of the start state q0 into the goal state q+ is called here an actor story AS. Because a democratic elected  mayor of the city wants to be ‘liked’ by his citizens he will require that this conversion process should end up in a goal state which is ‘not harmful’ for his citizens, which should support a ‘secure’ and ‘safety’ environment, ‘good transportation’ and things like that. This illustrates non-functional state requirements (NFSRs). Because the mayor wants also not to much trouble during the conversion process he will also require some limits for the whole conversion process, this is for the whole actor story. This illustrates non-functional process requirements (NFPRs). To realize the intended conversion process the mayor needs several executing actors which are doing the job and several other assistive actors helping the executing actors. To be able to use the available time and resources ‘effectively’ the executing actors need defined tasks which have to be realized to come from one state to the next. Often there are more than one sequences of states possible either alternatively or in parallel. A certain state at a certain point of time t can be viewed as a network where all participating actors are in many ways connected with each other, interacting in several ways and thereby influencing each other. This realizes different kinds of communications with different kinds of contents and allows the exchange of material and can imply the change of the environment. Until today the mayors of cities use as their preferred strategy to realize conversion processes selected small teams of experts doing their job in a top-down manner leaving the citizens more or less untouched, at least without a serious participation in the whole process. From now on it is possible and desirable to twist the strategy from top-down to bottom up. This implies that the selected experts enable a broad communication with potentially all citizens which are touched by a conversion and including  the knowledge, experience, skills, visions etc. of these citizens  by applying new methods possible in the new digital age.

 

 

WHY QT FOR AAI?

eJournal: uffmm.org, ISSN 2567-6458, 2.January 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email:
gerd@doeben-henisch.de

CONTEXT

This is a continuation from the post QUANTUM THEORY (QT). BASIC PROPERTIES, where basic properties of quantum theory (QT) according to ch.27 of Griffiths (2003) have been reported. Before we dig deeper into the QT matter here a remark why we should do this at all because the main topic of the uffmm.org blog is the Actor-Actor Interaction (AAI) paradigm dealing with actors including a subset of actors which have the complexity of biological systems at least as complex as exemplars of the kind of human sapiens.

WHY QT IN THE CASE OF AAI

As Griffiths (2003) points out in his chapter 1 and chapter 27 quantum theory deals with objects which are not perceivable by the normal human sensory apparatus. It needs special measurement procedures and instrumentation to measure events related to quantum objects. Therefore the level of analysis in quantum theory is quite ‘low’ compared to the complexity hierarchies of biological systems.

Baars and Edelman (2012) address the question of the relationship of QT and biological phenomena, especially those connected to the phenomenon of human consciousness, explicitly. Their conclusion is very clear: “Current quantum-level proposals do not explain the prominent empirical features of consciousness”. (Baars and Edelman (2012):p.286)

Behind this short statement we have to accept the deep insights of modern (evolutionary and micro) biology that a main characteristics of biological systems has to be seen in their ability to overcome the fluctuating and unstable quantum properties by a more and more complex machinery which posses its own logic and its own specific dynamics.

Therefore the level of analysis for the behavior of biological systems is usually ‘far above’ the level of quantum theory.

Why then at all bother with QT in the case of the AAI paradigm?

If one looks to the AAI paradigm then one detects the concept of the actor story (AS) which assumes that reality can be conceived — and then be described – as a ‘process’ which can be analyzed as a ‘sequence of states’ characterized by decidable ‘facts’ which can ‘change in time’. A ‘change’ can occur either by some changing time measured by ‘time points’ generated by a ‘time machine’ called ‘clock’ or by some ‘inherent change’ observable as a change in some ‘facts’.

Restricting the description of the transitions of such a sequence of states to properties of classical probability theory, one detects severe limits of the descriptive power of a CPT description compared to what has to be done in an AAI analysis. (see for this the post BACKGROUND INFORMATION 27.Dec.2018: The AAI-paradigm and Quantum Logic. The Limits of Classic Probability). The limits result from the fact that actors within the AAI paradigm are in many cases ‘not static’ and ‘not deterministic’ systems which can change their structures and behavior functions in a way that the basic assumptions of CPT are no longer valid.

It remains the question whether a probability theory PT which is based on quantum theory QT is in some sense ‘better adapted’ to the AAI paradigm than Classical PT.

This question is the main perspective guiding the further encounter with QT.

See next.

 

 

 

 

 

 

 

 

 

 

 

 

 

QUELLEN

  • Bernard J. Baars and David B. Edelman. Consciousness, biology, and quantum hypotheses. Physics of Life Review, 9(3):285 – 294, 2012. D O I: 10.1016/j.plrev.2012.07.001. Epub. URL http://www.ncbi.nlm.nih.gov/pubmed/22925839
  • R.B. Griffiths. Consistent Quantum Theory. Cambridge University Press, New York, 2003

 

AASE – Actor-Actor Systems Engineering. Theory & Applications. Micro-Edition (Vers.9)

eJournal: uffmm.org, ISSN 2567-6458
13.June  2018
Email: info@uffmm.org
Authors: Gerd Doeben-Henisch, Zeynep Tuncer,  Louwrence Erasmus
Email: doeben@fb2.fra-uas.de
Email: gerd@doeben-henisch.de

PDF

CONTENTS

1 History: From HCI to AAI …
2 Different Views …
3 Philosophy of the AAI-Expert …
4 Problem (Document) …
5 Check for Analysis …
6 AAI-Analysis …
6.1 Actor Story (AS) . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1 Textual Actor Story (TAS) . . . . . . . . . . . . . . .
6.1.2 Pictorial Actor Story (PAT) . . . . . . . . . . . . . .
6.1.3 Mathematical Actor Story (MAS) . . . . . . . . . . .
6.1.4 Simulated Actor Story (SAS) . . . . . . . . . . . . .
6.1.5 Task Induced Actor Requirements (TAR) . . . . . . .
6.1.6 Actor Induced Actor Requirements (UAR) . . . . . .
6.1.7 Interface-Requirements and Interface-Design . . . .
6.2 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Actor and Actor Story . . . . . . . . . . . . . . . . .
6.2.2 Actor Model . . . . . . . . . . . . . . . . . . . . . .
6.2.3 Actor as Input-Output System . . . . . . . . . . . .
6.2.4 Learning Input-Output Systems . . . . . . . . . . . .
6.2.5 General AM . . . . . . . . . . . . . . . . . . . . . .
6.2.6 Sound Functions . . . . . . . . . . . . . . . . . . .
6.2.7 Special AM . . . . . . . . . . . . . . . . . . . . . .
6.2.8 Hypothetical Model of a User – The GOMS Paradigm
6.2.9 Example: An Electronically Locked Door . . . . . . .
6.2.10 A GOMS Model Example . . . . . . . . . . . . . . .
6.2.11 Further Extensions . . . . . . . . . . . . . . . . . .
6.2.12 Design Principles; Interface Design . . . . . . . . .
6.3 Simulation of Actor Models (AMs) within an Actor Story (AS) .
6.4 Assistive Actor-Demonstrator . . . . . . . . . . . . . . . . . .
6.5 Approaching an Optimum Result . . . . .
7 What Comes Next: The Real System
7.1 Logical Design, Implementation, Validation . . . .
7.2 Conceptual Gap In Systems Engineering? . . .
8 The AASE-Paradigm …
References

Abstract

This text is based on the the paper “AAI – Actor-Actor Interaction. A Philosophy of Science View” from 3.Oct.2017 and version 11 of the paper “AAI – Actor-Actor Interaction. An Example Template” and it   transforms these views in the new paradigm ‘Actor- Actor Systems Engineering’ understood as a theory as well as a paradigm for and infinite set of applications. In analogy to the slogan ’Object-Oriented Software Engineering (OO SWE)’ one can understand the new acronym AASE as a systems engineering approach where the actor-actor interactions are the base concepts for the whole engineering process. Furthermore it is a clear intention to view the topic AASE explicitly from the point of view of a theory (as understood in Philosophy of Science) as well as from the point of view of possible applications (as understood in systems engineering). Thus the classical term of Human-Machine Interaction (HMI) or even the older Human-Computer Interaction (HCI) is now embedded within the new AASE approach. The same holds for the fuzzy discipline of Artificial Intelligence (AI) or the subset of AI called Machine Learning (ML). Although the AASE-approach is completely in its beginning one can already see how powerful this new conceptual framework  is.

 

 

ACTOR-ACTOR INTERACTION. Philosophy of the Actor

eJournal: uffmm.org, ISSN 2567-6458
16.March 2018
Email: info@uffmm.org
Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Frankfurt University of Applied Sciences (FRA-UAS)
Institut for New Media (INM, Frankfurt)

PDF

CONTENTS

I   A Vision as a Problem to be Solved … 1
II   Language, Meaning & Ontology …  2
     II-A   Language Levels . . . . . . . . .  . . 2
     II-B  Common Empirical Matter .  . . . . . 2
     II-C   Perceptual Levels . . . . . . .  . . . . 3
     II-D   Space & Time . . . . . . . .  . . . . . 4
     II-E    Different Language Modes . . . 4
     II-F    Meaning of Expressions & Ontology … 4
     II-G   True Expressions . . . . . . .  . . . .  5
     II-H   The Congruence of Meaning  . . . .  5
III   Actor Algebra … 6
IV   World Algebra  … 7
V    How to continue … 8
VI References … 8

Abstract

As preparation for this text one should read the chapter about the basic layout of an Actor-Actor Analysis (AAA) as part of an systems engineering process (SEP). In this text it will be described which internal conditions one has to assume for an actor who uses a language to talk about his observations oft he world to someone else in a verifiable way. Topics which are explained in this text are e.g. ’language’,’meaning’, ’ontology’, ’consciousness’, ’true utterance’, ’synonymous expression.

INTELLIGENT MACHINES – INTRODUCTION

Scientific Workplace For an Integrated Engineering of the Future
eJournal uffmm.org ISSN 2567-6458 (info@uffmm.org)

by
Gerd Doeben-Henisch
(gerd@doeben-henisch.de)

OVERVIEW

A short story telling You, (i) how we interface the intelligent machines (IM) part with the actor-actor interaction (AAI) part, (ii) a first working definition of intelligent machines (IM) in this text, and (iii) defining intelligence and how one can this measure.

IM WITHIN AAI

In this blog we see IM not isolated, as a stand alone endeavor, but as embedded in a discipline called actor-actor interaction (AAI)(Comment: For a more detailed description see the AAI-part in this blog). AAI investigates complex tasks and looks how different kinds of actors are interacting in these contexts with technical systems. As far as the participating systems have been technical systems one spoke here of a system interface (SI) as that part of a technical system, which is interacting with the human actor. In the case of biological systems (mostly humans, but it could be animals as well), one spoke of the user interface (UI). In this text we generalize both cases by the general concept of an actor — biological and non-biological –, which has some actor interface (ActI), and this actor interface embraces all properties which are relevant for the interactions of the actor.

For the analysis of the behavior of actors in such task-environments one can distinguish two important concepts: the actor story (AS) describing the context as an observable process, as well as different actor models (AM). Actor models are special extensions of an actor story because an actor model describes the observable behavior of actors as a behavior function (BF) with a set of assumptions about possible internal states of the actors. The assumptions about possible internal states (IS) are either completely arbitrary or empirically motivated.

The embedding of IM within AAI can be realized through the concept of an actor model (UM) and the actor story (AS). Whatever is important for something which is called an intelligent machine application (IMA) can be defined as an actor model within an actor story. This embedding of IM within AAI offers many advantages.

This has to be explained with some more details.

An Intelligent Machine (IM) in an Actor Story

Let us assume that there exists a mathematical-graph representation of an actor story written as AS_{L_{ε}}. Such a graph has nodes which represent situations. Formally these are sets of properties, probably more fine-grained by subsets which represent different kinds of actors embedded in this situation as well as different kinds of non-actors.

Actors can be classified (as introduced above) as either biological actors (BA) or non-biological actors (NBA). Both kinds of actors can — in another reading — be subsumed under the general term of input-output-systems (IO-SYS). An input-output system can be a learning system or non-learning. Another basic property is that of being intelligent or non-intelligent. Being a learning system and being an intelligent system is usually strongly connected, but this must not necessarily be so. Being a learning system can be associated with being non-intelligent and being intelligent can be connected with being non-learning.(cf. Figure 1)

Classification of input-output systems according to learning, intelligence and beeing biological or not biological
Classification of input-output systems according to learning, intelligence and being biological or non-biological

While biological systems are always learning and intelligent, one can find non-biological systems of all types: non-learning and non-intelligent, non-intelligent and learning, non-learning and intelligent, and learning and intelligent.

Learning System

To classify a system as a learning system this requires the general ability to change the behavior of this system in time thus that there exists a time-span (t1,t2) after which the behavior to certain critical stimuli has changed compared to the time before (cf. Shettleworth (1994)). From this requirement it follows, that a learning system is an input-output system with at least one internal state which can change. Thus we have the general assumption:

Def: Learning System (LS)

  1. LS(x) iff
  2. x=<I, O, IS, phi >
  3. phi: I x IS —> IS x O
  4. I := Input
  5. O := Output
  6. IS := Internal statesSome x is a learning system (LS) if it is a structure containing sets for input (I), Output (O), as well as internal states (IS). These sets are operated by a behavior function \phi which maps inputs and actual internal states to output as well as back to internal states. The set of possible learning functions is infinite.

    Intelligent System

    The term ‘intelligent’ and ‘intelligence’ is until now not standardized. This means that everybody is using it at little bit arbitrarily.

    In this text we take the basic idea of a scientific usage of the term ‘intelligence’ from experimental psychology, which has developed clearly defined operational concepts since the end of the 19. Century which have been proved as quite stable in their empirical applications.\footnote{For an introduction in the field of psychological intelligence concepts see HilgardEt:1979, Rost:2009, Rost:2013

    The central idea of the psychological concept of the usage of the term ‘intelligence’ is to associate the usage of the term ‘intelligence’ with observable behavior of those actors, which shall be classified according defined methods of measurement.

    In the case of experimental psychology the actors have been biological systems, mainly humans, in the first years of the research school children of certain ages. Because nobody did know what ‘intelligence’ means ‘as such’ one agreed to accept the observable behavior of children in certain task environments as ‘manifestations’ of a ‘presupposed unknown intelligence’. Thus the ability of children to solve defined tasks in a certain defined manner became a norm for what is called ‘intelligence’. Solving the tasks in a certain time with less than a certain amount of errors was used as a ‘baseline’ and all behavior deviating from the baseline was ‘better’ or ‘poorer’.

    Thus the ‘content’ of the ‘meaning’ of the term ‘intelligence’ has been delegated to historical patterns of behavior which were common in a certain time-span in a certain geographical and cultural region.

    While these behavior patterns can change during the course of time the general method of measurement is invariant.

    In the time since then experimental psychology has modified and elaborated this first concept in some directions.

    One direction is the modification of the kind of tasks which are used for the tests. With regard to the cultural context one has modified the content, thereby looking to find such kinds of task which seem to be ‘invariant’ with regard to the presupposed intelligence factor. This is an ongoing process.

    The other direction is the focus on the actors as such. Because biological systems like humans change the development of their intelligence with age one has tried to find out ‘typical tasks for every age’. This too is an ongoing process.

    This history of experimental psychology gives very interesting examples how one can approach the problem of the usage and the measurement of some X which we call ‘intelligence’.

    In the context of an AAI-approach we have not only biological systems, but also non-biological systems. Thus most of the elaborated parameters of psychology for human actors are not general enough.

    One possible strategy to generalize the intelligence-paradigm of experimental psychology could be to ‘free’ the selection of task sets from the narrow human cultures of the past and require only ‘clearly defined task sets with defined interfaces and defined contexts’. All these tasks sets can be arranged either in one super-set or in a parametrized field of sets. The sum of all these sets defines then a space of possible behavior and associated with this a space of possible measurable intelligence.

    A task has then to be given as an actor story according to the AAI-paradigm. Such a specified actor story allows the formal definition of a complexity measure which can be used to measure the ‘amount of intelligence necessary to solve such a task’.

    With such a more general and extendable approach to the measurement of observable intelligence one can compare all kinds of systems with each other. With such an approach one can further show objectively, where biological and non-biological systems differ, where they are similar, and to which extend they differ.

    Measuring Intelligence by Actor Stories

    Presupposing actor stories (AS) (ideally formalized as mathematical graphs) on can define a first operational general measurement of intelligence.

    Def: Task-Intelligence of a task τ (TInt(τ))

        1. Every defined task τ represents a graph g with one shortest path pmin(τ)= π_{min} from a start node to a goal node.
        2. Every such shortest path π_{min} has a certain number of nodes path-nodes(π_{min})=ν.
        3. The number of solved nodes (ν_{solved}) can become related against the total number of nodes ν as ν_{solved}/ν. We take TInt(τ)= ν_{solved}/ν. It follows that TInt(τ) is between 0 and 1: 0 ≤ TInt(τ)≤ 1.
        4. To every task is attached a maximal duration Δ_{max}; all nodes which are solved within this maximal duration time Δ_{max} are declared as ‘solved’, all the others as ‘un-solved’.

    The usual case will require more than one task to be realized. Thus we introduce the concept of a task field (TF).

    Def: Task-Field of type x (TF_{x})
    Def: Task-Field Intelligence (TFInt)

    A task-field TF of type x includes a finite set of individual tasks like TF_{x} = { τ{x.1}, τ{x.2}, … , τ{x.n} } with n ≥ 2. The sum of all individual task intelligence values TInt(τ{x.i}) has to be normalized to 1, i.e. (TInt(τ{x.1}) + TInt(τ{x.2}) + … + TInt(τ{x.n}))/ n (with 0 in the nominator not allowed). Thus the value of the intelligence of a task field of type x TFInt(TF_{x}) is again in the domain of [0,1].

    Because the different tasks in a task field TF can be of different difficulty it should be possible to introduce some weighting for the individual task intelligence values. This should not change the general mechanism.

    Def: Combined Task-Fields (TF)

    In face of the huge variety of possible task fields in this world it can make sens to introduce more general layers by grouping task fields of different types together to larger combined fields, like TF_{x,…,z} = TF_{x} ∪ TF_{y} ∪ … ∪ TF_{z}. The task field intelligence TFInt of such combined task fields would be computed as before.

    Def: Omega Task-Field at time t (TF_{ω}(t))

    The most comprehensive assembly of such combinations shall here be called the Omega-Task-Field at time t TF_{ω}(t). This indicates the known maximum of intelligence measurements at that point of time.

    Measurement Comments

    With these assumptions the term intelligence will be restricted to clearly defined domains either to an individual task, to a task-field of type x, or to some grouped task-fields or being related to the actual omega task-field. In every such domain the intelligence value is in the realm of [0,1] or written as some value between 0 or 100%.

    Independent of the type of an actor — biological or not — one can measure the intelligence of such an actor with the same domains of defined tasks. As a result one can easily compare all known actors with regard to such defined task domains.

    Because the acting actors can be quite different by their input-output capabilities it follows that every actor has to organize some interface which enables him to use the defined task. There are no special restrictions to the format of such an interface, but there is one requirement which has to be observed strictly: the interface as such is not allowed to do any kind of computation beyond providing only the necessary input from the task domain or to provide the necessary output to the domain. Only then are the different tests able to reveal some difference between the different actors.

    If the tests show differences between certain types of actors with regard to a certain task or a task-field then this is a chance to develop smart assistive interfaces which can help the actor in question to overcome his weakness compared to the other type of actor. Thus this kind of measuring intelligence can be a strong supporter for a better world in the future.

    Another consequence of the differing intelligence values can be to look to the inner structure of an actor with weaker values and asking how one could improve his capabilities. This can be done e.g. by different kinds of trainings or by improving his system structures.