Category Archives: language

There exists only one big Problem for the Future of Human Mankind: The Belief in false Narratives

Author: Gerd Doeben-Henisch

Time: Jan 5, 2024 – Jan 8, 2024 (09:45 a.m. CET)

Email: gerd@doeben-henisch.de

TRANSLATION: The following text is a translation from a German version into English. For the translation I am using the software deepL.com as well as chatGPT 4. The English version is a slightly revised version of the German text.

This blog entry will be completed today. However, it has laid the foundations for considerations that will be pursued further in a new blog entry.

CONTEXT

This text belongs to the topic Philosophy (of Science).

Introduction

Triggered by several reasons I started some investigation in the phenomenon of ‘propaganda’ to sharpen my understanding. My strategy was first to try to characterize the phenomenon of ‘general communication’ in order to find some ‘harder criteria’ that would allow to characterize the concept of ‘propaganda’ to stand out against this general background in a somewhat comprehensible way.

The realization of this goal then actually led to an ever more fundamental examination of our normal (human) communication, so that forms of propaganda become recognizable as ‘special cases’ of our communication. The worrying thing about this is that even so-called ‘normal communication’ contains numerous elements that can make it very difficult to recognize and pass on ‘truth’ (*). ‘Massive cases of propaganda’ therefore have their ‘home’ where we communicate with each other every day. So if we want to prevent propaganda, we have to start in everyday life.

(*) The concept of ‘truth’ is examined and explained in great detail in the following long text below. Unfortunately, I have not yet found a ‘short formula’ for it. In essence, it is about establishing a connection to ‘real’ events and processes in the world – including one’s own body – in such a way that they can, in principle, be understood and verified by others.

DICTATORIAL CONTEXT

However, it becomes difficult when there is enough political power that can set the social framework conditions in such a way that for the individual in everyday life – the citizen! – general communication is more or less prescribed – ‘dictated’. Then ‘truth’ becomes less and less or even non-existent. A society is then ‘programmed’ for its own downfall through the suppression of truth. ([3], [6]).

EVERYDAY LIFE AS A DICTATOR ?
The hour of narratives

But – and this is the far more dangerous form of ‘propaganda’ ! – even if there is not a nationwide apparatus of power that prescribes certain forms of ‘truth’, a mutilation or gross distortion of truth can still take place on a grand scale. Worldwide today, in the age of mass media, especially in the age of the internet, we can see that individuals, small groups, special organizations, political groups, entire religious communities, in fact all people and their social manifestations, follow a certain ‘narrative’ [*11] when they act.

Typical for acting according to a narrative is that those who do so individually believe that it is ‘their own decision’ and that their narrative is ‘true’, and that they are therefore ‘in the right’ when they act accordingly. This ‘feeling to be right’ can go as far as claiming the right to kill others because they ‘act wrongly’ in the light of their own ‘narrative’. We should therefore speak here of a ‘narrative truth’: Within the framework of the narrative, a picture of the world is drawn that ‘as a whole’ enables a perspective that ‘as such’ is ‘found to be good’ by the followers of the narrative, as ‘making sense’. Normally, the effect of a narrative, which is experienced as ‘meaningful’, is so great that the ‘truth content’ is no longer examined in detail.

RELIGIOUS NARRATIVES

This has existed at all times in the history of mankind. Narratives that appeared as ‘religious beliefs’ were particularly effective. It is therefore no coincidence that almost all governments of the last millennia have adopted religious beliefs as state doctrines; an essential component of religious beliefs is that they are ‘unprovable’, i.e. ‘incapable of truth’. This makes a religious narrative a wonderful tool in the hands of the powerful to motivate people to behave in certain ways without the threat of violence.

POPULAR NARRATIVES

In recent decades, however, we have experienced new, ‘modern forms’ of narratives that do not come across as religious narratives, but which nevertheless have a very similar effect: People perceive these narratives as ‘giving meaning’ in a world that is becoming increasingly confusing and therefore threatening for everyone today. Individual people, the citizens, also feel ‘politically helpless’, so that – even in a ‘democracy’ – they have the feeling that they cannot directly influence anything: the ‘people up there’ do what they want. In such a situation, ‘simplistic narratives’ are a blessing for the maltreated soul; you hear them and have the feeling: yes, that’s how it is; that’s exactly how I ‘feel’!

Such ‘popular narratives’, which enable ‘good feelings’, are gaining ever greater power. What they have in common with religious narratives is that the ‘followers’ of popular narratives no longer ask the ‘question of truth’; most of them are also not sufficiently ‘trained’ to be able to clarify the truth of a narrative at all. It is typical for supporters of narratives that they are generally hardly able to explain their own narrative to others. They typically send each other links to texts/videos that they find ‘good’ because these texts/videos somehow seem to support the popular narrative, and tend not to check the authors and sources because they are in the eyes of the followers such ‘decent people’, which always say exactly the ‘same thing’ as the ‘popular narrative’ dictates.

NARRATIVES ARE SEXY FOR POWER

If you now take into account that the ‘world of narratives’ is an extremely tempting offer for all those who have power over people or would like to gain power over people, then it should come as no surprise that many governments in this world, many other power groups, are doing just that today: they do not try to coerce people ‘directly’, but they ‘produce’ popular narratives or ‘monitor’ already existing popular narratives’ in order to gain power over the hearts and minds of more and more people via the detour of these narratives. Some speak here of ‘hybrid warfare’, others of ‘modern propaganda’, but ultimately, I guess, these terms miss the core of the problem.

THE NARRATIVE AS A BASIC CULTURAL PATTERN
The ‘irrational’ defends itself against the ‘rational’

The core of the problem is the way in which human communities have always organized their collective action, namely through narratives; we humans have no other option. However, such narratives – as the considerations further down in the text will show – are extremely susceptible to ‘falsity’, to a ‘distortion of the picture of the world’. In the context of the development of legal systems, approaches have been developed during at least the last 7000 years to ‘improve’ the abuse of power in a society by supporting truth-preserving mechanisms. Gradually, this has certainly helped, with all the deficits that still exist today. Additionally, about 500 years ago, a real revolution took place: humanity managed to find a format with the concept of a ‘verifiable narrative (empirical theory)’ that optimized the ‘preservation of truth’ and minimized the slide into untruth. This new concept of ‘verifiable truth’ has enabled great insights that before were beyond imagination .

The ‘aura of the scientific’ has meanwhile permeated almost all of human culture, almost! But we have to realize that although scientific thinking has comprehensively shaped the world of practicality through modern technologies, the way of scientific thinking has not overridden all other narratives. On the contrary, the ‘non-truth narratives’ have become so strong again that they are pushing back the ‘scientific’ in more and more areas of our world, patronizing it, forbidding it, eradicating it. The ‘irrationality’ of religious and popular narratives is stronger than ever before. ‘Irrational narratives’ are for many so appealing because they spare the individual from having to ‘think for themselves’. Real thinking is exhausting, unpopular, annoying and hinders the dream of a simple solution.

THE CENTRAL PROBLEM OF HUMANITY

Against this backdrop, the widespread inability of people to recognize and overcome ‘irrational narratives’ appears to be the central problem facing humanity in mastering the current global challenges. Before we need more technology (we certainly do), we need more people who are able and willing to think more and better, and who are also able to solve ‘real problems’ together with others. Real problems can be recognized by the fact that they are largely ‘new’, that there are no ‘simple off-the-shelf’ solutions for them, that you really have to ‘struggle’ together for possible insights; in principle, the ‘old’ is not enough to recognize and implement the ‘true new’, and the future is precisely the space with the greatest amount of ‘unknown’, with lots of ‘genuinely new’ things.

The following text examines this view in detail.

MAIN TEXT FOR EXPLANATION

MODERN PROPAGANDA ?

As mentioned in the introduction the trigger for me to write this text was the confrontation with a popular book which appeared to me as a piece of ‘propaganda’. When I considered to describe my opinion with own words I detected that I had some difficulties: what is the difference between ‘propaganda’ and ‘everyday communication’? This forced me to think a little bit more about the ingredients of ‘everyday communication’ and where and why a ‘communication’ is ‘different’ to our ‘everyday communication’. As usual in the beginning of some discussion I took a first look to the various entries in Wikipedia (German and English). The entry in the English Wikipedia on ‘Propaganda [1b] attempts a very similar strategy to look to ‘normal communication’ and compared to this having a look to the phenomenon of ‘propaganda’, albeit with not quite sharp contours. However, it provides a broad overview of various forms of communication, including those forms that are ‘special’ (‘biased’), i.e. do not reflect the content to be communicated in the way that one would reproduce it according to ‘objective, verifiable criteria’.[*0] However, the variety of examples suggests that it is not easy to distinguish between ‘special’ and ‘normal’ communication: What then are these ‘objective verifiable criteria’? Who defines them?

Assuming for a moment that it is clear what these ‘objectively verifiable criteria’ are, one can tentatively attempt a working definition for the general (normal?) case of communication as a starting point:

Working Definition:

The general case of communication could be tentatively described as a simple attempt by one person – let’s call them the ‘author’ – to ‘bring something to the attention’ of another person – let’s call them the ‘interlocutor’. We tentatively call what is to be brought to their attention ‘the message’. We know from everyday life that an author can have numerous ‘characteristics’ that can affect the content of his message.

Here is a short list of properties that characterize the author’s situation in a communication. Then corresponding properties for the interlocutor.

The Author:

  1. The available knowledge of the author — both conscious and unconscious — determines the kind of message the author can create.
  2. His ability to discern truth determines whether and to what extent he can differentiate what in his message is verifiable in the real world — present or past — as ‘accurate’ or ‘true’.
  3. His linguistic ability determines whether and how much of his available knowledge can be communicated linguistically.
  4. The world of emotions decides whether he wants to communicate anything at all, for example, when, how, to whom, how intensely, how conspicuously, etc.
  5. The social context can affect whether he holds a certain social role, which dictates when he can and should communicate what, how, and with whom.
  6. The real conditions of communication determine whether a suitable ‘medium of communication’ is available (spoken sound, writing, sound, film, etc.) and whether and how it is accessible to potential interlocutors.
  7. The author’s physical constitution decides how far and to what extent he can communicate at all.

The Interlocutor:

  1. In general, the characteristics that apply to the author also apply to the interlocutor. However, some points can be particularly emphasized for the role of the interlocutor:
  2. The available knowledge of the interlocutor determines which aspects of the author’s message can be understood at all.
  3. The ability of the interlocutor to discern truth determines whether and to what extent he can also differentiate what in the conveyed message is verifiable as ‘accurate’ or ‘true’.
  4. The linguistic ability of the interlocutor affects whether and how much of the message he can absorb purely linguistically.
  5. Emotions decide whether the interlocutor wants to take in anything at all, for example, when, how, how much, with what inner attitude, etc.
  6. The social context can also affect whether the interlocutor holds a certain social role, which dictates when he can and should communicate what, how, and with whom.
  7. Furthermore, it can be important whether the communication medium is so familiar to the interlocutor that he can use it sufficiently well.
  8. The physical constitution of the interlocutor can also determine how far and to what extent the interlocutor can communicate at all.

Even this small selection of factors shows how diverse the situations can be in which ‘normal communication’ can take on a ‘special character’ due to the ‘effect of different circumstances’. For example, an actually ‘harmless greeting’ can lead to a social problem with many different consequences in certain roles. A seemingly ‘normal report’ can become a problem because the contact person misunderstands the message purely linguistically. A ‘factual report’ can have an emotional impact on the interlocutor due to the way it is presented, which can lead to them enthusiastically accepting the message or – on the contrary – vehemently rejecting it. Or, if the author has a tangible interest in persuading the interlocutor to behave in a certain way, this can lead to a certain situation not being presented in a ‘purely factual’ way, but rather to many aspects being communicated that seem suitable to the author to persuade the interlocutor to perceive the situation in a certain way and to adopt it accordingly. These ‘additional’ aspects can refer to many real circumstances of the communication situation beyond the pure message.

Types of communication …

Given this potential ‘diversity’, the question arises as to whether it will even be possible to define something like normal communication?

In order to be able to answer this question meaningfully, one should have a kind of ‘overview’ of all possible combinations of the properties of author (1-7) and interlocutor (1-8) and one should also have to be able to evaluate each of these possible combinations with a view to ‘normality’.

It should be noted that the two lists of properties author (1-7) and interlocutor (1-8) have a certain ‘arbitrariness’ attached to them: you can build the lists as they have been constructed here, but you don’t have to.

This is related to the general way in which we humans think: on one hand, we have ‘individual events that happen’ — or that we can ‘remember’ —, and on the other hand, we can ‘set’ ‘arbitrary relationships’ between ‘any individual events’ in our thinking. In science, this is called ‘hypothesis formation’. Whether or not such formation of hypotheses is undertaken, and which ones, is not standardized anywhere. Events as such do not enforce any particular hypothesis formations. Whether they are ‘sensible’ or not is determined solely in the later course of their ‘practical use’. One could even say that such hypothesis formation is a rudimentary form of ‘ethics’: the moment one adopts a hypothesis regarding a certain relationship between events, one minimally considers it ‘important’, otherwise, one would not undertake this hypothesis formation.

In this respect, it can be said that ‘everyday life’ is the primary place for possible working hypotheses and possible ‘minimum values’.

The following diagram demonstrates a possible arrangement of the characteristics of the author and the interlocutor:

FIGURE : Overview of the possible overlaps of knowledge between the author and the interlocutor, if everyone can have any knowledge at its disposal.

What is easy to recognize is the fact that an author can naturally have a constellation of knowledge that draws on an almost ‘infinite number of possibilities’. The same applies to the interlocutor. In purely abstract terms, the number of possible combinations is ‘virtually infinite’ due to the assumptions about the properties Author 1 and Interlocutor 2, which ultimately makes the question of ‘normality’ at the abstract level undecidable.


However, since both authors and interlocutors are not spherical beings from some abstract angle of possibilities, but are usually ‘concrete people’ with a ‘concrete history’ in a ‘concrete life-world’ at a ‘specific historical time’, the quasi-infinite abstract space of possibilities is narrowed down to a finite, manageable set of concretes. Yet, even these can still be considerably large when related to two specific individuals. Which person, with their life experience from which area, should now be taken as the ‘norm’ for ‘normal communication’?


It seems more likely that individual people are somehow ‘typified’, for example, by age and learning history, although a ‘learning history’ may not provide a clear picture either. Graduates from the same school can — as we know — possess very different knowledge afterwards, even though commonalities may be ‘minimally typical’.

Overall, the approach based on the characteristics of the author and the interlocutor does not seem to provide really clear criteria for a norm, even though a specification such as ‘the humanistic high school in Hadamar (a small German town) 1960 – 1968’ would suggest rudimentary commonalities.


One could now try to include the further characteristics of Author 2-7 and Interlocutor 3-8 in the considerations, but the ‘construction of normal communication’ seems to lead more and more into an unclear space of possibilities based on the assumptions of Author 1 and Interlocutor 2.

What does this mean for the typification of communication as ‘propaganda’? Isn’t ultimately every communication also a form of propaganda, or is there a possibility to sufficiently accurately characterize the form of ‘propaganda’, although it does not seem possible to find a standard for ‘normal communication’? … or will a better characterization of ‘propaganda’ indirectly provide clues for ‘non-propaganda’?

TRUTH and MEANING: Language as Key

The spontaneous attempt to clarify the meaning of the term ‘propaganda’ to the extent that one gets a few constructive criteria for being able to characterize certain forms of communication as ‘propaganda’ or not, gets into ever ‘deeper waters’. Are there now ‘objective verifiable criteria’ that one can work with, or not? And: Who determines them?

Let us temporarily stick to working hypothesis 1, that we are dealing with an author who articulates a message for an interlocutor, and let us expand this working hypothesis by the following addition 1: such communication always takes place in a social context. This means that the perception and knowledge of the individual actors (author, interlocutor) can continuously interact with this social context or ‘automatically interacts’ with it. The latter is because we humans are built in such a way that our body with its brain just does this, without ‘us’ having to make ‘conscious decisions’ for it.[*1]

For this section, I would like to extend the previous working hypothesis 1 together with supplement 1 by a further working hypothesis 2 (localization of language) [*4]:

  1. Every medium (language, sound, image, etc.) can contain a ‘potential meaning’.
  2. When creating the media event, the ‘author’ may attempt to ‘connect’ possible ‘contents’ that are to be ‘conveyed’ by him with the medium (‘putting into words/sound/image’, ‘encoding’, etc.). This ‘assignment’ of meaning occurs both ‘unconsciously/automatically’ and ‘(partially) consciously’.
  3. In perceiving the media event, the ‘interlocutor’ may try to assign a ‘possible meaning’ to this perceived event. This ‘assignment’ of meaning also happens both ‘unconsciously/automatically’ and ‘(partially) consciously’.
  4. The assignment of meaning requires both the author and the interlocutor to have undergone ‘learning processes’ (usually years, many years) that have made it possible to link certain ‘events of the external world’ as well as ‘internal states’ with certain media events.
  5. The ‘learning of meaning relationships’ always takes place in social contexts, as a media structure meant to ‘convey meaning’ between people belongs to everyone involved in the communication process.
  6. Those medial elements that are actually used for the ‘exchange of meanings’ all together form what is called a ‘language’: the ‘medial elements themselves’ form the ‘surface structure’ of the language, its ‘sign dimension’, and the ‘inner states’ in each ‘actor’ involved, form the ‘individual-subjective space of possible meanings’. This inner subjective space comprises two components: (i) the internally available elements as potential meaning content and (ii) a dynamic ‘meaning relationship’ that ‘links’ perceived elements of the surface structure and the potential meaning content.


To answer the guiding question of whether one can “characterize certain forms of communication as ‘propaganda’ or not,” one needs ‘objective, verifiable criteria’ on the basis of which a statement can be formulated. This question can be used to ask back whether there are ‘objective criteria’ in ‘normal everyday dialogue’ that we can use in everyday life to collectively decide whether a ‘claimed fact’ is ‘true’ or not; in this context, the word ‘true’ is also used. Can this be defined a bit more precisely?

For this I propose an additional working hypotheses 3:

  1. At least two actors can agree that a certain meaning, associated with the media construct, exists as a sensibly perceivable fact in such a way that they can agree that the ‘claimed fact’ is indeed present. Such a specific occurrence should be called ‘true 1’ or ‘Truth 1.’ A ‘specific occurrence’ can change at any time and quickly due to the dynamics of the real world (including the actors themselves), for example: the rain stops, the coffee cup is empty, the car from before is gone, the empty sidewalk is occupied by a group of people, etc.
  2. At least two actors can agree that a certain meaning, associated with the media construct, is currently not present as a real fact. Referring to the current situation of ‘non-occurrence,’ one would say that the statement is ‘false 1’; the claimed fact does not actually exist contrary to the claim.
  3. At least two actors can agree that a certain meaning, associated with the media construct, is currently not present, but based on previous experience, it is ‘quite likely’ to occur in a ‘possible future situation.’ This aspect shall be called ‘potentially true’ or ‘true 2’ or ‘Truth 2.’ Should the fact then ‘actually occur’ at some point in the future, Truth 2 would transform into Truth 1.
  4. At least two actors can agree that a certain meaning associated with the media construct does not currently exist and that, based on previous experience, it is ‘fairly certain that it is unclear’ whether the intended fact could actually occur in a ‘possible future situation’. This aspect should be called ‘speculative true’ or ‘true 3’ or ‘truth 3’. Should the situation then ‘actually occur’ at some point, truth 3 would change into truth 1.
  5. At least two actors can agree that a certain meaning associated with the medial construct does not currently exist, and on the basis of previous experience ‘it is fairly certain’ that the intended fact could never occur in a ‘possible future situation’. This aspect should be called ‘speculative false’ or ‘false 2’.

A closer look at these 5 assumptions of working hypothesis 3 reveals that there are two ‘poles’ in all these distinctions, which stand in certain relationships to each other: on the one hand, there are real facts as poles, which are ‘currently perceived or not perceived by all participants’ and, on the other hand, there is a ‘known meaning’ in the minds of the participants, which can or cannot be related to a current fact. This results in the following distribution of values:

REAL FACTsRelationship to Meaning
Given1Fits (true 1)
Given2Doesn’t fit (false 1)
Not given3Assumed, that it will fit in the future (true 2)
Not given4Unclear, whether it would fit in the future (true 3)
Not given5Assumed, that it would not fit in the future (false 2)

In this — still somewhat rough — scheme, ‘the meaning of thoughts’ can be qualified in relation to something currently present as ‘fitting’ or ‘not fitting’, or in the absence of something real as ‘might fit’ or ‘unclear whether it can fit’ or ‘certain that it cannot fit’.

However, it is important to note that these qualifications are ‘assessments’ made by the actors based on their ‘own knowledge’. As we know, such an assessment is always prone to error! In addition to errors in perception [*5], there can be errors in one’s own knowledge [*6]. So contrary to the belief of an actor, ‘true 1’ might actually be ‘false 1’ or vice versa, ‘true 2’ could be ‘false 2’ and vice versa.

From all this, it follows that a ‘clear qualification’ of truth and falsehood is ultimately always error-prone. For a community of people who think ‘positively’, this is not a problem: they are aware of this situation and they strive to keep their ‘natural susceptibility to error’ as small as possible through conscious methodical procedures [*7]. People who — for various reasons — tend to think negatively, feel motivated in this situation to see only errors or even malice everywhere. They find it difficult to deal with their ‘natural error-proneness’ in a positive and constructive manner.

TRUTH and MEANING : Process of Processes

In the previous section, the various terms (‘true1,2’, ‘false 1,2’, ‘true 3’) are still rather disconnected and are not yet really located in a tangible context. This will be attempted here with the help of working hypothesis 4 (sketch of a process space).

FIGURE 1 Process : The process space in the real world and in thinking, including possible interactions

The basic elements of working hypothesis 4 can be characterized as follows:

  1. There is the real world with its continuous changes, and within an actor which includes a virtual space for processes with elements such as perceptions, memories, and imagined concepts.
  2. The link between real space and virtual space occurs through perceptual achievements that represent specific properties of the real world for the virtual space, in such a way that ‘perceived contents’ and ‘imagined contents’ are distinguishable. In this way, a ‘mental comparison’ of perceived and imagined is possible.
  3. Changes in the real world do not show up explicitly but are manifested only indirectly through the perceivable changes they cause.
  4. It is the task of ‘cognitive reconstruction’ to ‘identify’ changes and to describe them linguistically in such a way that it is comprehensible, based on which properties of a given state, a possible subsequent state can arise.
  5. In addition to distinguishing between ‘states’ and ‘changes’ between states, it must also be clarified how a given description of change is ‘applied’ to a given state in such a way that a ‘subsequent state’ arises. This is called here ‘successor generation rule’ (symbolically: ⊢). An expression like Z ⊢V Z’ would then mean that using the successor generation rule ⊢ and employing the change rule V, one can generate the subsequent state Z’ from the state Z. However, more than one change rule V can be used, for example, ⊢{V1, V2, …, Vn} with the change rules V1, …, Vn.
  6. When formulating change rules, errors can always occur. If certain change rules have proven successful in the past in derivations, one would tend to assume for the ‘thought subsequent state’ that it will probably also occur in reality. In this case, we would be dealing with the situation ‘true 2’. If a change rule is new and there are no experiences with it yet, we would be dealing with the ‘true 3’ case for the thought subsequent state. If a certain change rule has failed repeatedly in the past, then the case ‘false 2’ might apply.
  7. The outlined process model also shows that the previous cases (1-5 in the table) only ever describe partial aspects. Suppose a group of actors manages to formulate a rudimentary process theory with many states and many change rules, including a successor generation instruction. In that case, it is naturally of interest how the ‘theory as a whole’ ‘proves itself’. This means that every ‘mental construction’ of a sequence of possible states according to the applied change rules under the assumption of the process theory must ‘prove itself’ in all cases of application for the theory to be said to be ‘generically true’. For example, while the case ‘true 1’ refers to only a single state, the case ‘generically true’ refers to ‘very many’ states, as many until an ‘end state’ is reached, which is supposed to count as a ‘target state’. The case ‘generically contradicted’ is supposed to occur when there is at least one sequence of generated states that keeps generating an end state that is false 1. As long as a process theory has not yet been confirmed as true 1 for an end state in all possible cases, there remains a ‘remainder of cases’ that are unclear. Then a process theory would be called ‘generically unclear’, although it may be considered ‘generically true’ for the set of cases successfully tested so far.

FIGURE 2 Process : The individual extended process space with an indication of the dimension ‘META-THINKING’ and ‘EVALUATION’.

If someone finds the first figure of the process room already quite ‘challenging’, they he will certainly ‘break into a sweat’ with this second figure of the ‘expanded process room’.

Everyone can check for himself that we humans have the ability — regardless of what we are thinking — to turn our thinking at any time back onto our own thinking shortly before, a kind of ‘thinking about thinking’. This opens up an ‘additional level of thinking’ – here called the ‘meta-level’ – on which we thinkers ‘thematize’ everything that is noticeable and important to us in the preceding thinking. [*8] In addition to ‘thinking about thinking’, we also have the ability to ‘evaluate’ what we perceive and think. These ‘evaluations’ are fueled by our ’emotions’ [*9] and ‘learned preferences’. This enables us to ‘learn’ with the help of our emotions and learned preferences: If we perform certain actions and suffer ‘pain’, we will likely avoid these actions next time. If we go to restaurant X to eat because someone ‘recommended’ it to us, and the food and/or service were really bad, then we will likely not consider this suggestion in the future. Therefore, our thinking (and our knowledge) can ‘make possibilities visible’, but it is the emotions that comment on what happens to be ‘good’ or ‘bad’ when implementing knowledge. But beware, emotions can also be mistaken, and massively so.[*10]

TRUTH AND MEANING – As a collective achievement

The previous considerations on the topic of ‘truth and meaning’ in the context of individual processes have outlined that and how ‘language’ plays a central role in enabling meaning and, based on this, truth. Furthermore, it was also outlined that and how truth and meaning must be placed in a dynamic context, in a ‘process model’, as it takes place in an individual in close interaction with the environment. This process model includes the dimension of ‘thinking’ (also ‘knowledge’) as well as the dimension of ‘evaluations’ (emotions, preferences); within thinking there are potentially many ‘levels of consideration’ that can relate to each other (of course they can also take place ‘in parallel’ without direct contact with each other (the unconnected parallelism is the less interesting case, however).

As fascinating as the dynamic emotional-cognitive structure within an individual actor can be, the ‘true power’ of explicit thinking only becomes apparent when different people begin to coordinate their actions by means of communication. When individual action is transformed into collective action in this way, a dimension of ‘society’ becomes visible, which in a way makes the ‘individual actors’ ‘forget’, because the ‘overall performance’ of the ‘collectively connected individuals’ can be dimensions more complex and sustainable than any one individual could ever realize. While a single person can make a contribution in their individual lifetime at most, collectively connected people can accomplish achievements that span many generations.

On the other hand, we know from history that collective achievements do not automatically have to bring about ‘only good’; the well-known history of oppression, bloody wars and destruction is extensive and can be found in all periods of human history.

This points to the fact that the question of ‘truth’ and ‘being good’ is not only a question for the individual process, but also a question for the collective process, and here, in the collective case, this question is even more important, since in the event of an error not only individuals have to suffer negative effects, but rather very many; in the worst case, all of them.

To be continued …

COMMENTS

[*0] The meaning of the terms ‘objective, verifiable’ will be explained in more detail below.

[*1] In a system-theoretical view of the ‘human body’ system, one can formulate the working hypothesis that far more than 99% of the events in a human body are not conscious. You can find this frightening or reassuring. I tend towards the latter, towards ‘reassurance’. Because when you see what a human body as a ‘system’ is capable of doing on its own, every second, for many years, even decades, then this seems extremely reassuring in view of the many mistakes, even gross ones, that we can make with our small ‘consciousness’. In cooperation with other people, we can indeed dramatically improve our conscious human performance, but this is only ever possible if the system performance of a human body is maintained. After all, it contains 3.5 billion years of development work of the BIOM on this planet; the building blocks of this BIOM, the cells, function like a gigantic parallel computer, compared to which today’s technical supercomputers (including the much-vaunted ‘quantum computers’) look so small and weak that it is practically impossible to express this relationship.

[*2] An ‘everyday language’ always presupposes ‘the many’ who want to communicate with each other. One person alone cannot have a language that others should be able to understand.

[*3] A meaning relation actually does what is mathematically called a ‘mapping’: Elements of one kind (elements of the surface structure of the language) are mapped to elements of another kind (the potential meaning elements). While a mathematical mapping is normally fixed, the ‘real meaning relation’ can constantly change; it is ‘flexible’, part of a higher-level ‘learning process’ that constantly ‘readjusts’ the meaning relation depending on perception and internal states.

[*4] The contents of working hypothesis 2 originate from the findings of modern cognitive sciences (neuroscience, psychology, biology, linguistics, semiotics, …) and philosophy; they refer to many thousands of articles and books. Working hypothesis 2 therefore represents a highly condensed summary of all this. Direct citation is not possible in purely practical terms.

[*5] As is known from research on witness statements and from general perception research, in addition to all kinds of direct perception errors, there are many errors in the ‘interpretation of perception’ that are largely unconscious/automated. The actors are normally powerless against such errors; they simply do not notice them. Only methodically conscious controls of perception can partially draw attention to these errors.

[*6] Human knowledge is ‘notoriously prone to error’. There are many reasons for this. One lies in the way the brain itself works. ‘Correct’ knowledge is only possible if the current knowledge processes are repeatedly ‘compared’ and ‘checked’ so that they can be corrected. Anyone who does not regularly check the correctness will inevitably confirm incomplete and often incorrect knowledge. As we know, this does not prevent people from believing that everything they carry around in their heads is ‘true’. If there is a big problem in this world, then this is one of them: ignorance about one’s own ignorance.

[*7] In the cultural history of mankind to date, it was only very late (about 500 years ago?) that a format of knowledge was discovered that enables any number of people to build up fact-based knowledge that, compared to all other known knowledge formats, enables the ‘best results’ (which of course does not completely rule out errors, but extremely minimizes them). This still revolutionary knowledge format has the name ’empirical theory’, which I have since expanded to ‘sustainable empirical theory’. On the one hand, we humans are the main source of ‘true knowledge’, but at the same time we ourselves are also the main source of ‘false knowledge’. At first glance, this seems like a ‘paradox’, but it has a ‘simple’ explanation, which at its root is ‘very profound’ (comparable to the cosmic background radiation, which is currently simple, but originates from the beginnings of the universe).

[*8] In terms of its architecture, our brain can open up any number of such meta-levels, but due to its concrete finiteness, it only offers a limited number of neurons for different tasks. For example, it is known (and has been experimentally proven several times) that our ‘working memory’ (also called ‘short-term memory’) is only limited to approx. 6-9 ‘units’ (whereby the term ‘unit’ must be defined depending on the context). So if we want to solve extensive tasks through our thinking, we need ‘external aids’ (sheet of paper and pen or a computer, …) to record the many aspects and write them down accordingly. Although today’s computers are not even remotely capable of replacing the complex thought processes of humans, they can be an almost irreplaceable tool for carrying out complex thought processes to a limited extent. But only if WE actually KNOW what we are doing!

[*9] The word ’emotion’ is a ‘collective term’ for many different phenomena and circumstances. Despite extensive research for over a hundred years, the various disciplines of psychology are still unable to offer a uniform picture, let alone a uniform ‘theory’ on the subject. This is not surprising, as much of the assumed emotions takes place largely ‘unconsciously’ or is only directly available as an ‘internal event’ in the individual. The only thing that seems to be clear is that we as humans are never ’emotion-free’ (this also applies to so-called ‘cool’ types, because the apparent ‘suppression’ or ‘repression’ of emotions is itself part of our innate emotionality).

[*10] Of course, emotions can also lead us seriously astray or even to our downfall (being wrong about other people, being wrong about ourselves, …). It is therefore not only important to ‘sort out’ the factual things in the world in a useful way through ‘learning’, but we must also actually ‘keep an eye on our own emotions’ and check when and how they occur and whether they actually help us. Primary emotions (such as hunger, sex drive, anger, addiction, ‘crushes’, …) are selective, situational, can develop great ‘psychological power’ and thus obscure our view of the possible or very probable ‘consequences’, which can be considerably damaging for us.

[*11] The term ‘narrative’ is increasingly used today to describe the fact that a group of people use a certain ‘image’, a certain ‘narrative’ in their thinking for their perception of the world in order to be able to coordinate their joint actions. Ultimately, this applies to all collective action, even for engineers who want to develop a technical solution. In this respect, the description in the German Wikipedia is a bit ‘narrow’: https://de.wikipedia.org/wiki/Narrativ_(Sozialwissenschaften)

REFERENCES

The following sources are just a tiny selection from the many hundreds, if not thousands, of articles, books, audio documents and films on the subject. Nevertheless, they may be helpful for an initial introduction. The list will be expanded from time to time.

[1a] Propaganda, in the German Wikipedia https://de.wikipedia.org/wiki/Propaganda

[1b] Propaganda in the English Wikipedia : https://en.wikipedia.org/wiki/Propaganda /*The English version appears more systematic, covers larger periods of time and more different areas of application */

[3] Propaganda der Russischen Föderation, hier: https://de.wikipedia.org/wiki/Propaganda_der_Russischen_F%C3%B6deration (German source)

[6] Mischa Gabowitsch, Mai 2022, Von »Faschisten« und »Nazis«, https://www.blaetter.de/ausgabe/2022/mai/von-faschisten-und-nazis#_ftn4 (German source)

Collective human-machine intelligence and text generation. A transdisciplinary analysis.

Author: Gerd Doeben-Henisch

Email: info@uffmm.org

Time: Sept 25, 2023 – Oct 3, 2023

Translation: This text is a translation from the German Version into English with the aid of the software deepL.com as well as with chatGPT4, moderated by the author. The style of the two translators is different. The author is not good enough to classify which translator is ‘better’.

CONTEXT

This text is the outcome of a conference held at the Technical University of Darmstadt (Germany) with the title: Discourses of disruptive digital technologies using the example of AI text generators ( https://zevedi.de/en/topics/ki-text-2/ ). A German version of this article will appear in a book from de Gruyter as open access in the beginning of 2024.

Collective human-machine intelligence and text generation. A transdisciplinary analysis.

Abstract

Based on the conference theme “AI – Text and Validity. How do AI text generators change scientific discourse?” as well as the special topic “Collective human-machine intelligence using the example of text generation”, the possible interaction relationship between text generators and a scientific discourse will be played out in a transdisciplinary analysis. For this purpose, the concept of scientific discourse will be specified on a case-by-case basis using the text types empirical theory as well as sustained empirical theory in such a way that the role of human and machine actors in these discourses can be sufficiently specified. The result shows a very clear limitation of current text generators compared to the requirements of scientific discourse. This leads to further fundamental analyses on the example of the dimension of time with the phenomenon of the qualitatively new as well as on the example of the foundations of decision-making to the problem of the inherent bias of the modern scientific disciplines. A solution to the inherent bias as well as the factual disconnectedness of the many individual disciplines is located in the form of a new service of transdisciplinary integration by re-activating the philosophy of science as a genuine part of philosophy. This leaves the question open whether a supervision of the individual sciences by philosophy could be a viable path? Finally, the borderline case of a world in which humans no longer have a human counterpart is pointed out.

AUDIO: Keyword Sound

STARTING POINT

This text takes its starting point from the conference topic “AI – Text and Validity. How do AI text generators change scientific discourses?” and adds to this topic the perspective of a Collective Human-Machine Intelligence using the example of text generation. The concepts of text and validity, AI text generators, scientific discourse, and collective human-machine intelligence that are invoked in this constellation represent different fields of meaning that cannot automatically be interpreted as elements of a common conceptual framework.

TRANSDISCIPLINARY

In order to be able to let the mentioned terms appear as elements in a common conceptual framework, a meta-level is needed from which one can talk about these terms and their possible relations to each other. This approach is usually located in the philosophy of science, which can have as its subject not only single terms or whole propositions, but even whole theories that are compared or possibly even united. The term transdisciplinary [1] , which is often used today, is understood here in this philosophy of science understanding as an approach in which the integration of different concepts is redeemed by introducing appropriate meta-levels. Such a meta-level ultimately always represents a structure in which all important elements and relations can gather.

[1] Jürgen Mittelstraß paraphrases the possible meaning of the term transdisciplinarity as a “research and knowledge principle … that becomes effective wherever a solely technical or disciplinary definition of problem situations and problem solutions is not possible…”. Article Methodological Transdisciplinarity, in LIFIS ONLINE, www.leibniz-institut.de, ISSN 1864-6972, p.1 (first published in: Technology Assessment – Theory and Practice No.2, 14.Jg., June 2005, 18-23). In his text Mittelstrass distinguishes transdisciplinarity from the disciplinary and from the interdisciplinary. However, he uses only a general characterization of transdisciplinarity as a research guiding principle and scientific form of organization. He leaves the concrete conceptual formulation of transdisciplinarity open. This is different in the present text: here the transdisciplinary theme is projected down to the concreteness of the related terms and – as is usual in philosophy of science (and meta-logic) – realized by means of the construct of meta-levels.

SETTING UP A STRUCTURE

Here the notion of scientific discourse is assumed as a basic situation in which different actors can be involved. The main types of actors considered here are humans, who represent a part of the biological systems on planet Earth as a kind of Homo sapiens, and text generators, which represent a technical product consisting of a combination of software and hardware.

It is assumed that humans perceive their environment and themselves in a species-typical way, that they can process and store what they perceive internally, that they can recall what they have stored to a limited extent in a species-typical way, and that they can change it in a species-typical way, so that internal structures can emerge that are available for action and communication. All these elements are attributed to human cognition. They are working partially consciously, but largely unconsciously. Cognition also includes the subsystem language, which represents a structure that on the one hand is largely species-typically fixed, but on the other hand can be flexibly mapped to different elements of cognition.

In the terminology of semiotics [2] the language system represents a symbolic level and those elements of cognition, on which the symbolic structures are mapped, form correlates of meaning, which, however, represent a meaning only insofar as they occur in a mapping relation – also called meaning relation. A cognitive element as such does not constitute meaning in the linguistic sense. In addition to cognition, there are a variety of emotional factors that can influence both cognitive processes and the process of decision-making. The latter in turn can influence thought processes as well as action processes, consciously as well as unconsciously. The exact meaning of these listed structural elements is revealed in a process model [3] complementary to this structure.

[2] See, for example, Winfried Nöth: Handbuch der Semiotik. 2nd, completely revised edition. Metzler, Stuttgart/Weimar, 2000

[3] Such a process model is presented here only in partial aspects.

SYMBOLIC COMMUNICATION SUB-PROCESS

What is important for human actors is that they can interact in the context of symbolic communication with the help of both spoken and written language. Here it is assumed – simplistically — that spoken language can be mapped sufficiently accurately into written language, which in the standard case is called text. It should be noted that texts only represent meaning if the text producers involved, as well as the text recipients, have a meaning function that is sufficiently similar.
For texts by human text producers it is generally true that, with respect to concrete situations, statements as part of texts can be qualified under agreed conditions as now matching the situation (true) or as now not now matching the situation (false). However, a now-true can become a now-not-true again in the next moment and vice versa.

This dynamic fact refers to the fact that a punctual occurrence or non-occurrence of a statement is to be distinguished from a structural occurrence/ non-occurrence of a statement, which speaks about occurrence/ non-occurrence in context. This refers to relations which are only indirectly apparent in the context of a multitude of individual events, if one considers chains of events over many points in time. Finally, one must also consider that the correlates of meaning are primarily located within the human biological system. Meaning correlates are not automatically true as such, but only if there is an active correspondence between a remembered/thought/imagined meaning correlate and an active perceptual element, where an intersubjective fact must correspond to the perceptual element. Just because someone talks about a rabbit and the recipient understands what a rabbit is, this does not mean that there is also a real rabbit which the recipient can perceive.

TEXT-GENERATORS

When distinguishing between the two different types of actors – here biological systems of the type Homo sapiens and there technical systems of the type text-generators – a first fundamental asymmetry immediately strikes the eye: so-called text-generators are entities invented and built by humans; furthermore, it is humans who use them, and the essential material used by text-generators are furthermore texts, which are considered human cultural property, created and used by humans for a variety of discourse types, here restricted to scientific discourse.


In the case of text generators, let us first note that we are dealing with machines that have input and output, a minimal learning capability, and whose input and output can process text-like objects.
Insofar as text generators can process text-like objects as input and process them again as output, an exchange of texts between humans and text generators can take place in principle.

At the current state of development (September 2023), text generators do not yet have an independent real-world perception within the scope of their input, and the entire text generator system does not yet have such processes as those that enable species-typical cognitions in humans. Furthermore, a text generator does not yet have a meaning function as it is given with humans.

From this fact it follows automatically that text generators cannot decide about selective or structural correctness/not correctness in the case of statements of a text. In general, they do not have their own assignment of meaning as with humans. Texts generated by text generators only have a meaning if a human as a recipient automatically assigns a meaning to a text due to his species-typical meaning relation, because this is the learned behavior of a human. In fact, the text generator itself has never assigned any meaning to the generated text. Salopp one could also formulate that a technical text generator works like a parasite: it collects texts that humans have generated, rearranges them combinatorially according to formal criteria for the output, and for the receiving human a meaning event is automatically triggered by the text in the human, which does not exist anywhere in the text generator.
Whether this very restricted form of text generation is now in any sense detrimental or advantageous for the type of scientific discourse (with texts), that is to be examined in the further course.

SCIENTIFIC DISCOURSE

There is no clear definition for the term scientific discourse. This is not surprising, since an unambiguous definition presupposes that there is a fully specified conceptual framework within which terms such as discourse and scientific can be clearly delimited. However, in the case of a scientific enterprise with a global reach, broken down into countless individual disciplines, this does not seem to be the case at present (Sept 2023). For the further procedure, we will therefore fall back on core ideas of the discussion in philosophy of science since the 20th century [4]and we will introduce working hypotheses on the concept of empirical theory as well as sustainable empirical theory, so that a working hypothesis on the concept of scientific discourse will be possible, which has a minimal sharpness.

[4] A good place to start may be: F. Suppe, Editor. The Structure of Scientific Theories. University of Illinois Press, Urbana, 2 edition, 1979.

EMPIRICAL THEORY

The following assumptions are made for the notion of an empirical theory:

  1. an empirical theory is basically a text, written in a language that all participants understand.
  2. one part of the theory contains a description of an initial situation, the statements of which can be qualified by the theory users as now matching (true) or now not matching (false).
  3. another part of the theory contains a text that lists all changes that, to the knowledge of the participants, occur in the context of the initial situation and can change parts of the initial situation.
  4. changes in the initial situation are expressed by replacing certain statements of the initial situation with other statements. The resulting new text replaces the previous text.
  5. through the possibility of generating new initial situations, there is the possibility of making predictions (forming expectations) by applying rules of change to an applicable initial situation several times (at least once) in succession. The texts that are generated in each case induce in the minds of the participants, on the basis of the available meaning functions, the idea of a situation that is demanded to become qualified as now matching with intersubjective reality, should it occur. In the case of occurrence, the situation must correspond to the conception in the mind via perception. Whether such a correspondence can be established, after how long time and to what extent, this is basically open in the presence of the prediction making (the formation of an expectation) (autonomy of the object!).

SCIENTIFIC DISCOURSE NEW

Even before the introduction of the notion of a sustainable empirical theory, the notion of an empirical theory just introduced allows for initial statements about what a scientific discourse could or should be.
It is assumed here that the participants in a scientific discourse exchange their opinions about the world in the form of texts, all of which meet the requirements of an empirical theory.

WITH HUMANS

Insofar as the participants in the discourse are human beings, we know that they have basic species-typical abilities to generate subjective meanings by means of language, which can be decided as now true or now not true by reference to a real situation.

WITH TEXT GENERATORS

Insofar as the discourse participants would be text generators lacking these elementary skills (meaning, reality reference), they drop out as independent actors for a scientific discourse.
To illustrate this, here is a self-assessment of chatGPT4, a current text generator:

ChatGPT

Yes, your summary of our previous dialogue is accurate based on the points you’ve listed:

  1. I cannot read a book in the same way a human does, meaning I don’t interpret or comprehend in the same manner.
  2. My knowledge is up to September 2021, which means that I might not be aware of events, advancements, or publications after that point.
  3. My “learning” is different from human learning. I don’t learn from new experiences or information after my last update. Instead, I generate responses based on patterns in the data I was trained on.
  4. I don’t cite individual sources in my responses. I provide information based on the patterns recognized during my training.
  5. Responses I give can vary slightly even if the same question is posed multiple times.
  6. I can’t directly attribute my statements to specific, individual sources.
  7. The specifics about my training data and the processes that determine my responses are not transparently provided in each interaction.

You’ve captured the essence of our prior conversation well. If you have further questions or need clarifications on any of these points, please let me know. [5]

[5] This text is from a chat experiment conducted by the author with chatGPT4 on August 31, 2023. The citation can be found in: Gerd Doeben-Henisch, CONTINUE EXPERIMENT WITH CHATGPT4: Science, Empirical Science, Philosophy of Science, uffmm, Integrating Engineering and the Human Factor, eJournal uffmm.org ISSN 2567-6458,
8/31/2023 in [https://www.uffmm.org/2023/08/31/continue-experiment-with-chatgpt4-science-empirical-science-philosophy-of-science/ ] (accessed 9/27/2023).

The question then arises whether (current) text generators, despite their severely limited capabilities, could nevertheless contribute to scientific discourse, and what this contribution means for human participants. Since text generators fail for the hard scientific criteria (decidable reality reference, reproducible predictive behavior, separation of sources), one can only assume a possible contribution within human behavior: since humans can understand and empirically verify texts, they would in principle be able to rudimentarily classify a text from a text generator within their considerations.

For hard theory work, these texts would not be usable, but due to their literary-associative character across a very large body of texts, the texts of text generators could – in the positive case – at least introduce thoughts into the discourse through texts as stimulators via the detour of human understanding, which would stimulate the human user to examine these additional aspects to see if they might be important for the actual theory building after all. In this way, the text generators would not participate independently in the scientific discourse, but they would indirectly support the knowledge process of the human actors as aids to them.[6]

[6] A detailed illustration of this associative role of a text generator can also be found in (Doeben-Henisch, 2023) on the example of the term philosophy of science and on the question of the role of philosophy of science.

CHALLENGE DECISION

The application of an empirical theory can – in the positive case — enable an expanded picture of everyday experience, in that, related to an initial situation, possible continuations (possible futures) are brought before one’s eyes.
For people who have to shape their own individual processes in their respective everyday life, however, it is usually not enough to know only what one can do. Rather, everyday life requires deciding in each case which continuation to choose, given the many possible continuations. In order to be able to assert themselves in everyday life with as little effort as possible and with – at least imagined – as little risk as possible, people have adopted well-rehearsed behavior patterns for as many everyday situations as possible, which they follow spontaneously without questioning them anew each time. These well-rehearsed behavior patterns include decisions that have been made. Nevertheless, there are always situations in which the ingrained automatisms have to be interrupted in order to consciously clarify the question for which of several possibilities one wants to decide.

The example of an individual decision-maker can also be directly applied to the behavior of larger groups. Normally, even more individual factors play a role here, all of which have to be integrated in order to reach a decision. However, the characteristic feature of a decision situation remains the same: whatever knowledge one may have at the time of decision, when alternatives are available, one has to decide for one of many alternatives without any further, additional knowledge at this point. Empirical science cannot help here [7]: it is an indisputable basic ability of humans to be able to decide.

So far, however, it remains rather hidden in the darkness of not knowing oneself, which ultimately leads to deciding for one and not for the other. Whether and to what extent the various cultural patterns of decision-making aids in the form of religious, moral, ethical or similar formats actually form or have formed a helpful role for projecting a successful future appears to be more unclear than ever.[8]

[7] No matter how much detail she can contribute about the nature of decision-making processes.

[8] This topic is taken up again in the following in a different context and embedded there in a different solution context.

SUSTAINABLE EMPIRICAL THEORY

Through the newly flared up discussion about sustainability in the context of the United Nations, the question of prioritizing action relevant to survival has received a specific global impulse. The multitude of aspects that arise in this discourse context [9] are difficult, if not impossible, to classify into an overarching, consistent conceptual framework.

[9] For an example see the 17 development goals: [https://unric.org/de/17ziele/] (Accessed: September 27, 2023)

A rough classification of development goals into resource-oriented and actor-oriented can help to make an underlying asymmetry visible: a resource problem only exists if there are biological systems on this planet that require a certain configuration of resources (an ecosystem) for their physical existence. Since the physical resources that can be found on planet Earth are quantitatively limited, it is possible, in principle, to determine through thought and science under what conditions the available physical resources — given a prevailing behavior — are insufficient. Added to this is the factor that biological systems, by their very existence, also actively alter the resources that can be found.

So, if there should be a resource problem, it is exclusively because the behavior of the biological systems has led to such a biologically caused shortage. Resources as such are neither too much, nor too little, nor good, nor bad. If one accepts that the behavior of biological systems in the case of the species Homo sapiens can be controlled by internal states, then the resource problem is primarily a cognitive and emotional problem: Do we know enough? Do we want the right thing? And these questions point to motivations beyond what is currently knowable. Is there a dark spot in the human self-image here?

On the one hand, this questioning refers to the driving forces for a current decision beyond the possibilities of the empirical sciences (trans-empirical, meta-physical, …), but on the other hand, this questioning also refers to the center/ core of human competence. This motivates to extend the notion of empirical theory to the notion of a sustainable empirical theory. This does not automatically solve the question of the inner mechanism of a value decision, but it systematically classifies the problem. The problem thus has an official place. The following formulation is suggested as a characterization for the concept of a sustainable empirical theory:

  1. a sustainable empirical theory contains an empirical theory as its core.
    1. besides the parts of initial situation, rules of change and application of rules of change, a sustainable theory also contains a text with a list of such situations, which are considered desirable for a possible future (goals, visions, …).
    2. under the condition of goals, it is possible to minimally compare each current situation with the available goals and thereby indicate the degree of goal achievement.

Stating desired goals says nothing about how realistic or promising it is to pursue those goals. It only expresses that the authors of this theory know these goals and consider them optimal at the time of theory creation. [10] The irrationality of chosen goals is in this way officially included in the domain of thought of the theory creators and in this way facilitates the extension of the rational to the irrational without already having a real solution. Nobody can exclude that the phenomenon of bringing forth something new, respectively of preferring a certain point of view in comparison to others, can be understood further and better in the future.

[10] Something can only be classified as optimal if it can be placed within an overarching framework, which allows for positioning on a scale. This refers to a minimal cognitive model as an expression of rationality. However, the decision itself takes place outside of such a rational model; in this sense, the decision as an independent process is pre-rational.

EXTENDED SCIENTIFIC DISCOURSE

If one accepts the concept of a sustainable empirical theory, then one can extend the concept of a scientific discourse in such a way that not only texts that represent empirical theories can be introduced, but also those texts that represent sustainable empirical theories with their own goals. Here too, one can ask whether the current text generators (September 2023) can make a constructive contribution. Insofar as a sustainable empirical theory contains an empirical theory as a hard core, the preceding observations on the limitations of text generators apply. In the creative part of the development of an empirical theory, they can contribute text fragments through their associative-combinatorial character based on a very large number of documents, which may inspire the active human theory authors to expand their view. But what about that part that manifests itself in the selection of possible goals? At this point, one must realize that it is not about any formulations, but about those that represent possible solution formulations within a systematic framework; this implies knowledge of relevant and verifiable meaning structures that could be taken into account in the context of symbolic patterns. Text generators fundamentally do not have these abilities. But it is – again – not to be excluded that their associative-combinatorial character based on a very large number of documents can still provide one or the other suggestion.

In retrospect of humanity’s history of knowledge, research, and technology, it is suggested that the great advances were each triggered by something really new, that is, by something that had never existed before in this form. The praise for Big Data, as often heard today, represents – colloquially speaking — exactly the opposite: The burial of the new by cementing the old.[11]

[11] A prominent example of the naive fixation on the old as a standard for what is right can be seen, for example, in the book by Seth Stephens-Davidowitz, Don’t Trust Your Gut. Using Data Instead of Instinct To Make Better Choices, London – Oxford New York et al., 2022.

EXISTENTIALLY NEW THROUGH TIME

The concept of an empirical theory inherently contains the element of change, and even in the extended concept of a sustainable empirical theory, in addition to the fundamental concept of change, there is the aspect of a possible goal. A possible goal itself is not a change, but presupposes the reality of changes! The concept of change does not result from any objects but is the result of a brain performance, through which a current present is transformed into a partially memorable state (memory contents) by forming time slices in the context of perception processes – largely unconsciously. These produced memory contents have different abstract structures, are networked differently with each other, and are assessed in different ways. In addition, the brain automatically compares current perceptions with such stored contents and immediately reports when a current perception has changed compared to the last perception contents. In this way, the phenomenon of change is a fundamental cognitive achievement of the brain, which thus makes the character of a feeling of time available in the form of a fundamental process structure. The weight of this property in the context of evolution is hardly to be overestimated, as time as such is in no way perceptible.

[12] The modern invention of machines that can generate periodic signals (oscillators, clocks) has been successfully integrated into people’s everyday lives. However, the artificially (technically) producible time has nothing to do with the fundamental change found in reality. Technical time is a tool that we humans have invented to somehow structure the otherwise amorphous mass of a phenomenon stream. Since structure itself shows in the amorphous mass, which manifest obviously for all, repeating change cycles (e.g., sunrise and sunset, moonrise and moonset, seasons, …), a correlation of technical time models and natural time phenomena was offered. From the correlations resulting here, however, one should not conclude that the amorphous mass of the world phenomenon stream actually behaves according to our technical time model. Einstein’s theory of relativity at least makes us aware that there can be various — or only one? — asymmetries between technical time and world phenomenon stream.


Assuming this fundamental sense of time in humans, one can in principle recognize whether a current phenomenon, compared to all preceding phenomena, is somehow similar or markedly different, and in this sense indicates something qualitatively new.[13]

[13] Ultimately, an individual human only has its individual memory contents available for comparison, while a collective of people can in principle consult the set of all records. However, as is known, only a minimal fraction of the experiential reality is symbolically transformed.

By presupposing the concept of directed time for the designation of qualitatively new things, such a new event is assigned an information value in the Shannonian sense, as well as the phenomenon itself in terms of linguistic meaning, and possibly also in the cognitive area: relative to a spanned knowledge space, the occurrence of a qualitatively new event can significantly strengthen a theoretical assumption. In the latter case, the cognitive relevance may possibly mutate to a sustainable relevance if the assumption marks a real action option that could be important for further progress. In the latter case, this would provoke the necessity of a decision: should we adopt this action option or not? Humans can accomplish the finding of qualitatively new things. They are designed for it by evolution. But what about text generators?

Text generators so far do not have a sense of time comparable to that of humans. Their starting point would be texts that are different, in such a way that there is at least one text that is the most recent on the timeline and describes real events in the real world of phenomena. Since a text generator (as of September 2023) does not yet have the ability to classify texts regarding their applicability/non-applicability in the real world, its use would normally end here. Assuming that there are people who manually perform this classification for a text generator [14] (which would greatly limit the number of possible texts), then a text generator could search the surface of these texts for similar patterns and, relative to them, for those that cannot be compared. Assuming that the text generator would find a set of non-comparable patterns in acceptable time despite a massive combinatorial explosion, the problem of semantic qualification would arise again: which of these patterns can be classified as an indication of something qualitatively new? Again, humans would have to become active.

[14] Such support of machines by humans in the field of so-called intelligent algorithms has often been applied (and is still being applied today, see: [https://www.mturk.com/] (Accessed: September 27, 2023)), and is known to be very prone to errors.

As before, the verdict is mixed: left to itself, a text generator will not be able to solve this task, but in cooperation with humans, it may possibly provide important auxiliary services, which could ultimately be of existential importance to humans in search of something qualitatively new despite all limitations.

THE IMMANENT PREJUDICE OF THE SCIENCES

A prejudice is known to be the assessment of a situation as an instance of a certain pattern, which the judge assumes applies, even though there are numerous indications that the assumed applicability is empirically false. Due to the permanent requirement of everyday life that we have to make decisions, humans, through their evolutionary development, have the fundamental ability to make many of their everyday decisions largely automatically. This offers many advantages, but can also lead to conflicts.

Daniel Kahneman introduced in this context in his book [15] the two terms System 1 and System 2 for a human actor. These terms describe in his concept of a human actor two behavioral complexes that can be distinguished based on some properties.[16] System 1 is set by the overall system of human actor and is characterized by the fact that the actor can respond largely automatically to requirements by everyday life. The human actor has automatic answers to certain stimuli from his environment, without having to think much about it. In case of conflicts within System 1 or from the perspective of System 2, which exercises some control over the appropriateness of System 1 reactions in a certain situation in conscious mode, System 2 becomes active. This does not have automatic answers ready, but has to laboriously work out an answer to a given situation step by step. However, there is also the phenomenon that complex processes, which must be carried out frequently, can be automated to a certain extent (bicycling, swimming, playing a musical instrument, learning language, doing mental arithmetic, …). All these processes are based on preceding decisions that encompass different forms of preferences. As long as these automated processes are appropriate in the light of a certain rational model, everything seems to be OK. But if the corresponding model is distorted in any sense, then it would be said that these models carry a prejudice.

[15] Daniel Kahnemann, Thinking Fast and Slow, Pinguin Boooks Random House, UK, 2012 (zuerst 2011)

[16] See the following Chapter 1 in Part 1 of (Kahnemann, 2012, pages 19-30).

In addition to the countless examples that Kahneman himself cites in his book to show the susceptibility of System 1 to such prejudices, it should be pointed out here that the model of Kahneman himself (and many similar models) can carry a prejudice that is of a considerably more fundamental nature. The division of the behavioral space of a human actor into a System 1 and 2, as Kahneman does, obviously has great potential to classify many everyday events. But what about all the everyday phenomena that fit neither the scheme of System 1 nor the scheme of System 2?

In the case of making a decision, System 1 comments that people – if available – automatically call up and execute an available answer. Only in the case of conflict under the control of System 2 can there be lengthy operations that lead to other, new answers.

In the case of decisions, however, it is not just about reacting at all, but there is also the problem of choosing between known possibilities or even finding something new because the known old is unsatisfactory.

Established scientific disciplines have their specific perspectives and methods that define areas of everyday life as a subject area. Phenomena that do not fit into this predefined space do not occur for the relevant discipline – methodically conditioned. In the area of decision-making and thus the typical human structures, there are not a few areas that have so far not found official entry into a scientific discipline. At a certain point in time, there are ultimately many, large phenomenon areas that really exist, but methodically are not present in the view of individual sciences. For a scientific investigation of the real world, this means that the sciences, due to their immanent exclusions, are burdened with a massive reservation against the empirical world. For the task of selecting suitable sustainable goals within the framework of sustainable science, this structurally conditioned fact can be fatal. Loosely formulated: under the banner of actual science, a central principle of science – the openness to all phenomena – is simply excluded, so as not to have to change the existing structure.

For this question of a meta-reflection on science itself, text generators are again only reduced to possible abstract text delivery services under the direction of humans.

SUPERVISION BY PHILOSOPHY

The just-described fatal dilemma of all modern sciences is to be taken seriously, as without an efficient science, sustainable reflection on the present and future cannot be realized in the long term. If one agrees that the fatal bias of science is caused by the fact that each discipline works intensively within its discipline boundaries, but does not systematically organize communication and reflection beyond its own boundaries with a view to other disciplines as meta-reflection, the question must be answered whether and how this deficit can be overcome.

There is only one known answer to this question: one must search for that conceptual framework within which these guiding concepts can meaningfully interact both in their own right and in their interaction with other guiding concepts, starting from those guiding concepts that are constitutive for the individual disciplines.

This is genuinely the task of philosophy, concretized by the example of the philosophy of science. However, this would mean that each individual science would have to use a sufficiently large part of its capacities to make the idea of the one science in maximum diversity available in a real process.

For the hard conceptual work hinted at here, text generators will hardly be able to play a central role.

COLLECTIVE INTELLIGENCE

Since so far there is no concept of intelligence in any individual science that goes beyond a single discipline, it makes little sense at first glance to apply the term intelligence to collectives. However, looking at the cultural achievements of humanity as a whole, and here not least with a view to the used language, it is undeniable that a description of the performance of an individual person, its individual performance, is incomplete without reference to the whole.

So, if one tries to assign an overarching meaning to the letter combination intelligence, one will not be able to avoid deciphering this phenomenon of the human collective in the form of complex everyday processes in a no less complex dynamic world, at least to the extent that one can identify a somewhat corresponding empirical something for the letter combination intelligence, with which one could constitute a comprehensible meaning.

Of course, this term should be scalable for all biological systems, and one would have to have a comprehensible procedure that allows the various technical systems to be related to this collective intelligence term in such a way that direct performance comparisons between biological and technical systems would be possible.[17]

[17] The often quoted and popular Turing Test (See: Alan M. Turing: Computing Machinery and Intelligence. In: Mind. Volume LIX, No. 236, 1950, 433–460, [doi:10.1093/mind/LIX.236.433] (Accessed: Sept 29, 2023) in no way meets the methodological requirements that one would have to adhere to if one actually wanted to come to a qualified performance comparison between humans and machines. Nevertheless, the basic idea of Turing in his meta-logical text from 1936, published in 1937 (see: A. M. Turing: On Computable Numbers, with an Application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society. s2-42. Volume, No. 1, 1937, 230–265 [doi:10.1112/plms/s2-42.1.230] (Accessed: Sept 29, 2023) seems to be a promising starting point, since he, in trying to present an alternative formulation to Kurt Gödel’s (1931) proof on the undecidability of arithmetic, leads a meta-logical proof, and in this context Turing introduces the concept of a machine that was later called Universal Turing Machine.

Already in this proof approach, it can be seen how Turing transforms the phenomenon of a human bookkeeper at a meta-level into a theoretical concept, by means of which he can then meta-logically examine the behavior of this bookkeeper in a specific behavioral space. His meta-logical proof not only confirmed Gödel’s meta-logical proof, but also indirectly indicates how ultimately any phenomenal complexes can be formalized on a meta-level in such a way that one can then argue formally demanding with it.

CONCLUSION STRUCTURALLY

The idea of philosophical supervision of the individual sciences with the goal of a concrete integration of all disciplines into an overall conceptual structure seems to be fundamentally possible from a philosophy of science perspective based on the previous considerations. From today’s point of view, specific phenomena claimed by individual disciplines should no longer be a fundamental obstacle for a modern theory concept. This would clarify the basics of the concept of Collective Intelligence and it would surely be possible to more clearly identify interactions between human collective intelligence and interactive machines. Subsequently, the probability would increase that the supporting machines could be further optimized, so that they could also help in more demanding tasks.

CONCLUSION SUBJECTIVELY

Attempting to characterize the interactive role of text generators in a human-driven scientific discourse, assuming a certain scientific model, appears to be somewhat clear from a transdisciplinary (and thus structural) perspective. However, such scientific discourse represents only a sub-space of the general human discourse space. In the latter, the reception of texts from the perspective of humans inevitably also has a subjective view [18]: People are used to suspecting a human author behind a text. With the appearance of technical aids, texts have increasingly become products, which increasingly gaining formulations that are not written down by a human author alone, but by the technical aids themselves, mediated by a human author. With the appearance of text generators, the proportion of technically generated formulations increases extremely, up to the case that ultimately the entire text is the direct output of a technical aid. It becomes difficult to impossible to recognize to what extent a controlling human share can still be spoken of here. The human author thus disappears behind a text; the sign reality which does not prevent an existential projection of the inner world of the human reader into a potential human author, but threatens to lose itself or actually loses itself in the real absence of a human author in the face of a chimeric human counterpart. What happens in a world where people no longer have human counterparts?

[18] There is an excellent analysis on this topic by Hannes Bajohr titled “Artifizielle und postartifizielle Texte. Über Literatur und Künstliche Intelligenz” (Artificial and Post-Artificial Texts: On Literature and Artificial Intelligence). It was the Walter-Höllerer-Lecture 2022, delivered on December 8, 2022, at the Technical University of Berlin. The lecture can be accessed here [ https://hannesbajohr.de/wp-content/uploads/2022/12/Hoellerer-Vorlesung-2022.pdf ] (Accessed: September 29, 2023). The reference to this lecture was provided to me by Jennifer Becker.

Homo Sapiens: empirical and sustained-empirical theories, emotions, and machines. A sketch

Author: Gerd Doeben-Henisch

Email: info@uffmm.org

Aug 24, 2023 — Aug 29, 2023 (10:48h CET)

Attention: This text has been translated from a German source by using the software deepL for nearly 97 – 99% of the text! The diagrams of the German version have been left out.

CONTEXT

This text represents the outline of a talk given at the conference “AI – Text and Validity. How do AI text generators change scientific discourse?” (August 25/26, 2023, TU Darmstadt). [1] A publication of all lectures is planned by the publisher Walter de Gruyter by the end of 2023/beginning of 2024. This publication will be announced here then.

Start of the Lecture

Dear Auditorium,

This conference entitled “AI – Text and Validity. How do AI text generators change scientific discourses?” is centrally devoted to scientific discourses and the possible influence of AI text generators on these. However, the hot core ultimately remains the phenomenon of text itself, its validity.

In this conference many different views are presented that are possible on this topic.

TRANSDISCIPLINARY

My contribution to the topic tries to define the role of the so-called AI text generators by embedding the properties of ‘AI text generators’ in a ‘structural conceptual framework’ within a ‘transdisciplinary view’. This helps the specifics of scientific discourses to be highlighted. This can then result further in better ‘criteria for an extended assessment’ of AI text generators in their role for scientific discourses.

An additional aspect is the question of the structure of ‘collective intelligence’ using humans as an example, and how this can possibly unite with an ‘artificial intelligence’ in the context of scientific discourses.

‘Transdisciplinary’ in this context means to span a ‘meta-level’ from which it should be possible to describe today’s ‘diversity of text productions’ in a way that is expressive enough to distinguish ‘AI-based’ text production from ‘human’ text production.

HUMAN TEXT GENERATION

The formulation ‘scientific discourse’ is a special case of the more general concept ‘human text generation’.

This change of perspective is meta-theoretically necessary, since at first sight it is not the ‘text as such’ that decides about ‘validity and non-validity’, but the ‘actors’ who ‘produce and understand texts’. And with the occurrence of ‘different kinds of actors’ – here ‘humans’, there ‘machines’ – one cannot avoid addressing exactly those differences – if there are any – that play a weighty role in the ‘validity of texts’.

TEXT CAPABLE MACHINES

With the distinction in two different kinds of actors – here ‘humans’, there ‘machines’ – a first ‘fundamental asymmetry’ immediately strikes the eye: so-called ‘AI text generators’ are entities that have been ‘invented’ and ‘built’ by humans, it are furthermore humans who ‘use’ them, and the essential material used by so-called AI generators are again ‘texts’ that are considered a ‘human cultural property’.

In the case of so-called ‘AI-text-generators’, we shall first state only this much, that we are dealing with ‘machines’, which have ‘input’ and ‘output’, plus a minimal ‘learning ability’, and whose input and output can process ‘text-like objects’.

BIOLOGICAL — NON-BIOLOGICAL

On the meta-level, then, we are assumed to have, on the one hand, such actors which are minimally ‘text-capable machines’ – completely human products – and, on the other hand, actors we call ‘humans’. Humans, as a ‘homo-sapiens population’, belong to the set of ‘biological systems’, while ‘text-capable machines’ belong to the set of ‘non-biological systems’.

BLANK INTELLIGENCE TERM

The transformation of the term ‘AI text generator’ into the term ‘text capable machine’ undertaken here is intended to additionally illustrate that the widespread use of the term ‘AI’ for ‘artificial intelligence’ is rather misleading. So far, there exists today no general concept of ‘intelligence’ in any scientific discipline that can be applied and accepted beyond individual disciplines. There is no real justification for the almost inflationary use of the term AI today other than that the term has been so drained of meaning that it can be used anytime, anywhere, without saying anything wrong. Something that has no meaning can be neither true’ nor ‘false’.

PREREQUISITES FOR TEXT GENERATION

If now the homo-sapiens population is identified as the original actor for ‘text generation’ and ‘text comprehension’, it shall now first be examined which are ‘those special characteristics’ that enable a homo-sapiens population to generate and comprehend texts and to ‘use them successfully in the everyday life process’.

VALIDITY

A connecting point for the investigation of the special characteristics of a homo-sapiens text generation and a text understanding is the term ‘validity’, which occurs in the conference topic.

In the primary arena of biological life, in everyday processes, in everyday life, the ‘validity’ of a text has to do with ‘being correct’, being ‘appicable’. If a text is not planned from the beginning with a ‘fictional character’, but with a ‘reference to everyday events’, which everyone can ‘check’ in the context of his ‘perception of the world’, then ‘validity in everyday life’ has to do with the fact that the ‘correctness of a text’ can be checked. If the ‘statement of a text’ is ‘applicable’ in everyday life, if it is ‘correct’, then one also says that this statement is ‘valid’, one grants it ‘validity’, one also calls it ‘true’. Against this background, one might be inclined to continue and say: ‘If’ the statement of a text ‘does not apply’, then it has ‘no validity’; simplified to the formulation that the statement is ‘not true’ or simply ‘false’.

In ‘real everyday life’, however, the world is rarely ‘black’ and ‘white’: it is not uncommon that we are confronted with texts to which we are inclined to ascribe ‘a possible validity’ because of their ‘learned meaning’, although it may not be at all clear whether there is – or will be – a situation in everyday life in which the statement of the text actually applies. In such a case, the validity would then be ‘indeterminate’; the statement would be ‘neither true nor false’.

ASYMMETRY: APPLICABLE- NOT APPLICABLE

One can recognize a certain asymmetry here: The ‘applicability’ of a statement, its actual validity, is comparatively clear. The ‘not being applicable’, i.e. a ‘merely possible’ validity, on the other hand, is difficult to decide.

With this phenomenon of the ‘current non-decidability’ of a statement we touch both the problem of the ‘meaning’ of a statement — how far is at all clear what is meant? — as well as the problem of the ‘unfinishedness of our everyday life’, better known as ‘future’: whether a ‘current present’ continues as such, whether exactly like this, or whether completely different, depends on how we understand and estimate ‘future’ in general; what some take for granted as a possible future, can be simply ‘nonsense’ for others.

MEANING

This tension between ‘currently decidable’ and ‘currently not yet decidable’ additionally clarifies an ‘autonomous’ aspect of the phenomenon of meaning: if a certain knowledge has been formed in the brain and has been made usable as ‘meaning’ for a ‘language system’, then this ‘associated’ meaning gains its own ‘reality’ for the scope of knowledge: it is not the ‘reality beyond the brain’, but the ‘reality of one’s own thinking’, whereby this reality of thinking ‘seen from outside’ has something like ‘being virtual’.

If one wants to talk about this ‘special reality of meaning’ in the context of the ‘whole system’, then one has to resort to far-reaching assumptions in order to be able to install a ‘conceptual framework’ on the meta-level which is able to sufficiently describe the structure and function of meaning. For this, the following components are minimally assumed (‘knowledge’, ‘language’ as well as ‘meaning relation’):

KNOWLEDGE: There is the totality of ‘knowledge’ that ‘builds up’ in the homo-sapiens actor in the course of time in the brain: both due to continuous interactions of the ‘brain’ with the ‘environment of the body’, as well as due to interactions ‘with the body itself’, as well as due to interactions ‘of the brain with itself’.

LANGUAGE: To be distinguished from knowledge is the dynamic system of ‘potential means of expression’, here simplistically called ‘language’, which can unfold over time in interaction with ‘knowledge’.

MEANING RELATIONSHIP: Finally, there is the dynamic ‘meaning relation’, an interaction mechanism that can link any knowledge elements to any language means of expression at any time.

Each of these mentioned components ‘knowledge’, ‘language’ as well as ‘meaning relation’ is extremely complex; no less complex is their interaction.

FUTURE AND EMOTIONS

In addition to the phenomenon of meaning, it also became apparent in the phenomenon of being applicable that the decision of being applicable also depends on an ‘available everyday situation’ in which a current correspondence can be ‘concretely shown’ or not.

If, in addition to a ‘conceivable meaning’ in the mind, we do not currently have any everyday situation that sufficiently corresponds to this meaning in the mind, then there are always two possibilities: We can give the ‘status of a possible future’ to this imagined construct despite the lack of reality reference, or not.

If we would decide to assign the status of a possible future to a ‘meaning in the head’, then there arise usually two requirements: (i) Can it be made sufficiently plausible in the light of the available knowledge that the ‘imagined possible situation’ can be ‘transformed into a new real situation’ in the ‘foreseeable future’ starting from the current real situation? And (ii) Are there ‘sustainable reasons’ why one should ‘want and affirm’ this possible future?

The first requirement calls for a powerful ‘science’ that sheds light on whether it can work at all. The second demand goes beyond this and brings the seemingly ‘irrational’ aspect of ’emotionality’ into play under the garb of ‘sustainability’: it is not simply about ‘knowledge as such’, it is also not only about a ‘so-called sustainable knowledge’ that is supposed to contribute to supporting the survival of life on planet Earth — and beyond –, it is rather also about ‘finding something good, affirming something, and then also wanting to decide it’. These last aspects are so far rather located beyond ‘rationality’; they are assigned to the diffuse area of ’emotions’; which is strange, since any form of ‘usual rationality’ is exactly based on these ’emotions’.[2]

SCIENTIFIC DISCOURSE AND EVERYDAY SITUATIONS

In the context of ‘rationality’ and ’emotionality’ just indicated, it is not uninteresting that in the conference topic ‘scientific discourse’ is thematized as a point of reference to clarify the status of text-capable machines.

The question is to what extent a ‘scientific discourse’ can serve as a reference point for a successful text at all?

For this purpose it can help to be aware of the fact that life on this planet earth takes place at every moment in an inconceivably large amount of ‘everyday situations’, which all take place simultaneously. Each ‘everyday situation’ represents a ‘present’ for the actors. And in the heads of the actors there is an individually different knowledge about how a present ‘can change’ or will change in a possible future.

This ‘knowledge in the heads’ of the actors involved can generally be ‘transformed into texts’ which in different ways ‘linguistically represent’ some of the aspects of everyday life.

The crucial point is that it is not enough for everyone to produce a text ‘for himself’ alone, quite ‘individually’, but that everyone must produce a ‘common text’ together ‘with everyone else’ who is also affected by the everyday situation. A ‘collective’ performance is required.

Nor is it a question of ‘any’ text, but one that is such that it allows for the ‘generation of possible continuations in the future’, that is, what is traditionally expected of a ‘scientific text’.

From the extensive discussion — since the times of Aristotle — of what ‘scientific’ should mean, what a ‘theory’ is, what an ’empirical theory’ should be, I sketch what I call here the ‘minimal concept of an empirical theory’.

  1. The starting point is a ‘group of people’ (the ‘authors’) who want to create a ‘common text’.
  2. This text is supposed to have the property that it allows ‘justifiable predictions’ for possible ‘future situations’, to which then ‘sometime’ in the future a ‘validity can be assigned’.
  3. The authors are able to agree on a ‘starting situation’ which they transform by means of a ‘common language’ into a ‘source text’ [A].
  4. It is agreed that this initial text may contain only ‘such linguistic expressions’ which can be shown to be ‘true’ ‘in the initial situation’.
  5. In another text, the authors compile a set of ‘rules of change’ [V] that put into words ‘forms of change’ for a given situation.
  6. Also in this case it is considered as agreed that only ‘such rules of change’ may be written down, of which all authors know that they have proved to be ‘true’ in ‘preceding everyday situations’.
  7. The text with the rules of change V is on a ‘meta-level’ compared to the text A about the initial situation, which is on an ‘object-level’ relative to the text V.
  8. The ‘interaction’ between the text V with the change rules and the text A with the initial situation is described in a separate ‘application text’ [F]: Here it is described when and how one may apply a change rule (in V) to a source text A and how this changes the ‘source text A’ to a ‘subsequent text A*’.
  9. The application text F is thus on a next higher meta-level to the two texts A and V and can cause the application text to change the source text A.
  1. The moment a new subsequent text A* exists, the subsequent text A* becomes the new initial text A.
  2. If the new initial text A is such that a change rule from V can be applied again, then the generation of a new subsequent text A* is repeated.
  3. This ‘repeatability’ of the application can lead to the generation of many subsequent texts <A*1, …, A*n>.
  4. A series of many subsequent texts <A*1, …, A*n> is usually called a ‘simulation’.
  5. Depending on the nature of the source text A and the nature of the change rules in V, it may be that possible simulations ‘can go quite differently’. The set of possible scientific simulations thus represents ‘future’ not as a single, definite course, but as an ‘arbitrarily large set of possible courses’.
  6. The factors on which different courses depend are manifold. One factor are the authors themselves. Every author is, after all, with his corporeality completely himself part of that very empirical world which is to be described in a scientific theory. And, as is well known, any human actor can change his mind at any moment. He can literally in the next moment do exactly the opposite of what he thought before. And thus the world is already no longer the same as previously assumed in the scientific description.

Even this simple example shows that the emotionality of ‘finding good, wanting, and deciding’ lies ahead of the rationality of scientific theories. This continues in the so-called ‘sustainability discussion’.

SUSTAINABLE EMPIRICAL THEORY

With the ‘minimal concept of an empirical theory (ET)’ just introduced, a ‘minimal concept of a sustainable empirical theory (NET)’ can also be introduced directly.

While an empirical theory can span an arbitrarily large space of grounded simulations that make visible the space of many possible futures, everyday actors are left with the question of what they want to have as ‘their future’ out of all this? In the present we experience the situation that mankind gives the impression that it agrees to destroy the life beyond the human population more and more sustainably with the expected effect of ‘self-destruction’.

However, this self-destruction effect, which can be predicted in outline, is only one variant in the space of possible futures. Empirical science can indicate it in outline. To distinguish this variant before others, to accept it as ‘good’, to ‘want’ it, to ‘decide’ for this variant, lies in that so far hardly explored area of emotionality as root of all rationality.[2]

If everyday actors have decided in favor of a certain rationally lightened variant of possible future, then they can evaluate at any time with a suitable ‘evaluation procedure (EVAL)’ how much ‘percent (%) of the properties of the target state Z’ have been achieved so far, provided that the favored target state is transformed into a suitable text Z.

In other words, the moment we have transformed everyday scenarios into a rationally tangible state via suitable texts, things take on a certain clarity and thereby become — in a sense — simple. That we make such transformations and on which aspects of a real or possible state we then focus is, however, antecedent to text-based rationality as an emotional dimension.[2]

MAN-MACHINE

After these preliminary considerations, the final question is whether and how the main question of this conference, “How do AI text generators change scientific discourse?” can be answered in any way?

My previous remarks have attempted to show what it means for humans to collectively generate texts that meet the criteria for scientific discourse that also meets the requirements for empirical or even sustained empirical theories.

In doing so, it becomes apparent that both in the generation of a collective scientific text and in its application in everyday life, a close interrelation with both the shared experiential world and the dynamic knowledge and meaning components in each actor play a role.

The aspect of ‘validity’ is part of a dynamic world reference whose assessment as ‘true’ is constantly in flux; while one actor may tend to say “Yes, can be true”, another actor may just tend to the opposite. While some may tend to favor possible future option X, others may prefer future option Y. Rational arguments are absent; emotions speak. While one group has just decided to ‘believe’ and ‘implement’ plan Z, the others turn away, reject plan Z, and do something completely different.

This unsteady, uncertain character of future-interpretation and future-action accompanies the Homo Sapiens population from the very beginning. The not understood emotional complex constantly accompanies everyday life like a shadow.

Where and how can ‘text-enabled machines’ make a constructive contribution in this situation?

Assuming that there is a source text A, a change text V and an instruction F, today’s algorithms could calculate all possible simulations faster than humans could.

Assuming that there is also a target text Z, today’s algorithms could also compute an evaluation of the relationship between a current situation as A and the target text Z.

In other words: if an empirical or a sustainable-empirical theory would be formulated with its necessary texts, then a present algorithm could automatically compute all possible simulations and the degree of target fulfillment faster than any human alone.

But what about the (i) elaboration of a theory or (ii) the pre-rational decision for a certain empirical or even sustainable-empirical theory ?

A clear answer to both questions seems hardly possible to me at the present time, since we humans still understand too little how we ourselves collectively form, select, check, compare and also reject theories in everyday life.

My working hypothesis on the subject is: that we will very well need machines capable of learning in order to be able to fulfill the task of developing useful sustainable empirical theories for our common everyday life in the future. But when this will happen in reality and to what extent seems largely unclear to me at this point in time.[2]

COMMENTS

[1] https://zevedi.de/en/topics/ki-text-2/

[2] Talking about ’emotions’ in the sense of ‘factors in us’ that move us to go from the state ‘before the text’ to the state ‘written text’, that hints at very many aspects. In a small exploratory text “State Change from Non-Writing to Writing. Working with chatGPT4 in parallel” ( https://www.uffmm.org/2023/08/28/state-change-from-non-writing-to-writing-working-with-chatgpt4-in-parallel/ ) the author has tried to address some of these aspects. While writing it becomes clear that very many ‘individually subjective’ aspects play a role here, which of course do not appear ‘isolated’, but always flash up a reference to concrete contexts, which are linked to the topic. Nevertheless, it is not the ‘objective context’ that forms the core statement, but the ‘individually subjective’ component that appears in the process of ‘putting into words’. This individual subjective component is tentatively used here as a criterion for ‘authentic texts’ in comparison to ‘automated texts’ like those that can be generated by all kinds of bots. In order to make this difference more tangible, the author decided to create an ‘automated text’ with the same topic at the same time as the quoted authentic text. For this purpose he used chatGBT4 from openAI. This is the beginning of a philosophical-literary experiment, perhaps to make the possible difference more visible in this way. For purely theoretical reasons, it is clear that a text generated by chatGBT4 can never generate ‘authentic texts’ in origin, unless it uses as a template an authentic text that it can modify. But then this is a clear ‘fake document’. To prevent such an abuse, the author writes the authentic text first and then asks chatGBT4 to write something about the given topic without chatGBT4 knowing the authentic text, because it has not yet found its way into the database of chatGBT4 via the Internet.

OKSIMO.R – Start . The ‘inside’ of the ‘outside’ – Part 2

eJournal: uffmm.org
ISSN 2567-6458, 13.Januar 2023 – 18.January 2023, 08:08 p.m.
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Parts of this text have been translated with www.DeepL.com/Translator (free version), afterwards only minimally edited.

CONTEXT

This post is part of the book project ‘oksimo.R Editor and Simulator for Theories’.

Part 2

( This text is an direct continuation of the text  “The ‘inside’ of the ‘outside’. Basic Building Blocks”)

Establishment of First Structures

At first sight, the previously described galactic cell association of a human body does not provide a natural clue for a ‘center’ of some kind. Which cell should be more important than others? Each one is active, each one does its ‘job’. Many ‘talk’ to many. Chemical substances are exchanged or by means of chemical substance exchange ‘electrical potentials’ are generated which can travel ‘faster’ and which can generate ‘impulse-like events’ which in turn activate chemical substances again. If one would make this ‘talking with chemical substances and electric potentials’ artificially audible, we would have a symphony of 127 trillion (127 x 10^12) single voices …

And yet, when we experience our human bodies in everyday life, we don’t see a huge cloud of galactic proportions of individual cells, we see a ‘delineated object’ with a surface that is ‘visible’; an object that can make ‘sounds’, that ‘smells’, that is ‘touchable’, that can ‘change’ and ‘move’. Moreover, it can ‘stuff things into itself’, and ‘gases’, ‘liquids’, and ‘more solid components’ also come out of it. Further it is obvious with longer observation that there are areas at the body which react to ‘light’ (eyes), to ‘sounds’ (ears), to ‘smells’ (nose), to ‘touch’ (skin), to ‘body positions’ (among other things sense of balance), to ‘temperature’ (skin), to ‘chemical compositions of substances in the mouth’ (taste organs in the mouth) and some more.

This everyday ‘experience’ suggests the assumption that the cells of our human body have spatially arranged themselves into ‘special networks’ [1], which show a high ‘degree of organization’, so pronounced that these networks appear like ‘one unit’, like a ‘single system’ with ‘input’ and ‘output’, and where complex processes take place between input and output. This opens up the possibility of viewing the galactic space of autonomous cells in a human body as a ‘collective of organized systems’ that appear to be in active exchange with each other.”[2], [4],[5]

In modern technical systems such as a car, an airplane, a computer, there is a ‘meta-level’ from which the whole system can be ‘controlled’. In the car the steering wheel, the brake, the gear shift etc., similarly in the airplane the cockpit with a multiplicity of instruments, or with the computer the input and output devices. However, for years an increasing ‘autonomy’ of these technical devices has been emerging, insofar as many control decisions of humans are shifted to ‘subsystems’, which thereby ‘self-perform’ more and more classical control performance of humans.[6].

In a human body there exists ‘parallel’ to the different body systems among other things the ‘nervous system’ with the ‘brain’ as central area, in which many ‘signals from the body systems’ run together and from which again ‘signals to the body systems’ are sent out. The brain with the nervous system seems to be a system of its own, which processes the incoming signals in different ‘neuronal processes’ and also sends out signals, which can cause ‘effects in the body systems’.[7] From the point of view of ‘functioning’ the brain with the nervous system can be understood as a kind of ‘meta-system’, in which properties of all other ‘body systems’ are ‘mapped’, find a ‘process-like interpretation’, and can be influenced (= ‘controlled’) to a certain degree with the help of these mappings and interpretations.

As the modern empirical sciences make visible more and more by their investigations and subsequent ‘interpretations’ (e.g. [4],[5]), the distinguishable body systems themselves have a very high complexity with their own ‘autonomy’ (stomach, liver, kidney, heart, …), which can be influenced only conditionally by the brain, but which conversely can also influence the brain. In addition, there is a hardly manageable amount of mutual influences via the immense ‘material flows’ in the blood circulation and in the body fluids.

For the context of this book, of particular interest here are those structures that are important for the ‘coordination of the different brains’ by means of ‘language’ and closely related to this are the ‘cognitive’ and ’emotional’ processes in the brain that are responsible for what ‘cognitive images are created in the mind’ with which a brain ‘interprets’ ‘itself’ and ‘everything else’.

How to describe the Human Being?

The description of the human cell galaxy as ‘subsystems’ with their own ‘input’ and ‘output’ and and including ‘inner processes’ – here simply called the ‘system function’ – can appear ‘simple’ at first sight, ‘normal’, or something else. We enter with this question the fundamental question, how we can describe the human cell galaxy – i.e. ‘ourselves’! – at all and furthermore maybe how we ‘should’ describe it: are there any criteria on the basis of which we should prefer a ‘certain way of description’?

In the case of the description of ‘nature’, of the ‘real world’, we may still be able to distinguish between ‘us’ and ‘nature’ (which, however, will later come out as a fallacy)), it becomes somewhat more difficult with the ‘description of ourselves’. If one wants to describe something, one needs certain conditions to be able to make a description. But what are these conditions if we want to describe ourselves? Doesn’t here the famous ‘cat bite into its own tail’?

In ‘normal everyday life’ [8] typical forms with which we describe are e.g. ‘pictures’, ‘photographs’, ‘videos’, ‘music’, ‘body movements’ and others, but above all linguistic expressions (spoken, written; everyday language, technical language; …).

Let’s stay for a moment with ‘everyday language (German, English, Italian, …).

As children we are born into a certain, already existing world with a respective ‘everyday life’ distinctive for each human person. At least one language is spoken in such an environment. If the parents are bilingual even two languages in parallel. If the environment is different from the language of the parents, then perhaps even three languages. And today, where also the environment becomes more and more ‘multi-cultural’, maybe even more than three languages are practiced.

No matter how many languages occur simultaneously for a person, each language has its own ‘rules’, its own ‘pronunciation’, its own ‘contextual reference’, its own ‘meanings’. These contexts can change; the language itself can change. And if someone grows up with not just one language, but more than one, then ‘in the person’, in the ‘speaker-listener’, there can naturally be multiple interactions between the different languages. Since this happens today in many places at the same time with more and more people, there are still hardly sufficient research results available that adequately describe this diversity in its specifics.

So, if we want to describe ‘ourselves’ as ‘part of the real world’, we should first of all accept and ‘consciously assume’ that we do not start at ‘point zero’ at the moment of describing, not as a ‘blank sheet’, but as a biological system which has a more or less long ‘learning process’ behind it. Thereby, the word ‘learning process’ as part of the language the author uses, is not a ‘neutral set of letters’, but likewise a ‘word’ of his language, which he shares with many other speakers of ‘German’. One must assume that each ‘speaker of German’ associates his own ‘individual conceptions’ with the word ‘learning process’. And also this word ‘conception’ is such a word, which as part of the spoken (and written) language normally does not come along ‘meaning-free’. In short, as soon as we speak, as soon as we link words in larger units to statements, we activate a set of ‘knowledge and skills’ that are somehow ‘present in us’, that we use ‘automatically’, and whose use is normally largely ‘unconscious’.”[9],[10]

When I, as the author of this text, now write down statements in the German language, I let myself be carried by a ‘wave of language usage’, so to speak, whose exact nature and effectiveness I cannot fully grasp at the moment of use (and this is the case for every language user). I can, however, when I have expressed myself, look more consciously at what has been expressed, and then — perhaps — see clearer whether and how I can place it in contexts known to me. Since also the ‘known to me’ is largely ‘unconscious’ and passes from ‘unconscious knowledge’ into ‘conscious’ knowledge, the task of a ‘clarification of speaking’ and the ‘meaning’ connected with it is always only fragmentarily, partially possible. The ‘conscious eye of knowledge’ is therefore perhaps comparable to a ‘shining knowledge bubble’ in the black sea of ‘unconscious knowledge’, which seems to be close to ‘not-knowing’ but it isn’t ‘not-knowing’: ‘unconscious knowledge’ is ‘inside the brain ‘real knowledge’, which ‘works’.

… to be continued …

COMMENTS

wkp := Wikipedia

[1] In microbiology as a part of evolutionary biology, one has recognized rudimentarily how the individual cells during the ‘growth process’ ‘communicate’ possible cooperations with other cells via chemical substances, which are ‘controlled’ by their respective individual ‘genetic program’. These processes can very well be described as ‘exchange of signals’, where these ‘signals’ do not occur in isolation, but are ‘related’ by the genetic program to other chemical substances and process steps. Through this ‘relating’, the chemical signal carriers, isolated in themselves, are embedded in a ‘space of meanings’ from which they find an ‘assignment’. This overall process fulfills all requirements of a ‘communication’. In this respect, it seems justified to speak of an ‘agreement’ between the individual cells, an ‘understanding’ about whether and how they want to ‘cooperate’ with each other.

[2] When thinking of complex connections between cells, one may first think of the cells in the brain (‘neurons’), certain types of which may have as many as 1000 dendrites (:= these are projections on an ‘axon’ and an axon is the ‘output’ on a neuron), each dendrite housing multiple synapses.[3] Since each synapse can be the endpoint of a connection to another synapse, it suggests that a complex network of the order of trillions (10^12) connections may exist here in a brain. In addition, there is also the system of blood vessels that run through the entire body and supply the approximately 36 trillion (10^12) body cells with various chemical substances.

[3] wkp [EN], Neuron, URL: https://en.wikipedia.org/wiki/Neuron, section ‚Connectivity‘, citation: „The human brain has some 8.6 x 1010 (eighty six billion neurons. Each neuron has on average 7,000 synaptic connections to other neurons. It has been estimated that the brain of a three-year-old child has about 1015 synapses (quadrillion). This number declines with age, stabilizing by adulthood. Estimates vary for an adult, ranging from 1014 to 5 x 1014 synapses (100 to 500 trillion).”

[4] Robert F.Schmidt, Gerhard Thews (Eds.), 1995, Physiologie des Menschen, 25th edition, Springer

[5] Niels Birbaumer, Robert F.Schmidt, 2006, Biologische Psychologie, 6.th edition, Springer

[6] Famously, the example of the ‘auto-pilot’ on an airplane, software that can ‘steer’ the entire plane without human intervention.

[7] Thus, the position of the joints is continuously sent to the brain and, in the case of a ‘directed movement’, the set of current joint positions is used to trigger an ‘appropriate movement’ by sending appropriate signals ‘from the brain to the muscles’.

[8] Of course, also a certain fiction, because everyone ultimately experiences ‘his everyday life’ to a certain degree, which only partially overlaps with the ‘everyday life of another’.

[9] When children in school are confronted for the first time with the concept of a ‘grammar’, with ‘grammatical rules’, they will not understand what that is. Using concrete examples of language, they will be able to ‘link’ one or another ‘grammatical expression’ with linguistic phenomena, but they will not really understand the concept of grammar. This is due to the fact that the entire processes that take place in the ‘inside of a human being’ have been researched only in a very rudimentary way until today. It is in no way sufficient for the formulation of a grammar close to everyday life.

[10] Karl Erich Heidoplh, Walter Flämig, Wolfgang Motsch (ed.), (1980), Grundzüge einer Deutschen Grammatik, Akademie-Verlag, Berlin. Note: Probably the most systematized grammar of German to date, compiled by a German authors’ collective (at that time still the eastern part of Germany called ‘German Democratic Republic’ (GDR)). Precisely because the approach was very systematic, the authors could clearly see that grammar as a description of ‘regular forms’ reaches its limits where the ‘meaning’ of expressions comes into play. Since ‘meaning’ describes a state of affairs that takes place in the ‘inside of the human being’ (of course in intensive interaction with interactions of the body with the environment), a comprehensive objective description of the factor ‘meaning’ in interaction with the forms is always only partially possible.

COMMON SCIENCE as Sustainable Applied Empirical Theory, besides ENGINEERING, in a SOCIETY

eJournal: uffmm.org
ISSN 2567-6458, 19.Juni 2022 – 30.December 2022
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of the Philosophy of Science theme within the the uffmm.org blog.

This is work in progress:

  1. The whole text shows a dynamic, which induces many changes. Difficult to plan ‘in advance’.
  2. Perhaps, some time, it will look like a ‘book’, at least ‘for a moment’.
  3. I have started a ‘book project’ in parallel. This was motivated by the need to provide potential users of our new oksimo.R software with a coherent explanation of how the oksimo.R software, when used, generates an empirical theory in the format of a screenplay. The primary source of the book is in German and will be translated step by step here in the uffmm.blog.

INTRODUCTION

In a rather foundational paper about an idea, how one can generalize ‘systems engineering’ [*1] to the art of ‘theory engineering’ [1] a new conceptual framework has been outlined for a ‘sustainable applied empirical theory (SAET)’. Part of this new framework has been the idea that the classical recourse to groups of special experts (mostly ‘engineers’ in engineering) is too restrictive in the light of the new requirement of being sustainable: sustainability is primarily based on ‘diversity’ combined with the ‘ability to predict’ from this diversity probable future states which keep life alive. The aspect of diversity induces the challenge to see every citizen as a ‘natural expert’, because nobody can know in advance and from some non-existing absolut point of truth, which knowledge is really important. History shows that the ‘mainstream’ is usually to a large degree ‘biased’ [*1b].

With this assumption, that every citizen is a ‘natural expert’, science turns into a ‘general science’ where all citizens are ‘natural members’ of science. I will call this more general concept of science ‘sustainable citizen science (SCS)’ or ‘Citizen Science 2.0 (CS2)’. The important point here is that a sustainable citizen science is not necessarily an ‘arbitrary’ process. While the requirement of ‘diversity’ relates to possible contents, to possible ideas, to possible experiments, and the like, it follows from the other requirement of ‘predictability’/ of being able to make some useful ‘forecasts’, that the given knowledge has to be in a format, which allows in a transparent way the construction of some consequences, which ‘derive’ from the ‘given’ knowledge and enable some ‘new’ knowledge. This ability of forecasting has often been understood as the business of ‘logic’ providing an ‘inference concept’ given by ‘rules of deduction’ and a ‘practical pattern (on the meta level)’, which defines how these rules have to be applied to satisfy the inference concept. But, looking to real life, to everyday life or to modern engineering and economy, one can learn that ‘forecasting’ is a complex process including much more than only cognitive structures nicely fitting into some formulas. For this more realistic forecasting concept we will use here the wording ‘common logic’ and for the cognitive adventure where common logic is applied we will use the wording ‘common science’. ‘Common science’ is structurally not different from ‘usual science’, but it has a substantial wider scope and is using the whole of mankind as ‘experts’.

The following chapters/ sections try to illustrate this common science view by visiting different special views which all are only ‘parts of a whole’, a whole which we can ‘feel’ in every moment, but which we can not yet completely grasp with our theoretical concepts.

CONTENT

  1. Language (Main message: “The ordinary language is the ‘meta language’ to every special language. This can be used as a ‘hint’ to something really great: the mystery of the ‘self-creating’ power of the ordinary language which for most people is unknown although it happens every moment.”)
  2. Concrete Abstract Statements (Main message: “… you will probably detect, that nearly all words of a language are ‘abstract words’ activating ‘abstract meanings’. …If you cannot provide … ‘concrete situations’ the intended meaning of your abstract words will stay ‘unclear’: they can mean ‘nothing or all’, depending from the decoding of the hearer.”)
  3. True False Undefined (Main message: “… it reveals that ’empirical (observational) evidence’ is not necessarily an automatism: it presupposes appropriate meaning spaces embedded in sets of preferences, which are ‘observation friendly’.
  4. Beyond Now (Main message: “With the aid of … sequences revealing possible changes the NOW is turned into a ‘moment’ embedded in a ‘process’, which is becoming the more important reality. The NOW is something, but the PROCESS is more.“)
  5. Playing with the Future (Main message: “In this sense seems ‘language’ to be the master tool for every brain to mediate its dynamic meaning structures with symbolic fix points (= words, expressions) which as such do not change, but the meaning is ‘free to change’ in any direction. And this ‘built in ‘dynamics’ represents an ‘internal potential’ for uncountable many possible states, which could perhaps become ‘true’ in some ‘future state’. Thus ‘future’ can begin in these potentials, and thinking is the ‘playground’ for possible futures.(but see [18])”)
  6. Forecasting – Prediction: What? (This chapter explains the cognitive machinery behind forecasting/ predictions, how groups of human actors can elaborate shared descriptions, and how it is possible to start with sequences of singularities to built up a growing picture of the empirical world which appears as a radical infinite and indeterministic space. )
  7. !!! From here all the following chapters have to be re-written !!!
  8. THE LOGIC OF EVERYDAY THINKING. Lets try an Example (Will probably be re-written too)
  9. Boolean Logic (Explains what boolean logic is, how it enables the working of programmable machines, but that it is of nearly no help for the ‘heart’ of forecasting.)
  10. … more re-writing will probably happen …
  11. Everyday Language: German Example
  12. Everyday Language: English
  13. Natural Logic
  14. Predicate Logic
  15. True Statements
  16. Formal Logic Inference: Preserving Truth
  17. Ordinary Language Inference: Preserving and Creating Truth
  18. Hidden Ontologies: Cognitively Real and Empirically Real
  19. AN INFERENCE IS NOT AUTOMATICALLY A FORECAST
  20. EMPIRICAL THEORY
  21. Side Trip to Wikipedia
  22. SUSTAINABLE EMPIRICAL THEORY
  23. CITIZEN SCIENCE 2.0
  24. … ???

COMMENTS

wkp-en := Englisch Wikipedia

/* Often people argue against the usage of the wikipedia encyclopedia as not ‘scientific’ because the ‘content’ of an entry in this encyclopedia can ‘change’. This presupposes the ‘classical view’ of scientific texts to be ‘stable’, which presupposes further, that such a ‘stable text’ describes some ‘stable subject matter’. But this view of ‘steadiness’ as the major property of ‘true descriptions’ is in no correspondence with real scientific texts! The reality of empirical science — even as in some special disciplines like ‘physics’ — is ‘change’. Looking to Aristotle’s view of nature, to Galileo Galilei, to Newton, to Einstein and many others, you will not find a ‘single steady picture’ of nature and science, and physics is only a very simple strand of science compared to the live-sciences and many others. Thus wikipedia is a real scientific encyclopedia give you the breath of world knowledge with all its strengths and limits at once. For another, more general argument, see In Favour for Wikipedia */

[*1] Meaning operator ‘…’ : In this text (and in nearly all other texts of this author) the ‘inverted comma’ is used quite heavily. In everyday language this is not common. In some special languages (theory of formal languages or in programming languages or in meta-logic) the inverted comma is used in some special way. In this text, which is primarily a philosophical text, the inverted comma sign is used as a ‘meta-language operator’ to raise the intention of the reader to be aware, that the ‘meaning’ of the word enclosed in the inverted commas is ‘text specific’: in everyday language usage the speaker uses a word and assumes tacitly that his ‘intended meaning’ will be understood by the hearer of his utterance as ‘it is’. And the speaker will adhere to his assumption until some hearer signals, that her understanding is different. That such a difference is signaled is quite normal, because the ‘meaning’ which is associated with a language expression can be diverse, and a decision, which one of these multiple possible meanings is the ‘intended one’ in a certain context is often a bit ‘arbitrary’. Thus, it can be — but must not — a meta-language strategy, to comment to the hearer (or here: the reader), that a certain expression in a communication is ‘intended’ with a special meaning which perhaps is not the commonly assumed one. Nevertheless, because the ‘common meaning’ is no ‘clear and sharp subject’, a ‘meaning operator’ with the inverted commas has also not a very sharp meaning. But in the ‘game of language’ it is more than nothing 🙂

[*1b] That the main stream ‘is biased’ is not an accident, not a ‘strange state’, not a ‘failure’, it is the ‘normal state’ based on the deeper structure how human actors are ‘built’ and ‘genetically’ and ‘cultural’ ‘programmed’. Thus the challenge to ‘survive’ as part of the ‘whole biosphere’ is not a ‘partial task’ to solve a single problem, but to solve in some sense the problem how to ‘shape the whole biosphere’ in a way, which enables a live in the universe for the time beyond that point where the sun is turning into a ‘red giant’ whereby life will be impossible on the planet earth (some billion years ahead)[22]. A remarkable text supporting this ‘complex view of sustainability’ can be found in Clark and Harvey, summarized at the end of the text. [23]

[*2] The meaning of the expression ‘normal’ is comparable to a wicked problem. In a certain sense we act in our everyday world ‘as if there exists some standard’ for what is assumed to be ‘normal’. Look for instance to houses, buildings: to a certain degree parts of a house have a ‘standard format’ assuming ‘normal people’. The whole traffic system, most parts of our ‘daily life’ are following certain ‘standards’ making ‘planning’ possible. But there exists a certain percentage of human persons which are ‘different’ compared to these introduced standards. We say that they have a ‘handicap’ compared to this assumed ‘standard’, but this so-called ‘standard’ is neither 100% true nor is the ‘given real world’ in its properties a ‘100% subject’. We have learned that ‘properties of the real world’ are distributed in a rather ‘statistical manner’ with different probabilities of occurrences. To ‘find our way’ in these varying occurrences we try to ‘mark’ the main occurrences as ‘normal’ to enable a basic structure for expectations and planning. Thus, if in this text the expression ‘normal’ is used it refers to the ‘most common occurrences’.

[*3] Thus we have here a ‘threefold structure’ embracing ‘perception events, memory events, and expression events’. Perception events represent ‘concrete events’; memory events represent all kinds of abstract events but they all have a ‘handle’ which maps to subsets of concrete events; expression events are parts of an abstract language system, which as such is dynamically mapped onto the abstract events. The main source for our knowledge about perceptions, memory and expressions is experimental psychology enhanced by many other disciplines.

[*4] Characterizing language expressions by meaning – the fate of any grammar: the sentence ” … ‘words’ (= expressions) of a language which can activate such abstract meanings are understood as ‘abstract words’, ‘general words’, ‘category words’ or the like.” is pointing to a deep property of every ordinary language, which represents the real power of language but at the same time the great weakness too: expressions as such have no meaning. Hundreds, thousands, millions of words arranged in ‘texts’, ‘documents’ can show some statistical patterns’ and as such these patterns can give some hint which expressions occur ‘how often’ and in ‘which combinations’, but they never can give a clue to the associated meaning(s). During more than three-thousand years humans have tried to describe ordinary language in a more systematic way called ‘grammar’. Due to this radically gap between ‘expressions’ as ‘observable empirical facts’ and ‘meaning constructs’ hidden inside the brain it was all the time a difficult job to ‘classify’ expressions as representing a certain ‘type’ of expression like ‘nouns’, ‘predicates’, ‘adjectives’, ‘defining article’ and the like. Without regressing to the assumed associated meaning such a classification is not possible. On account of the fuzziness of every meaning ‘sharp definitions’ of such ‘word classes’ was never and is not yet possible. One of the last big — perhaps the biggest ever — project of a complete systematic grammar of a language was the grammar project of the ‘Akademie der Wissenschaften der DDR’ (‘Academy of Sciences of the GDR’) from 1981 with the title “Grundzüge einer Deutschen Grammatik” (“Basic features of a German grammar”). A huge team of scientists worked together using many modern methods. But in the preface you can read, that many important properties of the language are still not sufficiently well describable and explainable. See: Karl Erich Heidolph, Walter Flämig, Wolfgang Motsch et al.: Grundzüge einer deutschen Grammatik. Akademie, Berlin 1981, 1028 Seiten.

[*5] Differing opinions about a given situation manifested in uttered expressions are a very common phenomenon in everyday communication. In some sense this is ‘natural’, can happen, and it should be no substantial problem to ‘solve the riddle of being different’. But as you can experience, the ability of people to solve the occurrence of different opinions is often quite weak. Culture is suffering by this as a whole.

[1] Gerd Doeben-Henisch, 2022, From SYSTEMS Engineering to THEORYEngineering, see: https://www.uffmm.org/2022/05/26/from-systems-engineering-to-theory-engineering/(Remark: At the time of citation this post was not yet finished, because there are other posts ‘corresponding’ with that post, which are too not finished. Knowledge is a dynamic network of interwoven views …).

[1d] ‘usual science’ is the game of science without having a sustainable format like in citizen science 2.0.

[2] Science, see e.g. wkp-en: https://en.wikipedia.org/wiki/Science

Citation = “Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.[1][2]

Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”

Citation = “New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems.[27][28] Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions,[29] government agencies, and companies.[30][31] The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the ethical and moral development of commercial productsarmamentshealth carepublic infrastructure, and environmental protection.”

[2b] History of science in wkp-en: https://en.wikipedia.org/wiki/History_of_science#Scientific_Revolution_and_birth_of_New_Science

[3] Theory, see wkp-en: https://en.wikipedia.org/wiki/Theory#:~:text=A%20theory%20is%20a%20rational,or%20no%20discipline%20at%20all.

Citation = “A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory’s assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.”

[4] Scientific theory, see: wkp-en: https://en.wikipedia.org/wiki/Scientific_theory

Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”

[4b] Empiricism in wkp-en: https://en.wikipedia.org/wiki/Empiricism

[4c] Scientific method in wkp-en: https://en.wikipedia.org/wiki/Scientific_method

Citation =”The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries). It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; experimental and measurement-based statistical testing of deductions drawn from the hypotheses; and refinement (or elimination) of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.[1][2][3] [4c]

and

Citation = “The purpose of an experiment is to determine whether observations[A][a][b] agree with or conflict with the expectations deduced from a hypothesis.[6]: Book I, [6.54] pp.372, 408 [b] Experiments can take place anywhere from a garage to a remote mountaintop to CERN’s Large Hadron Collider. There are difficulties in a formulaic statement of method, however. Though the scientific method is often presented as a fixed sequence of steps, it represents rather a set of general principles.[7] Not all steps take place in every scientific inquiry (nor to the same degree), and they are not always in the same order.[8][9]

[5] Gerd Doeben-Henisch, “Is Mathematics a Fake? No! Discussing N.Bourbaki, Theory of Sets (1968) – Introduction”, 2022, https://www.uffmm.org/2022/06/06/n-bourbaki-theory-of-sets-1968-introduction/

[6] Logic, see wkp-en: https://en.wikipedia.org/wiki/Logic

[7] W. C. Kneale, The Development of Logic, Oxford University Press (1962)

[8] Set theory, in wkp-en: https://en.wikipedia.org/wiki/Set_theory

[9] N.Bourbaki, Theory of Sets , 1968, with a chapter about structures, see: https://en.wikipedia.org/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique

[10] = [5]

[11] Ludwig Josef Johann Wittgenstein ( 1889 – 1951): https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

[12] Ludwig Wittgenstein, 1953: Philosophische Untersuchungen [PU], 1953: Philosophical Investigations [PI], translated by G. E. M. Anscombe /* For more details see: https://en.wikipedia.org/wiki/Philosophical_Investigations */

[13] Wikipedia EN, Speech acts: https://en.wikipedia.org/wiki/Speech_act

[14] While the world view constructed in a brain is ‘virtual’ compared to the ‘real word’ outside the brain (where the body outside the brain is also functioning as ‘real world’ in relation to the brain), does the ‘virtual world’ in the brain function for the brain mostly ‘as if it is the real world’. Only under certain conditions can the brain realize a ‘difference’ between the triggering outside real world and the ‘virtual substitute for the real world’: You want to use your bicycle ‘as usual’ and then suddenly you have to notice that it is not at that place where is ‘should be’. …

[15] Propositional Calculus, see wkp-en: https://en.wikipedia.org/wiki/Propositional_calculus#:~:text=Propositional%20calculus%20is%20a%20branch,of%20arguments%20based%20on%20them.

[16] Boolean algebra, see wkp-en: https://en.wikipedia.org/wiki/Boolean_algebra

[17] Boolean (or propositional) Logic: As one can see in the mentioned articles of the English wikipedia, the term ‘boolean logic’ is not common. The more logic-oriented authors prefer the term ‘boolean calculus’ [15] and the more math-oriented authors prefer the term ‘boolean algebra’ [16]. In the view of this author the general view is that of ‘language use’ with ‘logic inference’ as leading idea. Therefore the main topic is ‘logic’, in the case of propositional logic reduced to a simple calculus whose similarity with ‘normal language’ is widely ‘reduced’ to a play with abstract names and operators. Recommended: the historical comments in [15].

[18] Clearly, thinking alone can not necessarily induce a possible state which along the time line will become a ‘real state’. There are numerous factors ‘outside’ the individual thinking which are ‘driving forces’ to push real states to change. But thinking can in principle synchronize with other individual thinking and — in some cases — can get a ‘grip’ on real factors causing real changes.

[19] This kind of knowledge is not delivered by brain science alone but primarily from experimental (cognitive) psychology which examines observable behavior and ‘interprets’ this behavior with functional models within an empirical theory.

[20] Predicate Logic or First-Order Logic or … see: wkp-en: https://en.wikipedia.org/wiki/First-order_logic#:~:text=First%2Dorder%20logic%E2%80%94also%20known,%2C%20linguistics%2C%20and%20computer%20science.

[21] Gerd Doeben-Henisch, In Favour of Wikipedia, https://www.uffmm.org/2022/07/31/in-favour-of-wikipedia/, 31 July 2022

[22] The sun, see wkp-ed https://en.wikipedia.org/wiki/Sun (accessed 8 Aug 2022)

[23] By Clark, William C., and Alicia G. Harley – https://doi.org/10.1146/annurev-environ-012420-043621, Clark, William C., and Alicia G. Harley. 2020. “Sustainability Science: Toward a Synthesis.” Annual Review of Environment and Resources 45 (1): 331–86, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=109026069

[24] Sustainability in wkp-en: https://en.wikipedia.org/wiki/Sustainability#Dimensions_of_sustainability

[25] Sustainable Development in wkp-en: https://en.wikipedia.org/wiki/Sustainable_development

[26] Marope, P.T.M; Chakroun, B.; Holmes, K.P. (2015). Unleashing the Potential: Transforming Technical and Vocational Education and Training (PDF). UNESCO. pp. 9, 23, 25–26. ISBN978-92-3-100091-1.

[27] SDG 4 in wkp-en: https://en.wikipedia.org/wiki/Sustainable_Development_Goal_4

[28] Thomas Rid, Rise of the Machines. A Cybernetic History, W.W.Norton & Company, 2016, New York – London

[29] Doeben-Henisch, G., 2006, Reducing Negative Complexity by a Semiotic System In: Gudwin, R., & Queiroz, J., (Eds). Semiotics and Intelligent Systems Development. Hershey et al: Idea Group Publishing, 2006, pp.330-342

[30] Döben-Henisch, G.,  Reinforcing the global heartbeat: Introducing the planet earth simulator project, In M. Faßler & C. Terkowsky (Eds.), URBAN FICTIONS. Die Zukunft des Städtischen. München, Germany: Wilhelm Fink Verlag, 2006, pp.251-263

[29] The idea that individual disciplines are not good enough for the ‘whole of knowledge’ is expressed in a clear way in a video of the theoretical physicist and philosopher Carlo Rovell: Carlo Rovelli on physics and philosophy, June 1, 2022, Video from the Perimeter Institute for Theoretical Physics. Theoretical physicist, philosopher, and international bestselling author Carlo Rovelli joins Lauren and Colin for a conversation about the quest for quantum gravity, the importance of unlearning outdated ideas, and a very unique way to get out of a speeding ticket.

[] By Azote for Stockholm Resilience Centre, Stockholm University – https://www.stockholmresilience.org/research/research-news/2016-06-14-how-food-connects-all-the-sdgs.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=112497386

[]  Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) in wkp-en, UTL: https://en.wikipedia.org/wiki/Intergovernmental_Science-Policy_Platform_on_Biodiversity_and_Ecosystem_Services

[] IPBES (2019): Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673

[] Michaelis, L. & Lorek, S. (2004). “Consumption and the Environment in Europe: Trends and Futures.” Danish Environmental Protection Agency. Environmental Project No. 904.

[] Pezzey, John C. V.; Michael A., Toman (2002). “The Economics of Sustainability: A Review of Journal Articles” (PDF). . Archived from the original (PDF) on 8 April 2014. Retrieved 8 April 2014.

[] World Business Council for Sustainable Development (WBCSD)  in wkp-en: https://en.wikipedia.org/wiki/World_Business_Council_for_Sustainable_Development

[] Sierra Club in wkp-en: https://en.wikipedia.org/wiki/Sierra_Club

[] Herbert Bruderer, Where is the Cradle of the Computer?, June 20, 2022, URL: https://cacm.acm.org/blogs/blog-cacm/262034-where-is-the-cradle-of-the-computer/fulltext (accessed: July 20, 2022)

[] UN. Secretary-GeneralWorld Commission on Environment and Development, 1987, Report of the World Commission on Environment and Development : note / by the Secretary-General., https://digitallibrary.un.org/record/139811 (accessed: July 20, 2022) (A more readable format: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf )

/* Comment: Gro Harlem Brundtland (Norway) has been the main coordinator of this document */

[] Chaudhuri, S.,et al.Neurosymbolic programming. Foundations and Trends in Programming Languages 7, 158-243 (2021).

[] Noam Chomsky, “A Review of B. F. Skinner’s Verbal Behavior”, in Language, 35, No. 1 (1959), 26-58.(Online: https://chomsky.info/1967____/, accessed: July 21, 2022)

[] Churchman, C. West (December 1967). “Wicked Problems”Management Science. 14 (4): B-141–B-146. doi:10.1287/mnsc.14.4.B141.

[-] Yen-Chia Hsu, Illah Nourbakhsh, “When Human-Computer Interaction Meets Community Citizen Science“,Communications of the ACM, February 2020, Vol. 63 No. 2, Pages 31-34, 10.1145/3376892, https://cacm.acm.org/magazines/2020/2/242344-when-human-computer-interaction-meets-community-citizen-science/fulltext

[] Yen-Chia Hsu, Ting-Hao ‘Kenneth’ Huang, Himanshu Verma, Andrea Mauri, Illah Nourbakhsh, Alessandro Bozzon, Empowering local communities using artificial intelligence, DOI:https://doi.org/10.1016/j.patter.2022.100449, CellPress, Patterns, VOLUME 3, ISSUE 3, 100449, MARCH 11, 2022

[] Nello Cristianini, Teresa Scantamburlo, James Ladyman, The social turn of artificial intelligence, in: AI & SOCIETY, https://doi.org/10.1007/s00146-021-01289-8

[] Carl DiSalvo, Phoebe Sengers, and Hrönn Brynjarsdóttir, Mapping the landscape of sustainable hci, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, page 1975–1984, New York, NY, USA, 2010. Association for Computing Machinery.

[] Claude Draude, Christian Gruhl, Gerrit Hornung, Jonathan Kropf, Jörn Lamla, Jan Marco Leimeister, Bernhard Sick, Gerd Stumme, Social Machines, in: Informatik Spektrum, https://doi.org/10.1007/s00287-021-01421-4

[] EU: High-Level Expert Group on AI (AI HLEG), A definition of AI: Main capabilities and scientific disciplines, European Commission communications published on 25 April 2018 (COM(2018) 237 final), 7 December 2018 (COM(2018) 795 final) and 8 April 2019 (COM(2019) 168 final). For our definition of Artificial Intelligence (AI), please refer to our document published on 8 April 2019: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=56341

[] EU: High-Level Expert Group on AI (AI HLEG), Policy and investment recommendations for trustworthy Artificial Intelligence, 2019, https://digital-strategy.ec.europa.eu/en/library/policy-and-investment-recommendations-trustworthy-artificial-intelligence

[] European Union. Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC General Data Protection Regulation; http://eur-lex.europa.eu/eli/reg/2016/679/oj (Wirksam ab 25.Mai 2018) [26.2.2022]

[] C.S. Holling. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1):1–23, 1973

[] John P. van Gigch. 1991. System Design Modeling and Metamodeling. Springer US. DOI:https://doi.org/10.1007/978-1-4899-0676-2

[] Gudwin, R.R. (2002), Semiotic Synthesis and Semionic Networks, S.E.E.D. Journal (Semiotics, Energy, Evolution, Development), Volume 2, No.2, pp.55-83.

[] Gudwin, R.R. (2003), On a Computational Model of the Peircean Semiosis, IEEE KIMAS 2003 Proceedings

[] J.A. Jacko and A. Sears, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 1st edition, 2003.

[] LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

[] Lenat, D. What AI can learn from Romeo & Juliet.Forbes (2019)

[] Pierre Lévy, Collective Intelligence. mankind’s emerging world in cyberspace, Perseus books, Cambridge (M A), 1997 (translated from the French Edition 1994 by Robert Bonnono)

[] Lexikon der Nachhaltigkeit, ‘Starke Nachhaltigkeit‘, https://www.nachhaltigkeit.info/artikel/schwache_vs_starke_nachhaltigkeit_1687.htm (acessed: July 21, 2022)

[] Michael L. Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield, Michael C. Horowitz, Charles Isbell, Hiroaki Kitano, Karen Levy, Terah Lyons, Melanie Mitchell, Julie Shah, Steven Sloman, Shannon Vallor, and Toby Walsh. “Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report.” Stanford University, Stanford, CA, September 2021. Doc: http://ai100.stanford.edu/2021-report.

[] Markus Luczak-Roesch, Kieron O’Hara, Ramine Tinati, Nigel Shadbolt, Socio-technical Computation, CSCW’15 Companion, March 14–18, 2015, Vancouver, BC, Canada, ACM 978-1-4503-2946-0/15/03, http://dx.doi.org/10.1145/2685553.2698991

[] Marcus, G.F., et al. Overregularization in language acquisition. Monographs of the Society for Research in Child Development 57 (1998).

[] Gary Marcus and Ernest Davis, Rebooting AI, Published by Pantheon,
Sep 10, 2019, 288 Pages

[] Gary Marcus, Deep Learning Is Hitting a Wall. What would it take for artificial intelligence to make real progress, March 10, 2022, URL: https://nautil.us/deep-learning-is-hitting-a-wall-14467/ (accessed: July 20, 2022)

[] Kathryn Merrick. Value systems for developmental cognitive robotics: A survey. Cognitive Systems Research, 41:38 – 55, 2017

[]  Illah Reza Nourbakhsh and Jennifer Keating, AI and Humanity, MIT Press, 2020 /* An examination of the implications for society of rapidly advancing artificial intelligence systems, combining a humanities perspective with technical analysis; includes exercises and discussion questions. */

[] Olazaran, M. , A sociological history of the neural network controversy. Advances in Computers 37, 335-425 (1993).

[] Friedrich August Hayek (1945), The use of knowledge in society. The American Economic Review 35, 4 (1945), 519–530

[] Karl Popper, „A World of Propensities“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1988, leicht erweitert neu abgedruckt 1990, repr. 1995)

[] Karl Popper, „Towards an Evolutionary Theory of Knowledge“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1989, ab gedruckt in 1990, repr. 1995)

[] Karl Popper, „All Life is Problem Solving“, Artikel, ursprünglich ein Vortrag 1991 auf Deutsch, erstmalig publiziert in dem Buch (auf Deutsch) „Alles Leben ist Problemlösen“ (1994), dann in dem Buch (auf Englisch) „All Life is Problem Solving“, 1999, Routledge, Taylor & Francis Group, London – New York

[] Rittel, Horst W.J.; Webber, Melvin M. (1973). “Dilemmas in a General Theory of Planning” (PDF). Policy Sciences. 4 (2): 155–169. doi:10.1007/bf01405730S2CID 18634229. Archived from the original (PDF) on 30 September 2007. [Reprinted in Cross, N., ed. (1984). Developments in Design Methodology. Chichester, England: John Wiley & Sons. pp. 135–144.]

[] Ritchey, Tom (2013) [2005]. “Wicked Problems: Modelling Social Messes with Morphological Analysis”Acta Morphologica Generalis2 (1). ISSN 2001-2241. Retrieved 7 October 2017.

[] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th US ed., 2021, URL: http://aima.cs.berkeley.edu/index.html (accessed: July 20, 2022)

[] A. Sears and J.A. Jacko, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 2nd edition, 2008.

[] Skaburskis, Andrejs (19 December 2008). “The origin of “wicked problems””. Planning Theory & Practice9 (2): 277-280. doi:10.1080/14649350802041654. At the end of Rittel’s presentation, West Churchman responded with that pensive but expressive movement of voice that some may well remember, ‘Hmm, those sound like “wicked problems.”‘

[] Tonkinwise, Cameron (4 April 2015). “Design for Transitions – from and to what?”Academia.edu. Retrieved 9 November 2017.

[] Thoppilan, R., et al. LaMDA: Language models for dialog applications. arXiv 2201.08239 (2022).

[] Wurm, Daniel; Zielinski, Oliver; Lübben, Neeske; Jansen, Maike; Ramesohl,
Stephan (2021) : Wege in eine ökologische Machine Economy: Wir brauchen eine ‘Grüne Governance der Machine Economy’, um das Zusammenspiel von Internet of Things, Künstlicher Intelligenz und Distributed Ledger Technology ökologisch zu gestalten, Wuppertal Report, No. 22, Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal, https://doi.org/10.48506/opus-7828

[] Aimee van Wynsberghe, Sustainable AI: AI for sustainability and the sustainability of AI, in: AI and Ethics (2021) 1:213–218, see: https://doi.org/10.1007/s43681

[-] Sarah West, Rachel Pateman, 2017, “How could citizen science support the Sustainable Development Goals?“, SEI Stockholm Environment Institut , 2017, see: https://mediamanager.sei.org/documents/Publications/SEI-2017-PB-citizen-science-sdgs.pdf

[] R. I. Damper (2000), Editorial for the special issue on ‘Emergent Properties of Complex Systems’: Emergence and levels of abstraction. International Journal of Systems Science 31, 7 (2000), 811–818. DOI:https://doi.org/10.1080/002077200406543

[] Gerd Doeben-Henisch (2004), The Planet Earth Simulator Project – A Case Study in Computational Semiotics, IEEE AFRICON 2004, pp.417 – 422

[] Boder, A. (2006), “Collective intelligence: a keystone in knowledge management”, Journal of Knowledge Management, Vol. 10 No. 1, pp. 81-93. https://doi.org/10.1108/13673270610650120

[] Wikipedia, ‘Weak and strong sustainability’, https://en.wikipedia.org/wiki/Weak_and_strong_sustainability (accessed: July 21, 2022)

[] Florence Maraninchi, Let us Not Put All Our Eggs in One Basket. Towards new research directions in computer Science, CACM Communications of the ACM, September 2022, Vol.65, No.9, pp.35-37, https://dl.acm.org/doi/10.1145/3528088

[] AYA H. KIMURA and ABBY KINCHY, “Citizen Science: Probing the Virtues and Contexts of Participatory Research”, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099

[] Eric Bonabeau (2009), Decisions 2.0: The power of collective intelligence. MIT Sloan Management Review 50, 2 (Winter 2009), 45-52.

[] Jim Giles (2005), Internet encyclopaedias go head to head. Nature 438, 7070 (Dec. 2005), 900–901. DOI:https://doi.org/10.1038/438900a

[] T. Bosse, C. M. Jonker, M. C. Schut, and J. Treur (2006), Collective representational content for shared extended mind. Cognitive Systems Research 7, 2-3 (2006), pp.151-174, DOI:https://doi.org/10.1016/j.cogsys.2005.11.007

[] Romina Cachia, Ramón Compañó, and Olivier Da Costa (2007), Grasping the potential of online social networks for foresight. Technological Forecasting and Social Change 74, 8 (2007), oo.1179-1203. DOI:https://doi.org/10.1016/j.techfore.2007.05.006

[] Tom Gruber (2008), Collective knowledge systems: Where the social web meets the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 6, 1 (2008), 4–13. DOI:https://doi.org/10.1016/j.websem.2007.11.011

[] Luca Iandoli, Mark Klein, and Giuseppe Zollo (2009), Enabling on-line deliberation and collective decision-making through large-scale argumentation. International Journal of Decision Support System Technology 1, 1 (Jan. 2009), 69–92. DOI:https://doi.org/10.4018/jdsst.2009010105

[] Shuangling Luo, Haoxiang Xia, Taketoshi Yoshida, and Zhongtuo Wang (2009), Toward collective intelligence of online communities: A primitive conceptual model. Journal of Systems Science and Systems Engineering 18, 2 (01 June 2009), 203–221. DOI:https://doi.org/10.1007/s11518-009-5095-0

[] Dawn G. Gregg (2010), Designing for collective intelligence. Communications of the ACM 53, 4 (April 2010), 134–138. DOI:https://doi.org/10.1145/1721654.1721691

[] Rolf Pfeifer, Jan Henrik Sieg, Thierry Bücheler, and Rudolf Marcel Füchslin. 2010. Crowdsourcing, open innovation and collective intelligence in the scientific method: A research agenda and operational framework. (2010). DOI:https://doi.org/10.21256/zhaw-4094

[] Martijn C. Schut. 2010. On model design for simulation of collective intelligence. Information Sciences 180, 1 (2010), 132–155. DOI:https://doi.org/10.1016/j.ins.2009.08.006 Special Issue on Collective Intelligence

[] Dimitrios J. Vergados, Ioanna Lykourentzou, and Epaminondas Kapetanios (2010), A resource allocation framework for collective intelligence system engineering. In Proceedings of the International Conference on Management of Emergent Digital EcoSystems (MEDES’10). ACM, New York, NY, 182–188. DOI:https://doi.org/10.1145/1936254.1936285

[] Anita Williams Woolley, Christopher F. Chabris, Alex Pentland, Nada Hashmi, and Thomas W. Malone (2010), Evidence for a collective intelligence factor in the performance of human groups. Science 330, 6004 (2010), 686–688. DOI:https://doi.org/10.1126/science.1193147

[] Michael A. Woodley and Edward Bell (2011), Is collective intelligence (mostly) the General Factor of Personality? A comment on Woolley, Chabris, Pentland, Hashmi and Malone (2010). Intelligence 39, 2 (2011), 79–81. DOI:https://doi.org/10.1016/j.intell.2011.01.004

[] Joshua Introne, Robert Laubacher, Gary Olson, and Thomas Malone (2011), The climate CoLab: Large scale model-based collaborative planning. In Proceedings of the 2011 International Conference on Collaboration Technologies and Systems (CTS’11). 40–47. DOI:https://doi.org/10.1109/CTS.2011.5928663

[] Miguel de Castro Neto and Ana Espírtio Santo (2012), Emerging collective intelligence business models. In MCIS 2012 Proceedings. Mediterranean Conference on Information Systems. https://aisel.aisnet.org/mcis2012/14

[] Peng Liu, Zhizhong Li (2012), Task complexity: A review and conceptualization framework, International Journal of Industrial Ergonomics 42 (2012), pp. 553 – 568

[] Sean Wise, Robert A. Paton, and Thomas Gegenhuber. (2012), Value co-creation through collective intelligence in the public sector: A review of US and European initiatives. VINE 42, 2 (2012), 251–276. DOI:https://doi.org/10.1108/03055721211227273

[] Antonietta Grasso and Gregorio Convertino (2012), Collective intelligence in organizations: Tools and studies. Computer Supported Cooperative Work (CSCW) 21, 4 (01 Oct 2012), 357–369. DOI:https://doi.org/10.1007/s10606-012-9165-3

[] Sandro Georgi and Reinhard Jung (2012), Collective intelligence model: How to describe collective intelligence. In Advances in Intelligent and Soft Computing. Vol. 113. Springer, 53–64. DOI:https://doi.org/10.1007/978-3-642-25321-8_5

[] H. Santos, L. Ayres, C. Caminha, and V. Furtado (2012), Open government and citizen participation in law enforcement via crowd mapping. IEEE Intelligent Systems 27 (2012), 63–69. DOI:https://doi.org/10.1109/MIS.2012.80

[] Jörg Schatzmann & René Schäfer & Frederik Eichelbaum (2013), Foresight 2.0 – Definition, overview & evaluation, Eur J Futures Res (2013) 1:15
DOI 10.1007/s40309-013-0015-4

[] Sylvia Ann Hewlett, Melinda Marshall, and Laura Sherbin (2013), How diversity can drive innovation. Harvard Business Review 91, 12 (2013), 30–30

[] Tony Diggle (2013), Water: How collective intelligence initiatives can address this challenge. Foresight 15, 5 (2013), 342–353. DOI:https://doi.org/10.1108/FS-05-2012-0032

[] Hélène Landemore and Jon Elster. 2012. Collective Wisdom: Principles and Mechanisms. Cambridge University Press. DOI:https://doi.org/10.1017/CBO9780511846427

[] Jerome C. Glenn (2013), Collective intelligence and an application by the millennium project. World Futures Review 5, 3 (2013), 235–243. DOI:https://doi.org/10.1177/1946756713497331

[] Detlef Schoder, Peter A. Gloor, and Panagiotis Takis Metaxas (2013), Social media and collective intelligence—Ongoing and future research streams. KI – Künstliche Intelligenz 27, 1 (1 Feb. 2013), 9–15. DOI:https://doi.org/10.1007/s13218-012-0228-x

[] V. Singh, G. Singh, and S. Pande (2013), Emergence, self-organization and collective intelligence—Modeling the dynamics of complex collectives in social and organizational settings. In 2013 UKSim 15th International Conference on Computer Modelling and Simulation. 182–189. DOI:https://doi.org/10.1109/UKSim.2013.77

[] A. Kornrumpf and U. Baumöl (2014), A design science approach to collective intelligence systems. In 2014 47th Hawaii International Conference on System Sciences. 361–370. DOI:https://doi.org/10.1109/HICSS.2014.53

[] Michael A. Peters and Richard Heraud. 2015. Toward a political theory of social innovation: Collective intelligence and the co-creation of social goods. 3, 3 (2015), 7–23. https://researchcommons.waikato.ac.nz/handle/10289/9569

[] Juho Salminen. 2015. The Role of Collective Intelligence in Crowdsourcing Innovation. PhD dissertation. Lappeenranta University of Technology

[] Aelita Skarzauskiene and Monika Maciuliene (2015), Modelling the index of collective intelligence in online community projects. In International Conference on Cyber Warfare and Security. Academic Conferences International Limited, 313

[] AYA H. KIMURA and ABBY KINCHY (2016), Citizen Science: Probing the Virtues and Contexts of Participatory Research, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099

[] Philip Tetlow, Dinesh Garg, Leigh Chase, Mark Mattingley-Scott, Nicholas Bronn, Kugendran Naidoo†, Emil Reinert (2022), Towards a Semantic Information Theory (Introducing Quantum Corollas), arXiv:2201.05478v1 [cs.IT] 14 Jan 2022, 28 pages

[] Melanie Mitchell, What Does It Mean to Align AI With Human Values?, quanta magazin, Quantized Columns, 19.Devember 2022, https://www.quantamagazine.org/what-does-it-mean-to-align-ai-with-human-values-20221213#

Comment by Gerd Doeben-Henisch:

[] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies. Oxford University Press, Oxford (UK), 1 edition, 2014.

[] Scott Aaronson, Reform AI Alignment, Update: 22.November 2022, https://scottaaronson.blog/?p=6821

[] Andrew Y. Ng, Stuart J. Russell, Algorithms for Inverse Reinforcement Learning, ICML 2000: Proceedings of the Seventeenth International Conference on Machine LearningJune 2000 Pages 663–670

[] Pat Langley (ed.), ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., 340 Pine Street, Sixth Floor, San Francisco, CA, United States, Conference 29 June 2000- 2 July 2000, 29.June 2000

[] Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum, (2019) Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations
, Proceedings of the 36 th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s): https://arxiv.org/pdf/1904.06387.pdf

Abstract: Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations
Daniel S. Brown * 1 Wonjoon Goo * 1 Prabhat Nagarajan 2 Scott Niekum 1
You can read in the abstract:
“A critical flaw of existing inverse reinforcement learning (IRL) methods is their inability to significantly outperform the demonstrator. This is because IRL typically seeks a reward function that makes the demonstrator appear near-optimal, rather than inferring the underlying intentions of the demonstrator that may have been poorly executed in practice. In this paper, we introduce
a novel reward-learning-from-observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of (ap-
proximately) ranked demonstrations in order to infer high-quality reward functions from a set of potentially poor demonstrations. When combined
with deep reinforcement learning, T-REX outperforms state-of-the-art imitation learning and IRL methods on multiple Atari and MuJoCo bench-
mark tasks and achieves performance that is often more than twice the performance of the best demonstration. We also demonstrate that T-REX
is robust to ranking noise and can accurately extrapolate intention by simply watching a learner noisily improve at a task over time.”

[] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, Dario Amodei, (2017), Deep reinforcement learning from human preferences, https://arxiv.org/abs/1706.03741

In the abstract you can read: “For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent’s interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback.

[] Melanie Mitchell,(2021), Abstraction and Analogy-Making in Artificial
Intelligence
, https://arxiv.org/pdf/2102.10717.pdf

In the abstract you can read: “Conceptual abstraction and analogy-making are key abilities underlying humans’ abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite of a long history of research on constructing AI systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing
challenge tasks and evaluation measures in order to make quantifiable and generalizable progress

[] Melanie Mitchell, (2021), Why AI is Harder Than We Think, https://arxiv.org/pdf/2102.10717.pdf

In the abstract you can read: “Since its beginning in the 1950s, the field of artificial intelligence has cycled several times between periods of optimistic predictions and massive investment (“AI spring”) and periods of disappointment, loss of confidence, and reduced funding (“AI winter”). Even with today’s seemingly fast pace of AI breakthroughs, the development of long-promised technologies such as self-driving cars, housekeeping robots, and conversational companions has turned out to be much harder than many people expected. One reason for these repeating cycles is our limited understanding of the nature and complexity of intelligence itself. In this paper I describe four fallacies in common assumptions made by AI researchers, which can lead to overconfident predictions about the field. I conclude by discussing the open questions spurred by these fallacies, including the age-old challenge of imbuing machines with humanlike common sense.”

[] Stuart Russell, (2019), Human Compatible: AI and the Problem of Control, Penguin books, Allen Lane; 1. Edition (8. Oktober 2019)

In the preface you can read: “This book is about the past , present , and future of our attempt to understand and create intelligence . This matters , not because AI is rapidly becoming a pervasive aspect of the present but because it is the dominant technology of the future . The world’s great powers are waking up to this fact , and the world’s largest corporations have known it for some time . We cannot predict exactly how the technology will develop or on what timeline . Nevertheless , we must plan for the possibility that machines will far exceed the human capacity for decision making in the real world . What then ? Everything civilization has to offer is the product of our intelligence ; gaining access to considerably greater intelligence would be the biggest event in human history . The purpose of the book is to explain why it might be the last event in human history and how to make sure that it is not .”

[] David Adkins, Bilal Alsallakh, Adeel Cheema, Narine Kokhlikyan, Emily McReynolds, Pushkar Mishra, Chavez Procope, Jeremy Sawruk, Erin Wang, Polina Zvyagina, (2022), Method Cards for Prescriptive Machine-Learning Transparency, 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN), CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA, pp. 90 – 100, Association for Computing Machinery, ACM ISBN 978-1-4503-9275-4/22/05, New York, NY, USA, https://doi.org/10.1145/3522664.3528600

In the abstract you can read: “Specialized documentation techniques have been developed to communicate key facts about machine-learning (ML) systems and the datasets and models they rely on. Techniques such as Datasheets,
AI FactSheets, and Model Cards have taken a mainly descriptive
approach, providing various details about the system components.
While the above information is essential for product developers
and external experts to assess whether the ML system meets their
requirements, other stakeholders might find it less actionable. In
particular, ML engineers need guidance on how to mitigate po-
tential shortcomings in order to fix bugs or improve the system’s
performance. We propose a documentation artifact that aims to
provide such guidance in a prescriptive way. Our proposal, called
Method Cards, aims to increase the transparency and reproducibil-
ity of ML systems by allowing stakeholders to reproduce the models,
understand the rationale behind their designs, and introduce adap-
tations in an informed way. We showcase our proposal with an
example in small object detection, and demonstrate how Method
Cards can communicate key considerations that help increase the
transparency and reproducibility of the detection model. We fur-
ther highlight avenues for improving the user experience of ML
engineers based on Method Cards.”

[] John H. Miller, (2022),  Ex Machina: Coevolving Machines and the Origins of the Social Universe, The SFI Press Scholars Series, 410 pages
Paperback ISBN: 978-1947864429 , DOI: 10.37911/9781947864429

In the announcement of the book you can read: “If we could rewind the tape of the Earth’s deep history back to the beginning and start the world anew—would social behavior arise yet again? While the study of origins is foundational to many scientific fields, such as physics and biology, it has rarely been pursued in the social sciences. Yet knowledge of something’s origins often gives us new insights into the present. In Ex Machina, John H. Miller introduces a methodology for exploring systems of adaptive, interacting, choice-making agents, and uses this approach to identify conditions sufficient for the emergence of social behavior. Miller combines ideas from biology, computation, game theory, and the social sciences to evolve a set of interacting automata from asocial to social behavior. Readers will learn how systems of simple adaptive agents—seemingly locked into an asocial morass—can be rapidly transformed into a bountiful social world driven only by a series of small evolutionary changes. Such unexpected revolutions by evolution may provide an important clue to the emergence of social life.”

[] Stefani A. Crabtree, Global Environmental Change, https://doi.org/10.1016/j.gloenvcha.2022.102597

In the abstract you can read: “Analyzing the spatial and temporal properties of information flow with a multi-century perspective could illuminate the sustainability of human resource-use strategies. This paper uses historical and archaeological datasets to assess how spatial, temporal, cognitive, and cultural limitations impact the generation and flow of information about ecosystems within past societies, and thus lead to tradeoffs in sustainable practices. While it is well understood that conflicting priorities can inhibit successful outcomes, case studies from Eastern Polynesia, the North Atlantic, and the American Southwest suggest that imperfect information can also be a major impediment
to sustainability. We formally develop a conceptual model of Environmental Information Flow and Perception (EnIFPe) to examine the scale of information flow to a society and the quality of the information needed to promote sustainable coupled natural-human systems. In our case studies, we assess key aspects of information flow by focusing on food web relationships and nutrient flows in socio-ecological systems, as well as the life cycles, population dynamics, and seasonal rhythms of organisms, the patterns and timing of species’ migration, and the trajectories of human-induced environmental change. We argue that the spatial and temporal dimensions of human environments shape society’s ability to wield information, while acknowledging that varied cultural factors also focus a society’s ability to act on such information. Our analyses demonstrate the analytical importance of completed experiments from the past, and their utility for contemporary debates concerning managing imperfect information and addressing conflicting priorities in modern environmental management and resource use.”



Is Mathematics a Fake? No! Discussing N.Bourbaki, Theory of Sets (1968) – Introduction

eJournal: uffmm.org, ISSN 2567-6458,
6.June 2022 – 13.June 2022, 10:30h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

SCOPE

In the uffmm review section the different papers and books are discussed from the point of view of the oksimo paradigm, which is embedded in the general view of a generalized ‘citizen science’ as a ‘computer aided sustainable applied empirical theory’ (CSAET). In the following text the author discusses the introduction of the book “Theory of Sets” from the series “Elements of Mathematics” by N.Bourbaki (1968) [1b]

CONTEXT

In the foundational post with the title “From SYSTEMS Engineering to THEORY Engineering” [3] the assumptions of the whole formalization approach in logic, mathematics and science are questioned as to narrow to allow a modern sustainable theory of science dealing explicitly with the future. To sharpen some of the arguments in that post it seems to be helpful to discuss one of the cornerstones of modern (formalized) mathematics substantiated in the book ‘Theory of sets’ from the Bourbaki group.[1a] It has to be mentioned that the question of the insufficiency of formalization has been discussed in the uffmm blog in several posts before. (cf. e.g. [2])

Formalization

preface

In the introduction to the ‘Set Theory Book’ the bourbaki group reveals a little bit of their meta-mathematical point of view, which finally belongs to the perspective of philosophy. At the one hand they try to be ‘radically formal’, but doing this they notice themselves that this is — by several reasons — only a ‘regulative idea’, somehow important for our thinking, but not completely feasible. This ‘practical impossibility’ is not necessarily a problem as long as one is conscious about this. The Bourbaki group is conscious about this problem, but different to their ‘rigor’ with the specialized formalization of mathematical ideas, they leave it widely ‘undefined’ what follows from the practical impossibility of being ‘completely rigorous’. In the following text it will be tried to describe the Bourbaki position with both dimensions: the idea of ‘formalization’ and the reality of ‘non-formalized realities’ which give the ‘ground’ for everything, even for the formalization. Doing this it will — hopefully — become clear that the idea of formalization was a great achievement in the philosophical and scientific thinking but it did not really solve our problems of understanding the world. The most important aspects of knowledge are ‘outside’ of this formalization approach, and many ‘problems’ which seem to bother our actual thinking are perhaps only ‘artifacts’ of this simplified formalization approach (somehow similar to the problems which have been induced by the metaphysical thinking of the older philosophy). To say it flatly: to introduce new names for old problems does not necessarily solve problems. It enables new ways of speaking and perhaps some new kinds of knowledge, but it does not really solve the big problems of knowledge. And the biggest problem of knowledge is — perhaps — the primary ‘knowledge machine’ itself: the biological actors which have brains to transform ‘reality’ in ‘virtual models’ in their brains and communication tools to ‘communicate’ these virtual models to enable a ‘collective intelligence’ as well as a ‘collective cooperation’. As long as we do not understand this we do not really understand the ‘process of knowing’.

before formalization

With the advent of the homo sapiens population on the planet earth about 300.000 years ago [4] it became possible that biological systems could transform their perceptions of the reality around their brains into ‘internal’, ‘virtual’ models, which enabled ‘reference points’ for ‘acting’ and a ‘cooperation’ which was synchronized by a ‘symbolic communication’. Those properties of the internal virtual models which have no clear ‘correspondence’ to the ‘reality between the brains’ are difficult to communicate.

Everyday symbolic communication refers to parts of the reality by certain types of expressions, which are ‘combined’ in manners which encode different types of ‘relations’ or even ‘changes’. Expressions which ‘refer’ to ‘concrete’ properties can be ‘overloaded’ by expressions which refer to other expressions, which in turn refer either again to expressions or to ‘concrete meanings’. Those objects which are the targets of a referring relation — concrete objects or other expressions — are here called ‘the meaning’ of the expressions. Thus the ‘meaning space’ is populated by either expressions related to ‘concrete’ properties or by ‘expressions pointing forward’ to other expressions and these ‘pointing-forward’ expressions are here called ‘abstract meaning’. While concrete meanings are usually ‘decidable’ in the everyday world situations as being ‘given’ (being ‘true’) or as ‘not being given’ (‘being false’), abstract meanings are as expressions ‘undefined’: they can lead to some concrete property which in turn perhaps can be decided or not.

The availability of ‘abstract expressions’ in ordinary language can be seen as a ‘problem’ or as a ‘blessing’. Being able to generate and use abstract terms manifests a great flexibility in talking — and thinking! — about possible realities which allow to overcome the dictatorship of the ‘now’ and the ‘individual single’. Without abstraction thinking would indeed be impossible. Thus if one understands that ‘thinking’ is a real process with sequences of different states which reveal eventually more abstract classes, structures, and changes, then abstraction is the ‘opener’ for more reality, the ‘enabler’ for a more broader and flexible knowledge. Only by ‘transcending’ the eternal ‘Now’ we get an access to phenomena like time, changes, all kinds of dynamics, and only thereby are ‘pictures of some possible future’ feasible!

Clearly, the potential of abstraction can also be a source of ‘non-real’ ideas, of ‘fantastic’ pictures, of ‘fake news’ and the like.

But these possible ‘failures’ — if they will be ‘recognized’ as failures! — are inevitable if one wants to dig out some ‘truth’ in the nearly infinite space of the unknown. Before the ‘knowledge that something is true’ one has to master a ‘path of trial and error’ consuming ‘time’ and ‘resources’.

This process of creating new abstract ideas to guide a search in the space of the unknown is the only key to find besides ‘errors’ sometimes some ‘truth’.

Thus the ‘problem’ with abstract ideas is an unavoidable condition to find necessary ‘truths’. Stepping back in the face of possible problems is no option to survive in the unknown future.

the formal view of the world according to bourbaki

Figure 1: Graphical interpretation of N.Bourbaki, Set Theory (1968), Introduction, ‘liberal version’
Language, object language, meta language

Talking about mathematical objects with their properties within an ordinary language is not simple because the expressions of an ordinary language are as such usually part of a network of meanings, which can overlap, which can be fuzzy, which are giving space for many interpretations. Additionally, that which is called a ‘mathematical object’ is not a kind of an object wich is given in the everyday world experience. What can be done in such a situation?

Bourbaki proposes to introduce a ‘specialized language’ constructed out of a finite set of elements constituting the ‘alphabet’ of a new language, together with ‘syntactical rules’, which describe how to construct with the elements of the alphabet chains of elements called ‘(well formed) expressions’, which constitute the ‘language’ LO, which shall be used to talk about mathematical objects.

But because mathematics is not restricted to ‘static objects’ but deals also with ‘transformations’ (‘changes’) of objects, one needs ‘successions of objects’ (‘sequences’), which are related by ‘operations with mathematical objects’. In this case the operations are also represented by ‘expressions’ but these expressions are expressions of a ‘higher order’ which have as referenced subject those expressions which are representing objects . Thus, Bourbaki needs right from the beginning two languages: an ‘object language’ (expressions of a language LO representing mathematical objects) and a ‘meta language’ LL (expressions referring to expressions of the object language LO including certain ‘types of changes’ occurring with the object language expressions). Thus a mathematical language Lm consists in the combination of an object language LO with a meta language LL (Lm = (LO,LL)).

And, what becomes clear by this procedure, to introduce such a kind of mathematical language Lm one needs another language talking about the mathematical language Lm, and this is either the everyday (normal) language L, which is assumed to be a language which everybody can ‘understand’ and ‘apply correctly’, or it is a third specialized language LLL, which can talk with special expressions about the mathematical language Lm. Independent of the decision which solution one prefers, finally the ordinary language L will become the meta language for all other thinkable meta languages.

Translating(?) math objects into formal expressions

If the formalized expressions of the mathematical language (Lm = (LO,LL)) would be the mathematical objects themselves, then mathematics would consist only of those expressions. And, because there would be no other criteria available, whatever expressions one would introduce, every expression would claim to be a relevant mathematical expression. This situation would be a ‘maximum of non-sense’ construct: nothing could be ‘false’.

Thus, the introduction of formal expressions of some language alone seems to be not enough to establish a language which is called a ‘mathematical’ language Lm different from other languages which talk about other kinds of objects. But what could it be which relates to ‘specific math objects’ which are not yet the expressions used to ‘refer’ to these specific math objects?

Everybody knows that the main reason for to ‘speak’ (or ‘write’) about math specific objects are humans which are claiming to be ‘mathematicians’ and which are claiming to have some ‘knowledge’ about specific objects called ‘math objects’ which are the ‘content’ which they ‘translate’ into the expressions of a certain language call ‘mathematical language’.[5] Thus, if the ‘math objects’ are not the used expressions themselves then these ‘math objects’ have to be located ‘inside of these talking humans’. According to modern science one would specify this ‘inside’ as ‘brain’, which is connected in complex ways to a body which in turn is connected to the ‘outside world of the body’. Until today it is not possible to ‘observe’ directly math objects assumed to be in the brain of the body of someone which claims to be a mathematician. Thus one mathematician A can not decide what another mathematician B has ‘available in his brain’ at some point of time.

Bourbaki is using some formulations in his introduction which gives some ‘flavor’ of this ‘being not able to translate it into a formalized mathematical language’. Thus at one position in the text Bourbaki is recurring to the “common sense” of the mathematicians [6] or to the “reader’s intuition”. [7] Other phrases refer to the “modes of reasoning” which cannot be formalized [8], or simply to the “experience” on which “the opinion rests”. [9] Expressions like ‘common sense’, ‘intuition’, ‘modes of reasoning’, and ‘experience’ are difficult to interpret. All these expressions describe something ‘inside’ the brains which cannot be observed directly. Thus, how can mathematician A know what mathematician B ‘means’ if he is uttering some statement or writes it down? Does it make a difference whether a mathematician is a man or a woman or is belonging to some other kind of a ‘gender’? Does it make a difference which ‘age’ the mathematician has? How ‘big’ he is? Which ‘weight’ he has?

Thus, from a philosophical point of view the question to the specific criteria which classify a language as a ‘mathematical language’ and not some other language leads us into a completely unsatisfying situation: there are no ‘hard facts’ which can give us a hint what ‘mathematical objects’ could be. What did we ‘overlook’ here? What is the key to the specific mathematical objects which inspired the brains of many many thousand people through centuries and centuries? Is mathematics a ‘big fake’ or is there more than this?

A mathematician as an ‘actor’?
Figure 2: Graphical interpretation of N.Bourbaki, Set Theory (1968), Introduction, ‘Actor view’

This last question “Is mathematics a ‘big fake’ or is there more than this?” can lead o the assumption, that it is not enough to talk about ‘mathematics’ by not including the mathematician itself. Only the mathematician is that ‘mysterious source’ of knowledge, which seems to trigger the production of ‘mathematical expressions’ in speaking or writing (or drawing). Thus a meta-mathematical — and thereby philosophical’ — ‘description’ of mathematics should have at least the ‘components’ (MA, LO,LL,L) with ‘MA’ as abbreviation for the set of actors where each element of the set MA is a mathematician, and — this is decisive ! — it is this math actor MA which is in possession of those ‘criteria’ which decide whether an expression E belongs the ‘mathematical language Lm‘ or not.

The phrase of the ‘mathematician’ as a ‘mysterious source of knowledge’ is justified by an ’empirical observational point of view’: nobody can directly look into the brain of a mathematician. Thus the question of what an expression called ‘mathematical expression’ can ‘mean’ is in such an empirical view not decidable and appears to be a ‘mystery’.

But in the reality of everyday life we can observe, that every human actor — not only mathematicians — seems to be able to use expressions of the everyday language with referring to ‘internal states’ of the brain in a way which seems to ‘work’. If we are talking about ‘pain with my teeth’ or about ‘being hungry or thirsty’ or ‘having an idea’ etc. then usually other human actors seem to ‘understand’ what one is uttering. The ‘evidence’ of a ‘working understanding’ is growing up by the ‘confirmation of expectations’: if oneself is hungry, then one has a certain kind of ‘feeling’ and usually this feeling leads — depending from the cultural patterns one is living in — to a certain kind of ‘behavior’, which has — usually — the ‘felt effect’ of being again ‘not hungry’. This functional relation of ‘feeling to be hungry’, ‘behavior of consuming something’, ‘feeling of being not hungry again’ is an association between ‘bodily functions’ common to all human actors and additionally it is a certain kind of observable behavior, which is common to all human actors too. And it seems to work that human actors are able to associate ‘common internal states’ with ‘common observable behavior’ and associate this observable behavior with the ‘presupposed internal states’ with certain kinds of ‘expressions’. Thus although the internal states are directly not observable, they can become ‘communicated by expressions’ because these internal states are — usually — ‘common to the internal experience of every human actor’.

From this follows the ‘assumption’ that we should extend the necessary elements for ‘inter-actor communication’ with the factor of ‘common human actor HA experience’ abbreviated as ‘HAX‘ (HA, HAX, MA, LO,LL,L), which is usually accompanied by certain kinds of observable behavior ‘BX‘, which can be used as point of reference for certain expressions ‘LX‘, which ‘point to’ the associated intern al states HAX, which are not directly observable. This yields the structure (HA, HAX, MA, BX, LO,LL,LX,L).

Having reached this state of assumptions, there arises an other assumption regarding the relationship between ‘expressions of a language’ — like (LO,LL,LX,L) — and those properties which are constituting the ‘meaning’ of these expressions. In this context ‘meaning’ is not a kind of an ‘object’ but a ‘relation’ between two different things, the expressions at one side and the properties ‘referred to’ on the other side. Moreover this ‘meaning relation’ seems not to be a ‘static’ relation but a ‘dynamic’ one, associating two different kinds of properties one to another. This reminds to that what mathematicians call a ‘mapping, a function’, and the engineers a ‘process, an operation’. If we abbreviate this ‘dynamic meaning relation’ with the sign ‘μ’, then we could agree to the convention ‘μX : LX <—> (BX,HAX)’ saying that there exists a meaning function μX which maps the special expressions of LX to the special internal experience HAX, which in turn is associated with the special behavior BX. Thus, we extend our hypothetical structure to the format (HA, HAX, MA, BX, LO,LL,LX,L,μX).

With these assumptions we are getting a first idea how human actors in general can communicate about internal, directly not observable states, with other human actors by using external language expressions. We have to notice that the assumed dynamic meaning relation μX itself has to be located ‘inside’ the body, inside’ the brain. This triggers the further assumption to have ‘internal counterparts’ of the external observable behavior as well as external expressions. From this follows the further assumption that there must exists some ‘translation/ transformation’ ‘τ’ which ‘maps’ the internal ‘counterparts’ of the observable behavior and the observable expressions into the external behavior.(cf. figure 2) Thus, we are reaching the further extended format: (HA, HAX, MA, BX, LO,LL,LX,L,μX,τ).

Mathematical objects

Accepting the basic assumptions about an internal meaning function μX as well an internal translation function τ narrows the space of possible answers about the nature of ‘math objects’ a little bit, but as such this is possibly not yet a satisfying answer. Or, have we nevertheless yet to assume that ‘math objects’ and related ‘modes of reasoning’ are also rooted in internal properties and dynamics of the brain which are ‘common to all humans’?

If one sees that every aspect of the human world view is encoded in some internal states of the brain, and that what we call ‘world’ is only given as a constructed virtual structure in the brains of bodies including all the different kinds of ‘memories’, then there is no real alternative to the assumption that ‘math objects’ and related ‘modes of reasoning’ have to be located in these — yet not completely decoded — inner structures and dynamics of the brain.

From the everyday experience — additionally enlightened by different scientific disciplines, e.g. experimental (neuro) psychology — we know that the brain is — completely automatic — producing all kinds of ‘abstractions’ from concrete ‘perceptions’, can produce any kinds of ‘abstractions of abstractions’, can ‘associate’ abstractions with other abstractions, can arrange many different kinds of memories to ‘arrangements’ representing ‘states’/ ‘situations’, ‘transformations of states’, ‘sequences of states’ and the like. Thus everything which a ‘mathematical reasoning’ HAm needs seems to be available as concrete brain state or brain activity, and this is not only ‘special’ for an individual person alone, it is the common structure of all brains.

Therefore one has to assume that the set of mathematicians MA is a ‘subset’ of the set of human actors HA in general. From this one can further assume that the ‘mathematical reasoning’ HAm is a subset of the general human everyday experience HAX. And, saying this, the meaning function μX as well as the translation function τ should be applicable also to the mathematical reasoning and the mathematical objects as well: (HA, MA, HAX, HAm, BX, LO,LL,LX,L,μX,τ).

These assumptions would explain why it is not only possible but ‘inevitable’ to use the everyday language L to introduce and to use a mathematical language Lm with different kinds of sub-languages (LO,LL, LLL, …). Thus in analogy to the ‘feeling’ ‘to be hungry’ with a cultural encoded kind of accompanying behavior BX we have to assume that the different kinds of internal states and transformations in the case of mathematical reasoning can be associated with an observable kind of ‘behavior’ by using ‘expressions’ embedded (encoded) in certain kinds of ‘behavior’ accepted as ‘typical mathematical’. Introducing expressions like ‘0’, ‘1’, ‘2’, …, ’10’, … (belonging to a language Lo) for certain kinds of ‘objects’ and expressions like ‘+’, ‘-‘ … for certain kinds of operations with these before introduced objects (belonging to a language LL) one can construct combined expressions like ‘1+2=3’ (belonging to a mathematical language Lm). To introduce ‘more abstract objects’ like ‘sets’, ‘relations’, ‘functions’ etc. which have no direct counterpart in the everyday world does not break the assumptions. The everyday language L operates already only with abstract objects like ‘cup’, ‘dog’, ‘house’ etc. The expression ‘cup’ is an abstract concept, which can easily be associated with any kind of concrete phenomena provided by perceptions introducing ‘sets of different properties’, which allow the construction of ‘subsets of properties’ constituting a kind of ‘signature’ for a certain abstract ‘class’ which only exists in the dynamics of the brain. Thus having a set C named ‘cup’ introduces ‘possible elements’, whose ‘interpretation’ can be realized by associating different kinds of sets of properties provided by ‘sensory perception’. But the ‘memory’ as well as the ‘thinking’ can also provide other kinds of properties which can be used too to construct other ‘classes’.

In this outlined perspective of brain dynamics mathematics appears to be a science which is using these brain dynamics in a most direct way without to recur to the the huge amount of everyday experiences. Thus, mathematical languages (today summarized in that language, which enables the so called ‘set theory’) and mathematical thinking in general seems to reflect the basic machinery of the brain processing directly across all different cultures. Engineers worldwide speaking hundreds of different ‘everyday languages’ can work together by using mathematics as their ‘common language’ because this is their ‘common thinking’ underlying all those different everyday languages.

Being a human means being able to think mathematically … besides many other things which characterizes a human actor.

Epiloge

Basically every ordinary language offers all elements which are necessary for mathematics (mathematics is the kernel of every language). But history illustrates that it can be helpful to ‘extend’ an ordinary language with additional expressions (Lo, LL, LLL, …). But the development of modern mathematics and especially computer science shows increasing difficulties by ‘cutting away’ everyday experience in case of elaborating structures, models, theories in a purely formal manner, and to use these formal structures afterwards to interpret the everyday world. This separates the formal productions from the main part of users, of citizens, leading into a situation where only a few specialist have some ‘understanding’ (usually only partially because the formalization goes beyond the individual capacity of understanding), but all others have no more an understanding at all. This has he flavor of a ‘cultural self-destruction’.

In the mentioned oksimo software as part of a new paradigm of a more advanced citizen science this problem of ‘cultural self-destruction’ is avoided because in the format of a ‘computer aided sustainable applied empirical theory (CSAET) the basic language for investigating possible futures is the ordinary language which can be extend as needed with quantifying properties. The computer is not any more needed for ‘understanding’ but only for ‘supporting’ the ‘usage’ of everyday language expressions. This enables the best of both worlds: human thinking as well as machine operations.

COMMENTS

Def: wkp := Wikipedia; en := English

[1a] Bourbaki Group, see: https://en.wikipedia.org/wiki/Nicolas_Bourbaki

[1b] Theory of Sets with a chapter about structures, see: https://en.wikipedia.org/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique

[2] Gerd Doeben-Henisch, “Extended Concept for Meaning Based Inferences, Version 1”, August 2020, see: https://www.uffmm.org/wp-content/uploads/2020/08/TruthTheoryExtended-v1.pdf

[3] Gerd Doeben-Henisch, “From SYSTEMS Engineering to THEORY Engineering”, June 2022, see: https://www.uffmm.org/2022/05/26/from-systems-engineering-to-theory-engineering/

[4] Humans, How many years ago?, see: wkp (en): https://en.wikipedia.org/wiki/Human#:~:text=Homo%20sapiens,-Linnaeus%2C%201758&text=Anatomically%20modern%20humans%20emerged%20around,local%20populations%20of%20archaic%20humans.

[5] The difference between ‘talking’ about math objects and ‘writing’ is usually not thematised in the philosophy of mathematics. Because the ordinary language is the most general ‘meta language’ for all kinds of specialized languages and the primary source of the ordinary language then ‘speaking’ is perhaps not really a ‘trivial’ aspect in understanding the ‘meaning’ of any kind of language.

[6] “But formalized mathematics cannot in practice be written down in full, and therefore we must have confidence in what might be called the common sense of the mathematician …”. (p.11)

[7] “Sometimes we shall use ordinary language more loosely … and by indications which cannot be translated into formalized language and which are designed to help the reader to reconstruct the whole text. Other passages, equally untranslatable into formalized language, are introduced in order to clarify the ideas involved, if necessary by appealing to the reader’s intuition …”(p.11)

[8] “It may happen at some future date that mathematicians will agree to use modes of reasoning which cannot be formalized in the language described here : it would then be necessary, if not to change the language completely, at least to enlarge its rules of syntax.”(p.9)

[9] “To sum up, we believe that mathematics is destined to survive … but we cannot pretend that this opinion rests on anything more than experience.”(p.13)

POPPER and EMPIRICAL THEORY. A conceptual Experiment


eJournal: uffmm.org
ISSN 2567-6458, 12.March 22 – 16.March 2022, 11:20 h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

BLOG-CONTEXT

This post is part of the Philosophy of Science theme which is part of the uffmm blog.

PREFACE

In a preceding post I have outline the concept of an empirical theory based on a text from Popper 1971. In his article Popper points to a minimal structure of what he is calling an empirical theory. A closer investigation of his texts reveals many questions which should be clarified for a more concrete application of his concept of an empirical theory.

In this post it will be attempted to elaborate the concept of an empirical theory more concretely from a theoretical point of view as well as from an application point of view.

A Minimal Concept of an Empirical Theory

The figure shows the process of (i) observing phenomena, (ii) representing these in expressions of some language L, (iii) elaborating conjectures as hypothetical relations between different observations, (iv) using an inference concept to deduce some forecasts, and (v) compare these forecasts with those observations, which are possible in an assumed situation.

Empirical Basis

As starting point as well as a reference for testing does Popper assume an ’empirical basis’. The question arises what this means.

In the texts examined so far from Popper this is not well described. Thus in this text some ‘assumptions/ hypotheses’ will be formulated to describe some framework which should be able to ‘explain’ what an empirical basis is and how it works.

Experts

Those, who usually are building theories, are scientists, are experts. For a general concept of an ’empirical theory’ it is assumed here that every citizen is a ‘natural expert’.

Environment

Natural experts are living in ‘natural environments’ as part of the planet earth, as part of the solar system, as part of the whole universe.

Language

Experts ‘cooperate’ by using some ‘common language’. Here the ‘English language’ is used; many hundreds of other languages are possible.

Shared Goal (Changes, Time, Measuring, Successive States)

For cooperation it is necessary to have a ‘shared goal’. A ‘goal’ is an ‘idea’ about a possible state in the ‘future’ which is ‘somehow different’ to the given actual situation. Such a future state can be approached by some ‘process’, a series of possible ‘states’, which usually are characterized by ‘changes’ manifested by ‘differences’ between successive states. The concept of a ‘process’, a ‘sequence of states’, implies some concept of ‘time’. And time needs a concept of ‘measuring time’. ‘Measuring’ means basically to ‘compare something to be measured’ (the target) with ‘some given standard’ (the measuring unit). Thus to measure the height of a body one can compare it with some object called a ‘meter’ and then one states that the target (the height of the body) is 1,8 times as large as the given standard (the meter object). In case of time it was during many thousand years customary to use the ‘cycles of the sun’ to define the concept (‘unit’) of a ‘day’ and a ‘night’. Based on this one could ‘count’ the days as one day, two days, etc. and one could introduce further units like a ‘week’ by defining ‘One week compares to seven days’, or ‘one month compares to 30 days’, etc. This reveals that one needs some more concepts like ‘counting’, and associated with this implicitly then the concept of a ‘number’ (like ‘1’, ‘2’, …, ’12’, …) . Later the measuring of time has been delegated to ‘time machines’ (called ‘clocks’) producing mechanically ‘time units’ and then one could be ‘more precise’. But having more than one clock generates the need for ‘synchronizing’ different clocks at different locations. This challenge continues until today. Having a time machine called ‘clock’ one can define a ‘state’ only by relating the state to an ‘agreed time window’ = (t1,t2), which allows the description of states in a successive timely order: the state in the time-window (t1,t2) is ‘before’ the time-window (t2,t3). Then one can try to describe the properties of a given natural environment correlated with a certain time-window, e.g. saying that the ‘observed’ height of a body in time-window w1 was 1.8 m, in a later time window w6 the height was still 1.8 m. In this case no changes could be observed. If one would have observed at w6 1.9 m, then a difference is occurring by comparing two successive states.

Example: A County

Here we will assume as an example for a natural environment a ‘county’ in Germany called ‘Main-Kinzig Kreis’ (‘Kreis’ = ‘county’), abbreviated ‘MKK’. We are interested in the ‘number of citizens’ which are living in this county during a certain time-window, here the year 2018 = (1.January 2018, 31.December 2018). According to the statistical office of the state of Hessen, to which the MKK county belongs, the number of citizens in the MKK during 2018 was ‘418.950’.(cf. [2])

Observing the Number of Citizens

One can ask in which sense the number ‘418.950’ can be understood as an ‘observation statement’? If we understand ‘observation’ as the everyday expression for ‘measuring’, then we are looking for a ‘procedure’ which allows us to ‘produce’ this number ‘418.950’ associated with the unit ‘number of citizens during a year’. As everybody can immediately realize no single person can simply observe all citizens of that county. To ‘count’ all citizens in the county one had to ‘travel’ to all places in the county where citizens are living and count every person. Such a travelling would need some time. This can easily need more than 40 years working 24 hours a day. Thus, this procedure would not work. A different approach could be to find citizens in every of the 24 cities in the MKK [1] to help in this counting-procedure. To manage this and enable some ‘quality’ for the counting, this could perhaps work. An interesting experiment. Here we ‘believe’ in the number of citizens delivered by the statistical office of the state of Hessen [2], but keeping some reservation for the question how ‘good’ this number really is. Thus our ‘observation statement’ would be: “In the year 2018 418.950 citizens have been counted in the MKK (according to the information of the statistical office of the state of Hessen)” This observation statement lacks a complete account of the procedure, how this counting really happened.

Concrete and Abstract Words

There are interesting details in this observation statement. In this observation statement we notice words like ‘citizen’ and ‘MKK’. To talk about ‘citizens’ is not a talk about some objects in the direct environment. What we can directly observe are concrete bodies which we have learned to ‘classify’ as ‘humans’, enriched for example with ‘properties’ like ‘man’, ‘woman’, ‘child’, ‘elderly person’, neighbor’ and the like. Bu to classify someone as a ‘citizen’ deserves knowledge about some official procedure of ‘registering as a citizen’ at a municipal administration recorded in some certified document. Thus the word ‘citizen’ has a ‘meaning’ which needs some ‘concrete procedure to get the needed information’. Thus ‘citizen’ is not a ‘simple word’ but a ‘more abstract word’ with regard to the associated meaning. The same holds for the word ‘MKK’ short for ‘Main-Kinzig Kreis’. At a first glance ‘MKK’ appears as a ‘name’ for some entity. But this entity cannot directly be observed too. One component of the ‘meaning’ of the name ‘MKK’ is a ‘real geographical region’, whose exact geographic extensions have been ‘measured’ by official institutions marked in an ‘official map’ of the state of Hessen. This region is associated with an official document of the state of Hessen telling, that this geographical region has to be understood s a ‘county’ with the name MKK. There exist more official documents defining what is meant with the word ‘county’. Thus the word ‘MKK’ has a rather complex meaning which to understand and to check, whether everything is ‘true’, isn’t easy. The author of this post is living in the MKK and he would not be able to tell all the details of the complete meaning of the name ‘MKK’.

First Lessons Learned

Thus one can learn from these first considerations, that we as citizens are living in a natural environment where we are using observation statements which are using words with potentially rather complex meanings, which to ‘check’ deserves some serious amount of clarification.

Conjectures – Hypotheses

Changes

The above text shows that ‘observations as such’ show nothing of interest. Different numbers of citizens in different years have no ‘message’. But as soon as one arranges the years in a ‘time line’ according to some ‘time model’ the scene is changing: if the numbers of two consecutive years are ‘different’ then this ‘difference in numbers’ can be interpreted as a ‘change’ in the environment, but only if one ‘assumes’ that the observed phenomena (the number of counted citizens) are associated with some real entities (the citizens) whose ‘quantity’ is ‘represented’ in these numbers.[5]

And again, the ‘difference between consecutive numbers’ in a time line cannot be observed or measured directly. It is a ‘second order property’ derived from given measurements in time. Such a 2nd order property presupposes a relationship between different observations: they ‘show up’ in the expressions (here numbers), but they are connected back in the light of the agreed ‘meaning’ to some ‘real entities’ with the property ‘overall quantity’ which can change in the ‘real setting’ of these real entities called ‘citizens’.

In the example of the MKK the statistical office of the state of Hessen computed a difference between two consecutive years which has been represented as a ‘growth factor’ of 0,4%. This means that the number of citizens in the year 2018 will increase until the year 2019 as follows: number-citizens(2019) = number-citizens(2018) + (number of citizens(2018) * growth-factor). This means number-citizens(2019) =418.950 + (418.950 * 0.004) = 418.950 + 1.675,8 = 420.625,8

Applying change repeatedly

If one could assume that the ‘growth rate’ would stay constant through the time then one could apply the growth rate again and again onto the actual number of citizens in the MKK every year. This would yield the following simple table:

YearNumberGrowth Rate
2018418.950,00,0040
2019420.625,80
2020422.308,30
2021423.997,54
2022425.693,53
2023427.396,30
Table: Simplified description of the increase of the number of citizens in the Main-Kinzig county in Germany with an assumed growth rate of 0,4% per year.

As we know from reality an assumption of a fixed growth rate for complex dynamic systems is not very probable.

Theory

Continuing the previous considerations one has to ask the question, how the layout of a ‘complete empirical theory’ would look like?

As I commented in the preceding post about Popper’s 1971 article about ‘objective knowledge’ there exists today no one single accepted framework for a formalized empirical theory. Therefore I will stay here with a ‘bottom-up’ approach using elements taken from everyday reasoning.

What we have until now is the following:

  1. Before the beginning of a theory building process one needs a group of experts being part of a natural environment using the same language which share a common goal which they want to enable.
  2. The assumed natural environment is assumed from the experts as being a ‘process’ of consecutive states in time. The ‘granularity’ of the process depends from the used ‘time model’.
  3. As a starting point they collect a set of statements talking about those aspects of a ‘selected state’ at some time t which they are interested in.
  4. This set of statements describes a set of ‘observable properties’ of the selected state which is understood as a ‘subset’ of the properties of the natural environment.
  5. Every statement is understood by the experts as being ‘true’ in the sense, that the ‘known meaning’ of a statement has an ‘observable counterpart’ in the situation, which can be ‘confirmed’ by each expert.
  6. For each pair of consecutive states it holds that the set of statements of each state can be ‘equal’ or ‘can show ‘differences’.
  7. A ‘difference’ between sets of statements can be interpreted as pointing to a ‘change in the real environment’.[5]
  8. Observed differences can be described by special statements called ‘change statements’ or simply ‘rules’.
  9. A change statement has the format ‘IF a set of statements ST* is a subset of the statements ST of a given state S, THEN with probability p, a set of statements ST+ will be added to the actual state S and a set of statements ST- will be removed from the statements ST of a given state S. This will result in a new succeeding state S* with the representing statements ST – (ST-) + (ST+) depending from the assumed probability p.
  10. The list of change statements is an ‘open set’ according to the assumption, that an actual state is only a ‘subset’ of the real environment.
  11. Until now we have an assumed state S, an assumed goal V, and an open set of change statements X.
  12. Applying change statements to a given state S will generate a new state S*. Thus the application of a subset X’ of the open set of change statements X onto a given state S will here be called ‘generating a new state by a procedure’. Such a state-generating-procedure can be understood as an ‘inference’ (like in logic) oder as a ‘simulation’ (like in engineering).[6]
  13. To write this in a more condensed format we can introduce some signs —– S,V ⊩ ∑ X S‘ —– saying: If I have some state S and a goal V then the simulator will according to the change statements X generate a new state S’. In such a setting the newly generated state S’ can be understood as a ‘theorem’ which has been derived from the set of statements in the state S which are assumed to be ‘true’. And because the derived new state is assumed to happen in some ‘future’ ‘after’ the ‘actual state S’ this derived state can also be understood as a ‘forecast’.
  14. Because the experts can change all the time all parts ‘at will’ such a ‘natural empirical theory’ is an ‘open entity’ living in an ongoing ‘communication process’.
Second Lessons Learned

It is interestingly to know that from the set of statements in state S, which are assumed to be empirically true, together with some change statements X, whose proposed changes are also assumed to be ‘true’, and which have some probability P in the domain [0,1], one can forecast a set of statements in the state S* which shall be true, with a certainty being dependent from the preceding probability P and the overall uncertainty of the whole natural environment.

Confirmation – Non-Confirmation

A Theory with Forecasts

Having reached the formulation of an ordinary empirical theory T with the ingredients <S,V,X,⊩ > and the derivation concept S,V ⊩ ∑ X S‘ it is possible to generate theorems as forecasts. A forecast here is not a single statement st* but a whole state S* consisting of a finite set of statements ST* which ‘designate’ according to the ‘agreed meaning’ a set of ‘intended properties’ which need a set of ‘occurring empirical properties’ which can be observed by the experts. These observations are usually associated with ‘agreed procedures of measurement’, which generate as results ‘observation statements’/ ‘measurement statements’.

Within Time

Experts which are cooperating by ‘building’ an ordinary empirical theory are themselves part of a process in time. Thus making observations in the time-window (t1,t2) they have a state S describing some aspects of the world at ‘that time’ (t1,t2). When they then derive a forecast S* with their theory this forecast describes — with some probability P — a ‘possible state of the natural environment’ which is assumed to happen in the ‘future’. The precision of the predicted time when the forecasted statements in S* should happen depends from the assumptions in S.

To ‘check’ the ‘validity’ of such a forecast it is necessary that the overall natural process reaches a ‘point in time’ — or a time window — indicated by the used ‘time model’, where the ‘actual point in time’ is measured by an agreed time machine (mechanical clock). Because there is no observable time without a time machine the classification of a certain situation S* being ‘now’ at the predicted point of time depends completely from the used time machine.[7]

Given this the following can happen: According to the used theory a certain set of statements ST* is predicted to be ‘true’ — with some probability — either ‘at some time in the future’ or in the time-window (t1,t2) or at a certain point in time t*.

Validating Forecasts

If one of these cases would ‘happen’ then the experts would have the statements ST* of their forecast and a real situation in their natural environment which enables observations ‘Obs’ which are ‘translated’ into appropriate ‘observation statements’ STObs. The experts with their predicted statements ST* know a learned agreed meaning M* of their predicted statements ST* as intended-properties M* of ST*. The experts have also learned how they relate the intended meaning M* to the meaning MObs from the observation statements STobs. If the observed meaning MObs ‘agrees sufficiently well’ with the intended meaning M* then the experts would agree in a statement, that the intended meaning M* is ‘fulfilled’/ ‘satisfied’/ ‘confirmed’ by the observed meaning MObs. If not then it would stated that it is ‘not fulfilled’/ ‘not satisfied’/ ‘not confirmed’.

The ‘sufficient fulfillment’ of the intended meaning M* of a set of statements ST* is usually translated in a statement like “The statements ST* are ‘true'”. In the case of ‘no fulfillment’ it is unclear: this can be interpreted as ‘being false’ or as ‘being unclear’: No clear case of ‘being true’ and no clear case of ‘being false’.

Forecasting the Number of Citizens

In the used simple example we have the MKK county with an observed number of citizens in 2018 with 418950. The simple theory used a change statement with a growth factor of 0.4% per year. This resulted in the forecast with the number 420.625 citizens for the year 2019.

If the newly counting of the number of citizens in the years 2019 would yield 420.625, then there would be a perfect match, which could be interpreted as a ‘confirmation’ saying that the forecasted statement and the observed statement are ‘equal’ and therefore the theory seems to match the natural environment through the time. One could even say that the theory is ‘true for the observed time’. Nothing would follow from this for the unknown future. Thus the ‘truth’ of the theory is not an ‘absolute’ truth but a truth ‘within defined limits’.

We know from experience that in the case of forecasting numbers of citizens for some region — here a county — it is usually not so clear as it has been shown in this example.

This begins with the process of counting. Because it is very expensive to count the citizens of all cities of a county this happens only about every 20 years. In between the statistical office is applying the method of ‘forecasting projection’.[9] The state statistical office collects every year ‘electronically’ the numbers of ‘birth’, ‘death’, ‘outflow’, and ‘inflow’ from the individual cities and modifies with these numbers the last real census. In the case of the state of Hessen this was the year 2011. The next census in Germany will happen May 2022.[10] For such a census the data will be collected directly from the registration offices from the cities supported by a control survey of 10% of the population.

Because there are data from the statistical office of the state of Hessen for June 2021 [8:p.9] with saying that the MKK county had 421 936 citizens at 30. June 2021 we can compare this number with the theory forecast for the year 2021 with 423 997. This shows a difference in the numbers. The theory forecast is ‘higher’ than the observed forecast. What does this mean?

Purely arithmetically the forecast is ‘wrong’. The responsible growth factor is too large. If one would ‘adjust’ it in a simplified linear way to ‘0.24%’ then the theory could get a forecast for 2021 with 421 973 (observed: 421 936), but then the forecast for 2019 would be 419 955 (instead of 420 625).

This shows at least the following aspects:

  1. The empirical observations as such can vary ‘a little bit’. One had to clarify which degree of ‘variance’ is due to the method of measurement and therefore this variance should be taken into account for the evaluation of a theoretical forecast.
  2. As mentioned by the statistical office [9] there are four ‘factors’ which influence the final number of citizens in a region: ‘birth’, ‘death’, ‘outflow’, and ‘inflow’. These factors can change in time. Under ‘normal conditions’ the birth-rate and the death-rate are rather ‘stable’, but in case of an epidemic situation or even war this can change a lot. Outflow and inflow are very dynamic depending from many factors. Thus this can influence the growth factor a lot and these factors are difficult to forecast.
Third lessons Learned

Evaluating the ‘relatedness’ of some forecast F of an empirical theory T to the observations O in a given real natural environment is not a ‘clear-cut’ case. The ‘precision’ of such a relatedness depends from many factors where each of these factors has some ‘fuzziness’. Nevertheless as experience shows it can work in a limited way. And, this ‘limited way’ is the maximum we can get. The most helpful contribution of an ‘ordinary empirical theory’ seems to be the forecast of ‘What will happen if we have a certain set of assumptions’. Using such a forecast in the process of the experts this can help to improve to get some ‘informed guesses’ for planning.

Forecast

The next post will show, how this concept of an ordinary empirical theory can be used by applying the oksimo paradigm to a concrete case. See HERE.

Comments

[1] Cities of the MKK-county: 24, see: https://www.wegweiser-kommune.de/kommunen/main-kinzig-kreis-lk

[2] Forecast for development of the number of citizens in the MMK starting with 2018, See: the https://statistik.hessen.de/zahlen-fakten/bevoelkerung-gebiet-haushalte-familien/bevoelkerung/tabellen

[3] Karl Popper, „A World of Propensities“,(1988) and „Towards an Evolutionary Theory of Knowledge“, (1989) in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (1990, repr. 1995)

[4] Karl Popper, „All Life is Problem Solving“, original a lecture 1991 in German, the first tome published (in German) „Alles Leben ist Problemlösen“ (1994), then in the book „All Life is Problem Solving“, 1999, Routledge, Taylor & Francis Group, London – New York

[5] This points to the concept of ‘propensity’ which the late Popper has discussed in the papers [3] and [4].

[6] This concept of a ‘generator’ or an ‘inference’ reminds to the general concept of Popper and the main stream philosophy of a logical derivation concept where a ‘set of logical rules’ defines a ‘derivation concept’ which allows the ‘derivation/ inference’ of a statement s* as a ‘theorem’ from an assumed set of statements S assumed to be true.

[7] The clock-based time is in the real world correlated with certain constellations of the real universe, but this — as a whole — is ‘changing’!

[8] Hessisches Statistisches Landesamt, “Die Bevölkerung der hessischen
Gemeinden am 30. Juni 2021. Fortschreibungsergebnisse Basis Zensus 09. Mai 2011″, Okt. 2021, Wiesbaden, URL: https://statistik.hessen.de/sites/statistik.hessen.de/files/AI2_AII_AIII_AV_21-1hj.pdf

[9] Method of the forward projection of the statistical office of the State of Hessen: “Bevölkerung: Die Bevölkerungszahlen sind Fortschreibungsergebnisse, die auf den bei der Zensuszählung 2011
ermittelten Bevölkerungszahlen basieren. Durch Auswertung von elektronisch übermittelten Daten für Geburten und Sterbefälle durch die Standesämter, sowie der Zu- und Fortzüge der Meldebehörden, werden diese nach einer bundeseinheitlichen Fortschreibungsmethode festgestellt. Die Zuordnung der Personen zur Bevölkerung einer Gemeinde erfolgt nach dem Hauptwohnungsprinzip (Bevölkerung am Ort der alleinigen oder der Hauptwohnung).”([8:p.2]

[10] Statistical Office state of Hessen, Next census 2022: https://statistik.hessen.de/zahlen-fakten/zensus/zensus-2022/zensus-2022-kurz-erklaert

OKSIMO MEETS POPPER. Popper’s Position

eJournal: uffmm.org
ISSN 2567-6458, 31.March – 31.March  2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

POPPERs POSITION IN THE CHAPTERS 1-17

In my reading of the chapters 1-17 of Popper’s The Logic of Scientific Discovery [1] I see the following three main concepts which are interrelated: (i) the concept of a scientific theory, (ii) the point of view of a meta-theory about scientific theories, and (iii) possible empirical interpretations of scientific theories.

Scientific Theory

A scientific theory is according to Popper a collection of universal statements AX, accompanied by a concept of logical inference , which allows the deduction of a certain theorem t  if one makes  some additional concrete assumptions H.

Example: Theory T1 = <AX1,>

AX1= {Birds can fly}

H1= {Peter is  a bird}

: Peter can fly

Because  there exists a concrete object which is classified as a bird and this concrete bird with the name ‘Peter’ can  fly one can infer that the universal statement could be verified by this concrete bird. But the question remains open whether all observable concrete objects classifiable as birds can fly.

One could continue with observations of several hundreds of concrete birds but according to Popper this would not prove the theory T1 completely true. Such a procedure can only support a numerical universality understood as a conjunction of finitely many observations about concrete birds   like ‘Peter can fly’ & ‘Mary can fly’ & …. &’AH2 can fly’.(cf. p.62)

The only procedure which is applicable to a universal theory according to Popper is to falsify a theory by only one observation like ‘Doxy is a bird’ and ‘Doxy cannot fly’. Then one could construct the following inference:

AX1= {Birds can fly}

H2= {Doxy is  a bird, Doxy cannot fly}

: ‘Doxy can fly’ & ~’Doxy can fly’

If a statement A can be inferred and simultaneously the negation ~A then this is called a logical contradiction:

{AX1, H2}  ‘Doxy can fly’ & ~’Doxy can fly’

In this case the set {AX1, H2} is called inconsistent.

If a set of statements is classified as inconsistent then you can derive from this set everything. In this case you cannot any more distinguish between true or false statements.

Thus while the increase of the number of confirmed observations can only increase the trust in the axioms of a scientific theory T without enabling an absolute proof  a falsification of a theory T can destroy the ability  of this  theory to distinguish between true and false statements.

Another idea associated with this structure of a scientific theory is that the universal statements using universal concepts are strictly speaking speculative ideas which deserve some faith that these concepts will be provable every time one will try  it.(cf. p.33, 63)

Meta Theory, Logic of Scientific Discovery, Philosophy of Science

Talking about scientific theories has at least two aspects: scientific theories as objects and those who talk about these objects.

Those who talk about are usually Philosophers of Science which are only a special kind of Philosophers, e.g. a person  like Popper.

Reading the text of Popper one can identify the following elements which seem to be important to describe scientific theories in a more broader framework:

A scientific theory from a point of  view of Philosophy of Science represents a structure like the following one (minimal version):

MT=<S, A[μ], E, L, AX, , ET, E+, E-, true, false, contradiction, inconsistent>

In a shared empirical situation S there are some human actors A as experts producing expressions E of some language L.  Based on their built-in adaptive meaning function μ the human actors A can relate  properties of the situation S with expressions E of L.  Those expressions E which are considered to be observable and classified to be true are called true expressions E+, others are called false expressions  E-. Both sets of expressions are true subsets of E: E+ ⊂ E  and E- ⊂ E. Additionally the experts can define some special  set of expressions called axioms  AX which are universal statements which allow the logical derivation of expressions called theorems of the theory T  ET which are called logically true. If one combines the set of axioms AX with some set of empirically true expressions E+ as {AX, E+} then one can logically derive either  only expressions which are logically true and as well empirically true, or one can derive logically true expressions which are empirically true and empirically false at the same time, see the example from the paragraph before:

{AX1, H2}  ‘Doxy can fly’ & ~’Doxy can fly’

Such a case of a logically derived contradiction A and ~A tells about the set of axioms AX unified with the empirical true expressions  that this unified set  confronted with the known true empirical expressions is becoming inconsistent: the axioms AX unified with true empirical expressions  can not  distinguish between true and false expressions.

Popper gives some general requirements for the axioms of a theory (cf. p.71):

  1. Axioms must be free from contradiction.
  2. The axioms  must be independent , i.e . they must not contain any axiom deducible from the remaining axioms.
  3. The axioms should be sufficient for the deduction of all statements belonging to the theory which is to be axiomatized.

While the requirements (1) and (2) are purely logical and can be proved directly is the requirement (3) different: to know whether the theory covers all statements which are intended by the experts as the subject area is presupposing that all aspects of an empirical environment are already know. In the case of true empirical theories this seems not to be plausible. Rather we have to assume an open process which generates some hypothetical universal expressions which ideally will not be falsified but if so, then the theory has to be adapted to the new insights.

Empirical Interpretation(s)

Popper assumes that the universal statements  of scientific theories   are linguistic representations, and this means  they are systems of signs or symbols. (cf. p.60) Expressions as such have no meaning.  Meaning comes into play only if the human actors are using their built-in meaning function and set up a coordinated meaning function which allows all participating experts to map properties of the empirical situation S into the used expressions as E+ (expressions classified as being actually true),  or E- (expressions classified as being actually false) or AX (expressions having an abstract meaning space which can become true or false depending from the activated meaning function).

Examples:

  1. Two human actors in a situation S agree about the  fact, that there is ‘something’ which  they classify as a ‘bird’. Thus someone could say ‘There is something which is a bird’ or ‘There is  some bird’ or ‘There is a bird’. If there are two somethings which are ‘understood’ as being a bird then they could say ‘There are two birds’ or ‘There is a blue bird’ (If the one has the color ‘blue’) and ‘There is a red bird’ or ‘There are two birds. The one is blue and the other is red’. This shows that human actors can relate their ‘concrete perceptions’ with more abstract  concepts and can map these concepts into expressions. According to Popper in this way ‘bottom-up’ only numerical universal concepts can be constructed. But logically there are only two cases: concrete (one) or abstract (more than one).  To say that there is a ‘something’ or to say there is a ‘bird’ establishes a general concept which is independent from the number of its possible instances.
  2. These concrete somethings each classified as a ‘bird’ can ‘move’ from one position to another by ‘walking’ or by ‘flying’. While ‘walking’ they are changing the position connected to the ‘ground’ while during ‘flying’ they ‘go up in the air’.  If a human actor throws a stone up in the air the stone will come back to the ground. A bird which is going up in the air can stay there and move around in the air for a long while. Thus ‘flying’ is different to ‘throwing something’ up in the air.
  3. The  expression ‘A bird can fly’ understood as an expression which can be connected to the daily experience of bird-objects moving around in the air can be empirically interpreted, but only if there exists such a mapping called meaning function. Without a meaning function the expression ‘A bird can fly’ has no meaning as such.
  4. To use other expressions like ‘X can fly’ or ‘A bird can Y’ or ‘Y(X)’  they have the same fate: without a meaning function they have no meaning, but associated with a meaning function they can be interpreted. For instance saying the the form of the expression ‘Y(X)’ shall be interpreted as ‘Predicate(Object)’ and that a possible ‘instance’ for a predicate could be ‘Can Fly’ and for an object ‘a bird’ then we could get ‘Can Fly(a Bird)’ translated as ‘The object ‘a Bird’ has the property ‘can fly” or shortly ‘A Bird can fly’. This usually would be used as a possible candidate for the daily meaning function which relates this expression to those somethings which can move up in the air.
Axioms and Empirical Interpretations

The basic idea with a system of axioms AX is — according to Popper —  that the axioms as universal expressions represent  a system of equations where  the  general terms   should be able to be substituted by certain values. The set of admissible values is different from the set of  inadmissible values. The relation between those values which can be substituted for the terms  is called satisfaction: the values satisfy the terms with regard to the relations! And Popper introduces the term ‘model‘ for that set of admissible terms which can satisfy the equations.(cf. p.72f)

But Popper has difficulties with an axiomatic system interpreted as a system of equations  since it cannot be refuted by the falsification of its consequences ; for these too must be analytic.(cf. p.73) His main problem with axioms is,  that “the concepts which are to be used in the axiomatic system should be universal names, which cannot be defined by empirical indications, pointing, etc . They can be defined if at all only explicitly, with the help of other universal names; otherwise they can only be left undefined. That some universal names should remain undefined is therefore quite unavoidable; and herein lies the difficulty…” (p.74)

On the other hand Popper knows that “…it is usually possible for the primitive concepts of an axiomatic system such as geometry to be correlated with, or interpreted by, the concepts of another system , e.g . physics …. In such cases it may be possible to define the fundamental concepts of the new system with the help of concepts which were originally used in some of the old systems .”(p.75)

But the translation of the expressions of one system (geometry) in the expressions of another system (physics) does not necessarily solve his problem of the non-empirical character of universal terms. Especially physics is using also universal or abstract terms which as such have no meaning. To verify or falsify physical theories one has to show how the abstract terms of physics can be related to observable matters which can be decided to be true or not.

Thus the argument goes back to the primary problem of Popper that universal names cannot not be directly be interpreted in an empirically decidable way.

As the preceding examples (1) – (4) do show for human actors it is no principal problem to relate any kind of abstract expressions to some concrete real matters. The solution to the problem is given by the fact that expressions E  of some language L never will be used in isolation! The usage of expressions is always connected to human actors using expressions as part of a language L which consists  together with the set of possible expressions E also with the built-in meaning function μ which can map expressions into internal structures IS which are related to perceptions of the surrounding empirical situation S. Although these internal structures are processed internally in highly complex manners and  are — as we know today — no 1-to-1 mappings of the surrounding empirical situation S, they are related to S and therefore every kind of expressions — even those with so-called abstract or universal concepts — can be mapped into something real if the human actors agree about such mappings!

Example:

Lets us have a look to another  example.

If we take the system of axioms AX as the following schema:  AX= {a+b=c}. This schema as such has no clear meaning. But if the experts interpret it as an operation ‘+’ with some arguments as part of a math theory then one can construct a simple (partial) model m  as follows: m={<1,2,3>, <2,3,5>}. The values are again given as  a set of symbols which as such must not ave a meaning but in common usage they will be interpreted as sets of numbers   which can satisfy the general concept of the equation.  In this secondary interpretation m is becoming  a logically true (partial) model for the axiom Ax, whose empirical meaning is still unclear.

It is conceivable that one is using this formalism to describe empirical facts like the description of a group of humans collecting some objects. Different people are bringing  objects; the individual contributions will be  reported on a sheet of paper and at the same time they put their objects in some box. Sometimes someone is looking to the box and he will count the objects of the box. If it has been noted that A brought 1 egg and B brought 2 eggs then there should according to the theory be 3 eggs in the box. But perhaps only 2 could be found. Then there would be a difference between the logically derived forecast of the theory 1+2 = 3  and the empirically measured value 1+2 = 2. If one would  define all examples of measurement a+b=c’ as contradiction in that case where we assume a+b=c as theoretically given and c’ ≠ c, then we would have with  ‘1+2 = 3′ & ~’1+2 = 3’ a logically derived contradiction which leads to the inconsistency of the assumed system. But in reality the usual reaction of the counting person would not be to declare the system inconsistent but rather to suggest that some unknown actor has taken against the agreed rules one egg from the box. To prove his suggestion he had to find this unknown actor and to show that he has taken the egg … perhaps not a simple task … But what will the next authority do: will the authority belief  the suggestion of the counting person or will the authority blame the counter that eventually he himself has taken the missing egg? But would this make sense? Why should the counter write the notes how many eggs have been delivered to make a difference visible? …

Thus to interpret some abstract expression with regard to some observable reality is not a principal problem, but it can eventually be unsolvable by purely practical reasons, leaving questions of empirical soundness open.

SOURCES

[1] Karl Popper, The Logic of Scientific Discovery, First published 1935 in German as Logik der Forschung, then 1959 in English by  Basic Books, New York (more editions have been published  later; I am using the eBook version of Routledge (2002))

 

 

THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 1

eJournal: uffmm.org
ISSN 2567-6458, 22.March – 23.March 2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

THE OKSIMO EVENT SPACE

The characterization of the oksimo software paradigm starts with an informal characterization  of the oksimo software event space.

EVENT SPACE

An event space is a space which can be filled up by observable events fitting to the species-specific internal processed environment representations [1], [2] here called internal environments [ENVint]. Thus the same external environment [ENV] can be represented in the presence of  10 different species  in 10 different internal formats. Thus the expression ‘environment’ [ENV] is an abstract concept assuming an objective reality which is common to all living species but indeed it is processed by every species in a species-specific way.

In a human culture the usual point of view [ENVhum] is simultaneous with all the other points of views [ENVa] of all the other other species a.

In the ideal case it would be possible to translate all species-specific views ENVa into a symbolic representation which in turn could then be translated into the human point of view ENVhum. Then — in the ideal case — we could define the term environment [ENV] as the sum of all the different species-specific views translated in a human specific language: ∑ENVa = ENV.

But, because such a generalized view of the environment is until today not really possible by  practical reasons we will use here for the beginning only expressions related to the human specific point of view [ENVhum] using as language an ordinary language [L], here  the English language [LEN]. Every scientific language — e.g. the language of physics — is understood here as a sub language of the ordinary language.

EVENTS

An event [EV] within an event space [ENVa] is a change [X] which can be observed at least from the  members of that species [SP] a which is part of that environment ENV which enables  a species-specific event space [ENVa]. Possibly there can be other actors around in the environment ENV from different species with their specific event space [ENVa] where the content of the different event spaces  can possible   overlap with regard to  certain events.

A behavior is some observable movement of the body of some actor.

Changes X can be associated with certain behavior of certain actors or with non-actor conditions.

Thus when there are some human or non-human  actors in an environment which are moving than they show a behavior which can eventually be associated with some observable changes.

CHANGE

Besides being   associated with observable events in the (species specific) environment the expression  change is understood here as a kind of inner state in an actor which can compare past (stored) states Spast with an actual state SnowIf the past and actual state differ in some observable aspect Diff(Spast, Snow) ≠ 0, then there exists some change X, or Diff(Spast, Snow) = X. Usually the actor perceiving a change X will assume that this internal structure represents something external to the brain, but this must not necessarily be the case. It is of help if there are other human actors which confirm such a change perception although even this does not guarantee that there really is a  change occurring. In the real world it is possible that a whole group of human actors can have a wrong interpretation.

SYMBOLIC COMMUNICATION AND MEANING

It is a specialty of human actors — to some degree shared by other non-human biological actors — that they not only can built up internal representations ENVint of the reality external to the  brain (the body itself or the world beyond the body) which are mostly unconscious, partially conscious, but also they can built up structures of expressions of an internal language Lint which can be mimicked to a high degree by expressions in the body-external environment ENV called expressions of an ordinary language L.

For this to work one  has  to assume that there exists an internal mapping from internal representations ENVint into the expressions of the internal language   Lint as

meaning : ENVint <—> Lint.

and

speaking: Lint —> L

hearing: Lint <— L

Thus human actors can use their ordinary language L to activate internal encodings/ decodings with regard to the internal representations ENVint  gained so far. This is called here symbolic communication.

NO SPEECH ACTS

To classify the occurrences of symbolic expressions during a symbolic communication  is a nearly infinite undertaking. First impressions of the unsolvability of such a classification task can be gained if one reads the Philosophical Investigations of Ludwig Wittgenstein. [5] Later trials from different philosophers and scientists  — e.g. under the heading of speech acts [4] — can  not fully convince until today.

Instead of assuming here a complete scientific framework to classify  occurrences of symbolic expressions of an ordinary language L we will only look to some examples and discuss these.

KINDS OF EXPRESSIONS

In what follows we will look to some selected examples of symbolic expressions and discuss these.

(Decidable) Concrete Expressions [(D)CE]

It is assumed here that two human actors A and B  speaking the same ordinary language L  are capable in a concrete situation S to describe objects  OBJ and properties PROP of this situation in a way, that the hearer of a concrete expression E can decide whether the encoded meaning of that expression produced by the speaker is part of the observable situation S or not.

Thus, if A and B are together in a room with a wooden  white table and there is a enough light for an observation then   B can understand what A is saying if he states ‘There is a white wooden table.

To understand means here that both human actors are able to perceive the wooden white table as an object with properties, their brains will transform these external signals into internal neural signals forming an inner — not 1-to-1 — representation ENVint which can further be mapped by the learned meaning function into expressions of the inner language Lint and mapped further — by the speaker — into the external expressions of the learned ordinary language L and if the hearer can hear these spoken expressions he can translate the external expressions into the internal expressions which can be mapped onto the learned internal representations ENVint. In everyday situations there exists a high probability that the hearer then can respond with a spoken ‘Yes, that’s true’.

If this happens that some human actor is uttering a symbolic expression with regard to some observable property of the external environment  and the other human actor does respond with a confirmation then such an utterance is called here a decidable symbolic expression of the ordinary language L. In this case one can classify such an expression  as being true. Otherwise the expression  is classified as being not true.

The case of being not true is not a simple case. Being not true can mean: (i) it is actually simply not given; (ii) it is conceivable that the meaning could become true if the external situation would be  different; (iii) it is — in the light of the accessible knowledge — not conceivable that the meaning could become true in any situation; (iv) the meaning is to fuzzy to decided which case (i) – (iii) fits.

Cognitive Abstraction Processes

Before we talk about (Undecidable) Universal Expressions [(U)UE] it has to clarified that the internal mappings in a human actor are not only non-1-to-1 mappings but they are additionally automatic transformation processes of the kind that concrete perceptions of concrete environmental matters are automatically transformed by the brain into different kinds of states which are abstracted states using the concrete incoming signals as a  trigger either to start a new abstracted state or to modify an existing abstracted state. Given such abstracted states there exist a multitude of other neural processes to process these abstracted states further embedded  in numerous  different relationships.

Thus the assumed internal language Lint does not map the neural processes  which are processing the concrete events as such but the processed abstracted states! Language expressions as such can never be related directly to concrete material because this concrete material  has no direct  neural basis.  What works — completely unconsciously — is that the brain can detect that an actual neural pattern nn has some similarity with a  given abstracted structure NN  and that then this concrete pattern nn  is internally classified as an instance of NN. That means we can recognize that a perceived concrete matter nn is in ‘the light of’ our available (unconscious) knowledge an NN, but we cannot argue explicitly why. The decision has been processed automatically (unconsciously), but we can become aware of the result of this unconscious process.

Universal (Undecidable) Expressions [U(U)E]

Let us repeat the expression ‘There is a white wooden table‘ which has been used before as an example of a concrete decidable expression.

If one looks to the different parts of this expression then the partial expressions ‘white’, ‘wooden’, ‘table’ can be mapped by a learned meaning function φ into abstracted structures which are the result of internal processing. This means there can be countable infinite many concrete instances in the external environment ENV which can be understood as being white. The same holds for the expressions ‘wooden’ and ‘table’. Thus the expressions ‘white’, ‘wooden’, ‘table’ are all related to abstracted structures and therefor they have to be classified as universal expressions which as such are — strictly speaking —  not decidable because they can be true in many concrete situations with different concrete matters. Or take it otherwise: an expression with a meaning function φ pointing to an abstracted structure is asymmetric: one expression can be related to many different perceivable concrete matters but certain members of  a set of different perceived concrete matters can be related to one and the same abstracted structure on account of similarities based on properties embedded in the perceived concrete matter and being part of the abstracted structure.

In a cognitive point of view one can describe these matters such that the expression — like ‘table’ — which is pointing to a cognitive  abstracted structure ‘T’ includes a set of properties Π and every concrete perceived structure ‘t’ (caused e.g. by some concrete matter in our environment which we would classify as a ‘table’) must have a ‘certain amount’ of properties Π* that one can say that the properties  Π* are entailed in the set of properties Π of the abstracted structure T, thus Π* ⊆ Π. In what circumstances some speaker-hearer will say that something perceived concrete ‘is’ a table or ‘is not’ a table will depend from the learning history of this speaker-hearer. A child in the beginning of learning a language L can perhaps call something   a ‘chair’ and the parents will correct the child and will perhaps  say ‘no, this is table’.

Thus the expression ‘There is a white wooden table‘ as such is not true or false because it is not clear which set of concrete perceptions shall be derived from the possible internal meaning mappings, but if a concrete situation S is given with a concrete object with concrete properties then a speaker can ‘translate’ his/ her concrete perceptions with his learned meaning function φ into a composed expression using universal expressions.  In such a situation where the speaker is  part of  the real situation S he/ she  can recognize that the given situation is an  instance of the abstracted structures encoded in the used expression. And recognizing this being an instance interprets the universal expression in a way  that makes the universal expression fitting to a real given situation. And thereby the universal expression is transformed by interpretation with φ into a concrete decidable expression.

SUMMING UP

Thus the decisive moment of turning undecidable universal expressions U(U)E into decidable concrete expressions (D)CE is a human actor A behaving as a speaker-hearer of the used  language L. Without a speaker-hearer every universal expressions is undefined and neither true nor false.

makedecidable :  S x Ahum x E —> E x {true, false}

This reads as follows: If you want to know whether an expression E is concrete and as being concrete is  ‘true’ or ‘false’ then ask  a human actor Ahum which is part of a concrete situation S and the human actor shall  answer whether the expression E can be interpreted such that E can be classified being either ‘true’ or ‘false’.

The function ‘makedecidable()’ is therefore  the description (like a ‘recipe’) of a real process in the real world with real actors. The important factors in this description are the meaning functions inside the participating human actors. Although it is not possible to describe these meaning functions directly one can check their behavior and one can define an abstract model which describes the observable behavior of speaker-hearer of the language L. This is an empirical model and represents the typical case of behavioral models used in psychology, biology, sociology etc.

SOURCES

[1] Jakob Johann Freiherr von Uexküll (German: [ˈʏkskʏl])(1864 – 1944) https://en.wikipedia.org/wiki/Jakob_Johann_von_Uexk%C3%BCll

[2] Jakob von Uexküll, 1909, Umwelt und Innenwelt der Tiere. Berlin: J. Springer. (Download: https://ia802708.us.archive.org/13/items/umweltundinnenwe00uexk/umweltundinnenwe00uexk.pdf )

[3] Wikipedia EN, Speech acts: https://en.wikipedia.org/wiki/Speech_act

[4] Ludwig Josef Johann Wittgenstein ( 1889 – 1951): https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

[5] Ludwig Wittgenstein, 1953: Philosophische Untersuchungen [PU], 1953: Philosophical Investigations [PI], translated by G. E. M. Anscombe /* For more details see: https://en.wikipedia.org/wiki/Philosophical_Investigations */

HMI Analysis for the CM:MI paradigm. Part 2. Problem and Vision

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, February 27-March 16, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 16, 2021 (minor corrections)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 2: Problem & Vision

Context

This text is preceded by the following texts:

Introduction

Before one starts the HMI analysis  some stakeholder  — in our case are the users stakeholder as well as  users in one role —  have to present some given situation — classifiable as a ‘problem’ — to depart from and a vision as the envisioned goal to be realized.

Here we give a short description of the problem for the CM:MI paradigm and the vision, what should be gained.

Problem: Mankind on the Planet Earth

In this project  the mankind  on the planet earth is  understood as the primary problem. ‘Mankind’ is seen here  as the  life form called homo sapiens. Based on the findings of biological evolution one can state that the homo sapiens has — besides many other wonderful capabilities — at least two extraordinary capabilities:

Outside to Inside

The whole body with the brain is  able to convert continuously body-external  events into internal, neural events. And  the brain inside the body receives many events inside the body as external events too. Thus in the brain we can observe a mixup of body-external (outside 1) and body-internal events (outside 2), realized as set of billions of neural processes, highly interrelated.  Most of these neural processes are unconscious, a small part is conscious. Nevertheless  these unconscious and conscious events are  neurally interrelated. This overall conversion from outside 1 and outside 2 into neural processes  can be seen as a mapping. As we know today from biology, psychology and brain sciences this mapping is not a 1-1 mapping. The brain does all the time a kind of filtering — mostly unconscious — sorting out only those events which are judged by the brain to be important. Furthermore the brain is time-slicing all its sensory inputs, storing these time-slices (called ‘memories’), whereby these time-slices again are no 1-1 copies. The storing of time-sclices is a complex (unconscious) process with many kinds of operations like structuring, associating, abstracting, evaluating, and more. From this one can deduce that the content of an individual brain and the surrounding reality of the own body as well as the world outside the own body can be highly different. All kinds of perceived and stored neural events which can be or can become conscious are  here called conscious cognitive substrates or cognitive objects.

Inside to Outside (to Inside)

Generally it is known that the homo sapiens can produce with its body events which have some impact on the world outside the body.  One kind of such events is the production of all kinds of movements, including gestures, running, grasping with hands, painting, writing as well as sounds by his voice. What is of special interest here are forms of communications between different humans, and even more specially those communications enabled by the spoken sounds of a language as well as the written signs of a language. Spoken sounds as well as written signs are here called expressions associated with a known language. Expressions as such have no meaning (A non-speaker of a language L can hear or see expressions of the language L but he/she/x  never will understand anything). But as everyday experience shows nearly every child  starts very soon to learn which kinds of expressions belong to a language and with what kinds of shared experiences they can be associated. This learning is related to many complex neural processes which map expressions internally onto — conscious and unconscious — cognitive objects (including expressions!). This mapping builds up an internal  meaning function from expressions into cognitive objects and vice versa. Because expressions have a dual face (being internal neural structures as well as being body-outside events by conversions from the inside to body-outside) it is possible that a homo sapiens  can transmit its internal encoding of cognitive objects into expressions from his  inside to the outside and thereby another homo sapiens can perceive the produced outside expression and  can map this outside expression into an intern expression. As far as the meaning function of of the receiving homo sapiens  is sufficiently similar to the meaning function of  the sending homo sapiens there exists some probability that the receiving homo sapiens can activate from its memory cognitive objects which have some similarity with those of  the sending  homo sapiens.

Although we know today of different kinds of animals having some form of language, there is no species known which is with regard to language comparable to  the homo sapiens. This explains to a large extend why the homo sapiens population was able to cooperate in a way, which not only can include many persons but also can stretch through long periods of time and  can include highly complex cognitive objects and associated behavior.

Negative Complexity

In 2006 I introduced the term negative complexity in my writings to describe the fact that in the world surrounding an individual person there is an amount of language-encoded meaning available which is beyond the capacity of an  individual brain to be processed. Thus whatever kind of experience or knowledge is accumulated in libraries and data bases, if the negative complexity is higher and higher than this knowledge can no longer help individual persons, whole groups, whole populations in a constructive usage of all this. What happens is that the intended well structured ‘sound’ of knowledge is turned into a noisy environment which crashes all kinds of intended structures into nothing or badly deformed somethings.

Entangled Humans

From Quantum Mechanics we know the idea of entangled states. But we must not dig into quantum mechanics to find other phenomena which manifest entangled states. Look around in your everyday world. There exist many occasions where a human person is acting in a situation, but the bodily separateness is a fake. While sitting before a laptop in a room the person is communicating within an online session with other persons. And depending from the  social role and the  membership in some social institution and being part of some project this person will talk, perceive, feel, decide etc. with regard to the known rules of these social environments which are  represented as cognitive objects in its brain. Thus by knowledge, by cognition, the individual person is in its situation completely entangled with other persons which know from these roles and rules  and following thereby  in their behavior these rules too. Sitting with the body in a certain physical location somewhere on the planet does not matter in this moment. The primary reality is this cognitive space in the brains of the participating persons.

If you continue looking around in your everyday world you will probably detect that the everyday world is full of different kinds of  cognitively induced entangled states of persons. These internalized structures are functioning like protocols, like scripts, like rules in a game, telling everybody what is expected from him/her/x, and to that extend, that people adhere to such internalized protocols, the daily life has some structure, has some stability, enables planning of behavior where cooperation between different persons  is necessary. In a cognitively enabled entangled state the individual person becomes a member of something greater, becoming a super person. Entangled persons can do things which usually are not possible as long you are working as a pure individual person.[1]

Entangled Humans and Negative Complexity

Although entangled human persons can principally enable more complex events, structures,  processes, engineering, cultural work than single persons, human entanglement is still limited by the brain capacities as well as by the limits of normal communication. Increasing the amount of meaning relevant artifacts or increasing the velocity of communication events makes things even more worse. There are objective limits for human processing, which can run into negative complexity.

Future is not Waiting

The term ‘future‘ is cognitively empty: there exists nowhere an object which can  be called ‘future’. What we have is some local actual presence (the Now), which the body is turning into internal representations of some kind (becoming the Past), but something like a future does not exist, nowhere. Our knowledge about the future is radically zero.

Nevertheless, because our bodies are part of a physical world (planet, solar system, …) and our entangled scientific work has identified some regularities of this physical world which can be bused for some predictions what could happen with some probability as assumed states where our clocks are showing a different time stamp. But because there are many processes running in parallel, composed of billions of parameters which can be tuned in many directions, a really good forecast is not simple and depends from so many presuppositions.

Since the appearance of homo sapiens some hundred thousands years ago in Africa the homo sapiens became a game changer which makes all computations nearly impossible. Not in the beginning of the appearance of the homo sapiens, but in the course of time homo sapiens enlarged its number, improved its skills in more and more areas, and meanwhile we know, that homo sapiens indeed has started to crash more and more  the conditions of its own life. And principally thinking points out, that homo sapiens could even crash more than only planet earth. Every exemplar of a homo sapiens has a built-in freedom which allows every time to decide to behave in a different way (although in everyday life we are mostly following some protocols). And this built-in freedom is guided by actual knowledge, by emotions, and by available resources. The same child can become a great musician, a great mathematician, a philosopher, a great political leader, an engineer, … but giving the child no resources, depriving it from important social contexts,  giving it the wrong knowledge, it can not manifest its freedom in full richness. As human population we need the best out of all children.

Because  the processing of the planet, the solar system etc.  is going on, we are in need of good forecasts of possible futures, beyond our classical concepts of sharing knowledge. This is where our vision enters.

VISION: DEVELOPING TOGETHER POSSIBLE FUTURES

To find possible and reliable shapes of possible futures we have to exploit all experiences, all knowledge, all ideas, all kinds of creativity by using maximal diversity. Because present knowledge can be false — as history tells us –, we should not rule out all those ideas, which seem to be too crazy at a first glance. Real innovations are always different to what we are used to at that time. Thus the following text is a first rough outline of the vision:

  1. Find a format
  2. which allows any kinds of people
  3. for any kind of given problem
  4. with at least one vision of a possible improvement
  5. together
  6. to search and to find a path leading from the given problem (Now) to the envisioned improved state (future).
  7. For all needed communication any kind of  everyday language should be enough.
  8. As needed this everyday language should be extendable with special expressions.
  9. These considerations about possible paths into the wanted envisioned future state should continuously be supported  by appropriate automatic simulations of such a path.
  10. These simulations should include automatic evaluations based on the given envisioned state.
  11. As far as possible adaptive algorithms should be available to support the search, finding and identification of the best cases (referenced by the visions)  within human planning.

REFERENCES or COMMENTS

[1] One of the most common entangled state in daily life is the usage of normal language! A normal language L works only because the rules of usage of this language L are shared by all speaker-hearer of this language, and these rules are explicit cognitive structures (not necessarily conscious, mostly unconscious!).

Continuation

Yes, it will happen 🙂 Here.

 

 

 

 

 

 

From Men to Philosophy, to Empirical Sciences, to Real Systems. A Conceptual Network

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, Nov 8, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

DAILY LIFE

In daily life we experience today a multitude of perspectives in all areas. While our bodies are embedded in real world scenarios our minds are filled up with perceptions, emotions, ideas, memories of all kinds. What links us to each other is language. Language gives us the power to overcome the isolation of our individual brains located in  individual bodies. And by this, our language, we can distribute and share the inner states of our brains, pictures of life as we see it. And it is this open web of expressions which spreads to the air, to the newspapers and books, to the data bases in which the different views of the world are manifested.

SORTING IDEAS SCIENTIFICALLY

While our bodies touching reality outside the bodies, our brains are organizing different kinds of order, finally expressed — only some part of it — in expressions of some language. While our daily talk is following mostly automatically some naive patterns of ordering does empirical science try to order the expressions more consciously following some self-defined rules called methods, called scientific procedures to enable transparency, repeatability, decidability of the hypothesized truth of is symbolic structures.

But because empirical science wants to be rational by being transparent, repeatable, measurable, there must exist an open discourse which is dealing with science as an object: what are the ingredients of science? Under which conditions can science work? What does it mean to ‘measure’ something? And other questions like these.

PHILOSOPHY OF SCIENCE

That discipline which is responsible for such a discourse about science is not science itself but another instance of thinking and speaking which is called Philosophy of Science.  Philosophy of science deals with all aspects of science from the outside of science.

PHILOSOPHY

Philosophy of Science dealing with empirical sciences as an object has a special focus and  it can be reflected too from another point of view dealing with Philosophy of Science as an object. This relationship reflects a general structure of human thinking: every time we have some object of our thinking we are practicing a different point of view talking about the actual object. While everyday thinking leads us directly to Philosophy as our active point of view  an object like empirical science does allow an intermediate point of view called Philosophy of Science leading then to Philosophy again.

Philosophy is our last point of reflection. If we want to reflect the conditions of our philosophical thinking than our thinking along with the used language tries to turn back on itself  but this is difficult. The whole history of Philosophy shows this unending endeavor as a consciousness trying to explain itself by being inside itself. Famous examples of this kind of thinking are e.g. Descartes, Kant, Fichte, Schelling, Hegel, and Husserl.

These examples show there exists no real way out.

PHILOSOPHY ENHANCED BY EMPIRICAL SCIENCES ? !

At a first glance it seems contradictory that Philosophy and Empirical Sciences could work ‘hand in hand’. But history has shown us, that this is to a certain extend possible; perhaps it is a major break through for the philosophical understanding of the world, especially also of men themselves.

Modern empirical sciences like Biology and Evolutionary Biology in cooperation with many other empirical disciplines have shown us, that the actual biological systems — including homo sapiens — are products of a so-called evolutionary process. And supported by modern empirical disciplines like Ethology, Psychology, Physiology, and Brain Sciences we could gain some first knowledge how our body works, how our brain, how our observable behavior is connected to this body and its brain.

While  Philosopher like Kant or Hegel could  investigate their own thinking only from the inside of their consciousness, the modern empirical sciences can investigate the human thinking from the outside. But until now there is a gap: We have no elaborated theory about the relationship between the inside of the consciousness and the outside knowledge about body and brain.

Thus what we need is a hybrid  theory mapping the inside to the outside and revers.  There are some first approaches headed under labels like Neuro-Psychology or Neuro-Phenomenology, but these are not yet completely clarified in their methodology in their relationship to Philosophy.

If one can describe to some extend the Phenomena of the consciousness from the inside as well as the working of the brain translated to its behavioral properties, then one can start first mappings like those, which have been used in this blog to establish  the theory for the komega software.

SOCIOLOGY

Sociology is only one empirical discipline  between many others. Although the theory of this blog is using many disciplines simultaneously Sociology is of special interest because it is that kind of empirical disciplines which is explicitly dealing with human societies with subsystems called cities.

The komega software which we are developing is understood here as enabling a system of interactions as part of a city understood as a system. If we understand Sociology as an empirical science according to some standard view of empirical science then it is possible to describe a city as an input-output system whose dynamics can become influenced by this komega software if citizens are using this software as part of their behavior.

STANDARD VIEW OF EMPIRICAL SCIENCE

Without some kind of a Standard View of Empirical Science it is not possible to design a discipline — e.g. Sociology — as an empirical discipline. Although it seems that everybody thinks that we have  such a ‘Standard View of Empirical Science’, in the real world of today one must state that we do not have such a view. In the 80ties of the20th century it looked for some time as if  we have it, but if you start searching the papers, books and schools today You will perceive a very fuzzy field called Philosophy of Science and within the so-called empirical sciences you will not found any coherent documented view of a ‘Standard View of Empirical Science’.

Because it is difficult to see how a process can  look like which enables such a ‘Standard View of Empirical Science’ again, we will try to document the own assumptions for our theory as good as possible. Inevitably this will mostly  have the character of only a ‘fragment’, an ‘incomplete outline’. Perhaps there will again be a time where sciences is back to have a commonly accepted view how  science should look like to be called empirical science.

 

 

 

 

KOMEGA REQUIREMENTS No.3, Version 1. Basic Application Scenario – Editing S

ISSN 2567-6458, 26.July – 12.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF DOCUMENT

requirements-no3-v1-12Aug2020 (Last update: August 12, 2020)

REVIEWING TARSKI’s SEMANTIC and MODEL CONCEPT. 85 Years Later …

eJournal: uffmm.org, ISSN 2567-6458,
8.August  2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

85 Years Later

The two papers of Tarski, which I do discuss here, have been published in 1936. Occasionally I have already read these paper many years ago but at that time I could not really work with these papers. Formally they seemed to be ’correct’, but in the light of my ’intuition’ the message appeared to me somehow ’weird’, not really in conformance with my experience of how knowledge and language are working in the real world. But at that time I was not able to explain my intuition to myself sufficiently. Nevertheless, I kept these papers – and some more texts of Tarski – in my bookshelves for an unknown future when my understanding would eventually change…
This happened the last days.

review-tarski-semantics-models-v1-printed

BACK TO REVIEWING SECTION

Here

 

The Observer-World Framework. Part of Case-Studies Phase 1

Observer-World Framework. Part of Case-Studies Phase 1

ISSN 2567-6458, 16.July 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

To work within the Generative Cultural Anthropology [GCA] Theory one needs a practical tool which allows the construction of dynamic world models, the storage of these models, their usage within a simulation game environment together with an evaluation tool. Basic requirements for such
a tool will be described here with the example called a Hybrid Simulation Game Environment [HSGE]. To prepare a simulation game one needs an iterative development process which follows some general assumptions. In this paper the subject of discussion is the observer-world-framework.

PDF:observer-world-framework-v3 (Corrected Version UTC 08:40 + 2 for the author)

Go back to the Case-Study Collection.

CASE STUDY – SIMULATION GAMES – PHASE 1 – Iterative Development of a Dynamic World Model

ISSN 2567-6458, 19.-30.June 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

To work within the Generative Cultural Anthropology [GCA] Theory one needs a practical tool which allows the construction of dynamic world models, the storage of these models, their usage within a simulation game environment together with an evaluation tool.  To prepare a simulation game within a Hybrid Simulation Game Environment [HSGE] one needs an
iterative development process which is described below.

CASE STUDY – SIMULATION GAMES – PHASE 1: Iterative Development of a Dynamic World Model – Part of the Generative Cultural Anthropology [GCA] Theory

Contents
1 Overview of the Whole Development Process
2 Cognitive Aspects of Symbolic Expressions
3 Symbolic Representations and Transformations
4 Abstract-Concrete Concepts
5 Implicit Structures Embedded in Experience
5.1 Example 1

daai-analysis-simgame-development-v3 (June-30, 2020)

daai-analysis-simgame-development-v2 (June-20, 2020)

daai-analysis-simgame-development-v1 (June-19,2020)

Going back to the section Case Studies.