Category Archives: HMI

HMI ANALYSIS, Part 4: Tool based Actor Story Development with Testing and Gaming

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, March 3-4, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 4, 2021, 07:49h (Minor corrections; relating to the UN SDGs)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 4: Tool based Actor Story Development with Testing and Gaming

Context

This text is preceded by the following texts:

INFO GRAPH

Overview about different scenarios which will be possible for the development, simulation, testing and gaming of actor stories using the oksimo software tool

Introduction

In the preceding post it has been explained, how one can format an actor story [AS] as a theory in the  format  of  an Evaluated Theory Tε with Algorithmic Intelligence:   Tε,α=<M,∑,ε,α>.

In the following text it will be explained which kinds of different scenarios will be possible to elaborate, to simulate, to test, and to enable gaming with  an actor story theory by using the oksimo software tool.

UNIVERSAL TEAM

The classical distinctions between certain types of managers, special experts and the rest of the world is given up here in favor of a stronger generalization: everybody is a potential expert with regard to a future, which nobody knows. This is emphasized by the fact, that everybody can use its usual mother tongue, a normal language, every language. Nothing more is needed.

BASIC MODELS (S, X)

As minimal elements for all possible applications it is assumed here that the experts define at least a given situation (state) [S] and a set of change rules [X].

The given state S is  either (i)  taken as it is or (ii)  as a state which  should be improved. In both cases the initial state S is called the start state [S0].

The change rules X describe possible changes which transform a given state S into a changed successor state S’.

A pair of S and X as (S,X) is called a basic model M(S,X). One can define as many models as one wants.

A DIRECTION BY A VISION V

A vision [V] can describe a possible state SV  in an assumed future. If such a state SV is given, then this state becomes a goal state SGoal In this case  we assume V ≠ 0. If no explicit goal is given, then we assume V = 0.

DEVELOPMENT BY GOALS

If a vision is given (V ≠ 0), then the vision can be used to induce a direction which can/ shall be approached by creating a set X, which enables the generation of a sequence of states with the start state S0 as first state followed by successor state Si until the goal state SGoal has been reached or at least it holds that the goal state is a subset of the reached state: SGoalSn.

It is possible to use many basic models M(S,X) in parallel and for each model Mi one can define a different goal Vi (the typical situation in a pluralistic society).

Thus there can be many basic theories T(M,V) in parallel.

STEADY STATES (V = 0)

If no explicit visions are defined (V = 0) then every direction of change is allowed. A basic steady state theory T(M,V) with V = 0 can   be written as T(M,0). Whether such a case can be of interest is not clear at the moment.

BASIC INTERACTION PATTERNS

The following interaction modes are assumed as typical cases:

  1. N-1: Within an online session an interactive webpage with the oksimo software is active and the whole group can interact with the oksimo software tool.
  2. N-N-1: N-many participants can individually login into the interactive oksimo website and being logged in they can collaborate within the oksimo software with one project.
  3. N-N-N: N-many participants can individually login into the interactive oksimo website and there everybody can run its own process or can collaborate in various ways.

The default case is case (1). The exact dates for the availability of modes (2) – (3) depends from how fast the roadmap can be realized.

BASIC APPLICATIONS
  1. Exploring Simulation-Based Development [ESBD] (V ≠ 0): If the main goal is to find a path from a given state today S (Now) to an envisioned state V in the future then one has  to collect appropriate change rules X to approach the final goal state SGoal better and better. Activating the simulator ∑ during search and construction phase at will can be of great help, especially if the documents (S, X, V) are becoming more and more complex.
  2. Embedded Simulation-Based  Testing [ESBT] (V ≠ 0): If a basic  actor story theory T(M,) is given with a given goal (V ≠ 0) then it is of great help if the simulation is done in interactive mode where the simulator is not applying the change rules by itself but by asking different logged in users which rule they want to apply and how. These tests show not only which kinds of errors will occur but they can also show during n-many repetitions to which degree an user  can learn to behave task-conform. If the tests will not show the expected outcomes then this can point  to possible deficiencies of the software as well to specialties of the user.
  3. Embedded Simulation-Based Gaming [ESBTG] (V ≠ 0):  The case of gaming is partially  different to the case of testing.  Although it is assumed here too that at least one vision (goal) is given, it is additionally assumed that  there exists  a competition between different players or different teams. Different to testing exists in gaming according to the goal(s) the role of a winner: that player/ team which has reached a defined  goal state before the other player/ teams,  has won. As a side-effect of gaming one can also evaluate the playing environment and give some feedback to the developers.
ALGORITHMIC INTELLIGENCE
  1. Case ESBD, T(S,X,V,∑,ε,α): Because a normal simulation with the simulator always does  produce only one path from the start state to the goal state it is desirable to have an algorithm α which would run on demand as many times as wanted and thereby the algorithm α would search for all possible paths and at the same time it would look for those derivations, where the goal state satisfies with  ε certain special requirements. Thus the result from the application of α onto a given model M with the vision V would generate the set SV* of all those final states which satisfy the special requirements.
  2. Case ESBG, T(S,X,V,∑,ε,α):   The case of gaming allows at least three kinds of interesting applications for algorithmic intelligence: (i) Introduce non-biological players with learning capabilities which can act simultaneously with the biological players; (ii) Introduce non-biological players with learning capabilities which have to learn how to support, to assist, to train biological player. This second case addresses the challenging task to develop algorithmic tutors for several kinds of learning tasks. (iii) Another variant of case (ii) is to enable the development of a personal algorithmic assistant who works only with one person on a long-term basis.

The kinds of algorithmic Intelligence in (2)(i)-(iii) are different to the  mentioned algorithmic intelligence α in (1).

TYPES OF ACTORS

As the default standard case of an actor it is assumed that there are biological actors, usually human persons, which will not be analyzed with their inner structure [IS]. While the behavior of every system — and  therefore any biological system too — can be described with a behavior function φ: I x IS —> IS x O (if one has all the necessary knowledge), in the default case of biological systems  no behavior function φ is specified, φ = 0. During interactive simulations biological systems act by themselves.

If non-biological actors are used — e.g. automata with a certain machine program (an algorithm) — then one can use these only if one has a fully specified behavior function φ. From this follows that a  change rule which is associated with a non-biological actor has in its Eplus and in its Eminus part not a concrete expression but a variable, which will be computed during the simulation by the non-biological actor depending from its input and its behavior function φ: φ(input)IS=(Eplus, Eminus)IS.

FINAL COMMENT

Everybody who has read the parts (1) – (4) has now a general knowledge about the motivation to develop the oksimo software tool to support human kind to have a better communication and thinking of possible futures and a first understanding (hopefully :-)) how this tool can work. Reading the UN sustainable development goals [SDGs] [1] you will learn, that the SDG4 (Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all) is fundamental to all other SDGs. The oksimo software tool is one tool to be of help to reach these goals.

REFERENCES

[1] The 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, provides a shared blueprint for peace and prosperity for people and the planet, now and into the future. At its heart are the 17 Sustainable Development Goals (SDGs), which are an urgent call for action by all countries – developed and developing – in a global partnership. They recognize that ending poverty and other deprivations must go hand-in-hand with strategies that improve health and education, reduce inequality, and spur economic growth – all while tackling climate change and working to preserve our oceans and forests. See PDF: https://sdgs.un.org/sites/default/files/publication/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf

[2] UN, SDG4, PDF, Argumentation why the SDG4 ist fundamental for all other SDGs: https://sdgs.un.org/sites/default/files/publications/2275sdbeginswitheducation.pdf

 

 

 

 

 

 

 

 

HMI Analysis for the CM:MI paradigm. Part 3. Actor Story and Theories

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, March 2, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 2, 2021 13:59h (Minor corrections)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 3: Actor Story and  Theories

Context

This text is preceded by the following texts:

Introduction

Having a vision is that moment  where something really new in the whole universe is getting an initial status in some real brain which can enable other neural events which  can possibly be translated in bodily events which finally can change the body-external outside world. If this possibility is turned into reality than the outside world has been changed.

When human persons (groups of homo sapiens specimens) as experts — here acting as stakeholder and intended users as one but in different roles! — have stated a problem and a vision document, then they have to translate these inevitably more fuzzy than clear ideas into the concrete terms of an everyday world, into something which can really work.

To enable a real cooperation  the experts have to generate a symbolic description of their vision (called specification) — using an everyday language, possibly enhanced by special expressions —  in a way that  it can became clear to the whole group, which kind of real events, actions and processes are intended.

In the general case an engineering specification describes concrete forms of entanglements of human persons which enable  these human persons to cooperate   in a real situation. Thereby the translation of  the vision inside the brain  into the everyday body-external reality happens. This is the language of life in the universe.

WRITING A STORY

To elaborate a usable specification can metaphorically be understood  as the writing of a new story: which kinds of actors will do something in certain situations, what kinds of other objects, instruments etc. will be used, what kinds of intrinsic motivations and experiences are pushing individual actors, what are possible outcomes of situations with certain actors, which kind of cooperation is  helpful, and the like. Such a story is  called here  Actor Story [AS].

COULD BE REAL

An Actor Story must be written in a way, that all participating experts can understand the language of the specification in a way that   the content, the meaning of the specification is either decidable real or that it eventually can become real.  At least the starting point of the story should be classifiable as   being decidable actual real. What it means to be decidable actual real has to be defined and agreed between the participating experts before they start writing the Actor Story.

ACTOR STORY [AS]

An Actor Story assumes that the described reality is classifiable as a set of situations (states) and  a situation as part of the Actor Story — abbreviated: situationAS — is understood  as a set of expressions of some everyday language. Every expression being part of an situationAS can be decided as being real (= being true) in the understood real situation.

If the understood real situation is changing (by some event), then the describing situationAS has to be changed too; either some expressions have to be removed or have to be added.

Every kind of change in the real situation S* has to be represented in the actor story with the situationAS S symbolically in the format of a change rule:

X: If condition  C is satisfied in S then with probability π  add to S Eplus and remove from  S Eminus.

or as a formula:

S’π = S + Eplus – Eminus

This reads as follows: If there is an situationAS S and there is a change rule X, then you can apply this change rule X with probability π onto S if the condition of X is satisfied in S. In that case you have to add Eplus to S and you have to remove Eminus from S. The result of these operations is the new (successor) state S’.

The expression C is satisfied in S means, that all elements of C are elements of S too, written as C ⊆ S. The expression add Eplus to S means, that the set Eplus is unified with the set S, written as Eplus ∪ S (or here: Eplus + S). The expression remove Eminus from S means, that the set Eminus is subtracted from the set S, written as S – Eminus.

The concept of apply change rule X to a given state S resulting in S’ is logically a kind of a derivation. Given S,X you will derive by applicating X the new  S’. One can write this as S,X ⊢X S’. The ‘meaning’ of the sign ⊢  is explained above.

Because every successor state S’ can become again a given state S onto which change rules X can be applied — written shortly as X(S)=S’, X(S’)=S”, … — the repeated application of change rules X can generate a whole sequence of states, written as SQ(S,X) = <S’, S”, … Sgoal>.

To realize such a derivation in the real world outside of the thinking of the experts one needs a machine, a computer — formally an automaton — which can read S and X documents and can then can compute the derivation leading to S’. An automaton which is doing such a job is often called a simulator [SIM], abbreviated here as ∑. We could then write with more information:

S,X ⊢ S’

This will read: Given a set S of many states S and a set X of change rules we can derive by an actor story simulator ∑ a successor state S’.

A Model M=<S,X>

In this context of a set S and a set of change rules X we can speak of a model M which is defined by these two sets.

A Theory T=<M,>

Combining a model M with an actor story simulator enables a theory T which allows a set of derivations based on the model, written as SQ(S,X,⊢) = <S’, S”, … Sgoal>. Every derived final state Sgoal in such a derivation is called a theorem of T.

An Empirical Theory Temp

An empirical theory Temp is possible if there exists a theory T with a group of experts which are using this theory and where these experts can interpret the expressions used in theory T by their built-in meaning functions in a way that they always can decide whether the expressions are related to a real situation or not.

Evaluation [ε]

If one generates an Actor Story Theory [TAS] then it can be of practical importance to get some measure how good this theory is. Because measurement is always an operation of comparison between the subject x to be measured and some agreed standard s one has to clarify which kind of a standard for to be good is available. In the general case the only possible source of standards are the experts themselves. In the context of an Actor Story the experts have agreed to some vision [V] which they think to be a better state than a  given state S classified as a problem [P]. These assumptions allow a possible evaluation of a given state S in the ‘light’ of an agreed vision V as follows:

ε: V x S —> |V ⊆ S|[%]
ε(V,S) = |V ⊆ S|[%]

This reads as follows: the evaluation ε is a mapping from the sets V and S into the number of elements from the set V included in the set S converted in the percentage of the number of elements included. Thus if no  element of V is included in the set S then 0% of the vision is realized, if all elements are included then 100%, etc. As more ‘fine grained’ the set V is as more ‘fine grained’  the evaluation can be.

An Evaluated Theory Tε=<M,,ε>

If one combines the concept of a  theory T with the concept of evaluation ε then one can use the evaluation in combination with the derivation in the way that every  state in a derivation SQ(S,X,⊢) = <S’, S”, … Sgoal> will additionally be evaluated, thus one gets sequences of pairs as follows:

SQ(S,X,⊢∑,ε) = <(S’,ε(V,S’)), (S”,ε(V,S”)), …, (Sgoal, ε(V,Sgoal))>

In the ideal case Sgoal is evaluated to 100% ‘good’. In real cases 100% is only an ideal value which usually will only  be approximated until some threshold.

An Evaluated Theory Tε with Algorithmic Intelligence Tε,α=<M,,ε,α>

Because every theory defines a so-called problem space which is here enhanced by some evaluation function one can add an additional operation α (realized by an algorithm) which can repeat the simulator based derivations enhanced with the evaluations to identify those sets of theorems which are qualified as the best theorems according to some criteria given. This operation α is here called algorithmic intelligence of an actor story AS]. The existence of such an algorithmic intelligence of an actor story [αAS] allows the introduction of another derivation concept:

S,X ⊢∑,ε,α S* ⊆  S’

This reads as follows: Given a set S and a set X an evaluated theory with algorithmic intelligence Tε,α can derive a subset S* of all possible theorems S’ where S* matches certain given criteria within V.

WHERE WE ARE NOW

As it should have become clear now the work of HMI analysis is the elaboration of a story which can be done in the format of different kinds of theories all of which can be simulated and evaluated. Even better, the only language you have to know is your everyday language, your mother tongue (mathematics is understood here as a sub-language of the everyday language, which in some special cases can be of some help). For this theory every human person — in all ages! — can be a valuable  colleague to help you in understanding better possible futures. Because all parts of an actor story theory are plain texts, everybody ran read and understand everything. And if different groups of experts have investigated different  aspects of a common field you can merge all texts by only ‘pressing a button’ and you will immediately see how all these texts either work together or show discrepancies. The last effect is a great opportunity  to improve learning and understanding! Together we represent some of the power of life in the universe.

CONTINUATION

See here.

 

 

 

 

 

 

 

 

HMI Analysis for the CM:MI paradigm. Part 1

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, February 25, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Last change: March 16, 2021 (Some minor corrections)
HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 1
Introduction

Since January 2021 an intense series of posts has been published how the new ideas manifested in the new software published in this journal  can adequately be reflected in the DAAI theoretical framework. Because these ideas included in the beginning parts of philosophy, philosophy of science, philosophy of engineering, these posts have been first published in the German Blog of the author (cognitiveagent.org). This series of posts started with an online lecture for students of the University of Leipzig together with students of the ‘Hochschule für Technik, Wirtschaft und Kultur (HTWK)’ January 12, 2021.  Here is the complete list of posts:

In what follows in this text is an English version of the following 5 posts. This is not a 1-to-1 translation but rather a new version:

HMI Analysis as Part of Systems Engineering
HMI analysis as pat of systems engineering illustrated with the oksimo software
HMI analysis for the CM:MI paradigm illustrated with the oksimo software concept

As described in the original DAAI theory paper the whole topic of HMI is here understood as a job within the systems engineering paradigm.

The specification process is a kind of a ‘test’ whether the DAAI format of the HMI analysis works with this new  application too.

To remember, the main points of the integrated engineering concept are the following ones:

  1. A philosophical  framework (Philosophy of Science, Philosophy of Engineering, …), which gives the fundamentals for such a process.
  2. The engineering process as such where managers and engineers start the whole process and do it.
  3. After the clarification of the problem to be solved and a minimal vision, where to go, it is the job of the HMI analysis to clarify which requirements have to be fulfilled, to find an optimal solution for the intended product/ service. In modern versions of the HMI analysis substantial parts of the context, i.e. substantial parts of the surrounding society, have to be included in the analysis.
  4. Based on the HMI analysis  in  the logical design phase a mathematical structure has to be identified, which integrates all requirements sufficiently well. This mathematical structure has to be ‘map-able’ into a set of algorithms written in  appropriate programming languages running on  an appropriate platform (the mentioned phases Problem, Vision, HMI analysis, Logical Design are in reality highly iterative).
  5. During the implementation phase the algorithms will be translated into a real working system.
Which Kinds of Experts?

While the original version of the DAAI paper is assuming as ‘experts’ only the typical manager and engineers of an engineering process including all the typical settings, the new extended version under the label CM:MI (Collective Man-Machine Intelligence) has been generalized to any kind of human person as an expert, which allows a maximum of diversity. No one is the ‘absolute expert’.

Collective Intelligence

As ‘intelligence’ is understood here the whole of knowledge, experience, and motivations which can be the moving momentum inside of a human person. As ‘collective’  is meant  the situation, where more than one person is communicating with other persons to share it’s intelligence.

Man-Machine Symbiosis

Today there are discussions going around  about the future of man and (intelligent) machines. Most of these discussions are very weak because they are lacking clear concepts of intelligent machines as well of what is a human person. In the CM:MI paradigm the human person (together with all other biological systems)  is seen at the center of the future  (by  reasons based on modern theories of biological evolution) and the  intelligent machines are seen as supporting devices (although it is assumed here to use ‘strong’ intelligence compared to the actual ‘weak’ machine intelligence today).

CM:MI by Design

Although we know, that groups of many people are ‘in principal’ capable of sharing intelligence to define problems, visions, constructing solutions, testing the solutions etc., we know too, that the practical limits of the brains and the communication are quite narrow. For special tasks a computer can be much, much better. Thus the CM:MI paradigm provides an environment for groups of people to do the shared planning and testing in a new way, only using normal language. Thus the software is designed to enable new kinds of shared knowledge about shared common modes of future worlds. Only with such a truly general framework the vision of a sustainable society as pointed out by the United Nations since 1992 can become real.

Continuation

Look here.

WHY THE WORLD NEEDS ANTHROPOLOGISTS – Review Part 1

eJournal: uffmm.org, ISSN 2567-6458, 1.December  2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

ANTHROPOLOGY AND ENGINEERING

The starting point of view in this blog has been and still is the point of engineering, especially the perspective of man-machine interface [MMI], later as Man-Machine Interaction, then  accompanied by   human-computer interaction [HCI] or human-machine interaction [HMI]. While MMI often is discussed in isolation, not as part of engineering, this blog emphasizes a point of view where MMI is understood as an integrated part of systems engineering. The past years have shown, that this integration makes a great difference in the overall layout as well as in the details of the used methods. This integration widened the scope of MMI to the context of engineering in a way which teared down many artificial boundaries in dealing with the subject of MMI. The analysis part of MMI can take into account not only the intended users and a limited set of tasks required for the usage of a system but it can extend the scope to the different kinds of contexts of the intended users as well as the intended service/product as such: cultural patterns, sustainable perspectives, climate relevance, political implications, and more. This triggers the question, whether there are other established scientific disciplines which are sharing this scope with MMI. Traditionally experimental and cognitive psychology has always played an important role as part of the MMI analysis.  Different special disciplines like physiology or neuro-psychology, linguistics, phonetics etc. have played some role too. More recently culture and society have been brought more into the focus of MMI. What about sociology? What about anthropology? The following text discusses a possible role of anthropology in the light of the recent book Why The World Needs Anthropologists?

INTRODUCTION AND CONCLUSION

This review has the addendum ‘Part 1’ pointing to the fact, that this text does not deal with the whole book first, but only with some parts, the introduction and the conclusion.

An Introduction

The introduction of the book is asking, why does the world needs anthropologists?, and the main pattern of the introduction looks back to the old picture of anthropology, and then seeks to identify, what could/is the new paradigm which should be followed.

The roots of anthropology are located in the colonial activities of the British Empire as well as in the federal activities of the USA, which both had a strong bias to serve the political power more than to evolve a really free science. And an enduring gap between the more theoretical anthropology and an applied one is thematised although there existed always  a strong inter-dependency  between both.

To leave the close connection with primarily  governmental interests and to see the relation  between the theory and the different Applications  more positive than negative anthropology is understood  as challenged to rebrand its appearance in the public and in their own practice.

The most vital forces for such a rebranding seem to be rooted in more engagements in societal problems of public interests and thereby challenging the theory to widen their concept and methods.

Besides the classical methods of anthropology (cultural relativism, ethnography, comparison, and contextual understanding)  anthropology has to show that it can make sense beyond pure data, deciphering ambiguity, complexity, and ambivalence, helping with  diversity, investigating the interface between culture, technology, and environment.

What Is Left Out

After the introduction the main chapters of the book  are left out in this text  until later. The chapters in the book are giving examples to the questions, why the world needs anthropology, what have been the motivations for active anthropologists to become one, how they have applied anthropology, and which five tips they would give for practicing and theorizing.

Conclusion

In the conclusion of the book not the five questions are the guiding principle but ‘five axis that matter greatly’, and these five axis are circumscribed as (i) navigate the ethics of change; (ii) own-it in the sense, that an anthropologist should have a self-esteem for his/ her/ x  profession and can co-create it with others; (iii) expand the skill-set; (iv) collaborate, co-create and study-up; (v) recommend as being advisors and consultants.

The stronger commitment with actual societal problems leads anthropology at the crossroads of many processes which require new views, new methods. To gain new knowledge and to do a new practice is  not always accompanied by  known ethical schemata. Doing this induces  ethical questions which have not been known before in this way.  While a new practice is challenging the old knowledge and induces a pressure for change, new versions of knowing can  trigger new forms of practice as well. Theory and application are a dynamic pair where each part learns from the other.

The long-lasting preference of academic anthropology, thinking predominantly  in the mind-setting of   white-western-man, is  more and more resolved  by extending anthropology from academia to application, from man into the diversity of genders, from western culture into all the other cultures, from single persons to assemblies of diverse gatherings living an ongoing discourse with a growing publicity.

This widening of anthropological subjects and methods calls naturally for more interdisciplinarity, transdisciplinarity, and of a constructive attitude  which looks ahead to  possible futures of processes.

Close to this are expressions like collaboration and co-creation with others. In the theory dimension this is reflected by multiperspectivity and a holistic view. In societal development processes — like urban planning — there are different driving forces acting working top-down or acting working bottom-up.

Recommending solutions based on anthropological thinking ending in a yes or no, can be of help and can be necessary because real world processes can not only wait of final answers (which are often not realistic), they need again and again decisions to proceed now.

REFLECTIONS FOLLOWING THE INTRODUCTION AND THE CONCLUSION

The just referred texts making a fresh impression of a discipline in a dynamic movement.

General Knowledge Architecture

For the point of view of MMI (Man-Machine Interface, later HMI Human-Machine Interaction, in my theory extended to DAAI Distributed Actor-Actor Interaction) embedded in systems engineering with an openness for the whole context of society and culture arises the question whether such a dynamic anthropology can be of help.

To clarify this question let us have a short look to the general architecture of knowledge.

Within the everyday world philosophy can be understood as the most general point of view of knowing  and thinking.  Traditionally logic and mathematics can be understood as part of philosophy although today this has been changed. But there are no real reasons for this departure: logic and mathematics are not empirical sciences and they are not engineering.

Empirical science can be understood as specialized extension of philosophical thinking with identifiable characteristics which allow to  differentiate to some extend different  disciplines.  Traditionally all the different disciplines of empirical science have a more theoretical part and a more applied part. But systematically they depend from each other. A theory is only an empirical one, if there exists a clear relationship to the everyday world, and certain aspects of the everyday world are only theoretical entities (data) if there exists a relationship to an explicit theory which gives a formal explanation.

Asking for a  systematic place for engineering it is often said, that it belongs to the applied dimension of empirical science.  But engineering has realized processes, buildings, machines long before there was a scientific framework for to do this, and engineering uses in its engineering processes lots of knowledge which is not part of science. On the other side, yes, engineering is using scientific knowledge as far as it is usable and it is also giving back many questions to science which are not yet solved sufficiently. Therefore it is sound to locate engineering besides science, but   being  part of philosophy dealing with the practical dimensions of life.

What About Anthropology?

While philosophy (with logic and mathematics) is ‘on top’ of empirical science and engineering, it is an interesting question where to place anthropology?

While empirical science as well as engineering are inheriting all what philosophy provides remains the question whether  anthropology is more an empirical science or more engineering or some kind of a hybrid system with roots in empirical science as well as in engineering?

Looking back into history it could arise the impression that anthropology is more a kind of an empirical science with strong roots in academia, but doing  fieldwork to feed the theories.

Looking to the new book it could support the image that anthropology should be more like engineering: identifying  open problems in society and trying to transform these problems — like engineers — into satisfying solutions, at least on the level of counseling.

Because in our societies the universities have traditionally a higher esteem then the engineers — although the engineers  are all  trained by highly demanding university courses — it could be a bias in the thinking of  anthropologist not to think of their discipline   as engineering.

If one looks to the real world than everything which  makes human societies livable is realized by engineers. Yes, without science many of the today solutions wouldn’t be possible, but no single scientific theory has ever enabled directly some practical stuff.  And without the engineers there would not exist any of the modern machines used for measurements and experiments for science. Thus both are intimately  interrelated: science inspires engineering and engineering inspires and enables science, but both are genuinely different and science and engineering play their own fundamental role.

Thus if I am reading the new book as engineer (attention: I am also a philosopher and I am trained in the Humanities too!) then I think there are more arguments to understand anthropology  as engineering than as a pure empirical science. In the light of my distributed actor-actor interaction paradigm, which is a ‘spinoff’ of engineering and societal thinking it seems very ‘naturally’ to think of anthropology as a kind of social engineering.

Let us discuss both perspectives a bit more, thereby not excluding the hybrid version.

1) Anthropology as Engineering

The basic idea of engineering is to enable a change process which is completely transparent in all respects: Why, Who, Where, When, How etc. The process starts with explicit preferences turning some known reality into a problem on account of some visions which have been imagined and which have become ranked higher than the given known reality. And then the engineers try to organized an appropriate change process which will lead from the given situation to a new situation until some date in the future where the then given situation — the envisioned goal state — has become real and the situation from the beginning, which has been ranked down, has disappeared, or is at least weakened in a way that one can say, yes, it has changed.

Usually engineers are known to enable change processes which enable the production of everyday things (tools, products, machines, houses, plants, ships, airplanes, …), but to the extend that the engineering is touching the everyday life deeper and deeper (e.g. the global digital revolution absorbing more and more from the real life processes by transforming them into digital realities forcing human persons to act digitally and not any more with their bodies in the everyday world) the sharp boundary between engineering products and the societal life of human persons is vanishing. In such a context engineering is becoming social engineering even if the majority of traditional engineers this doesn’t see yet in this way. As the traditional discipline MMI Man-Machine Interface and then  expanded to HMI Human-Machine Interaction and further morphed into DAAI Distributed Actor-Actor Interaction this  already manifests, that the realm of human persons, yes  the whole of society is already included in engineering.  The border between machines and human actors is already at least fuzzy and the mixing of technical devices and human actors (as well as all other biological actors) has already gained a degree which does not allow any longer a separation.

These ideas would argue for the option to see anthropology as social engineering: thematizing all the important visions which seem to be helpful or important for a good future of modern mankind, and to help to organize change processes, which will support approaching this better future. That these visions can fail, can be wrong is part of the ever lasting battle of the homo sapiens to gain the right knowledge.

2) Anthropology as  an Empirical Science

… to be continued …

3) Anthropology as a Hybrid Couple of Science and Engineering

… to be continued …

 

 

DAAI V4 FRONTPAGE

eJournal: uffmm.org,
ISSN 2567-6458, 12.May – 18.Jan 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

HISTORY OF THIS PAGE

See end of this page.

CONTEXT

This Theory of Engineering section is part of the uffmm science blog.

HISTORY OF THE (D)AAI-TEXT

See below

ACTUAL VERSION

DISTRIBUTED ACTOR ACTOR INTERACTION [DAAI]. Version 15.06, From  Dec 13, 2019 until Jan 18, 2020

aaicourse-15-06-07(PDF, Chapter 8 new (but not yet completed))

aaicourse-15-06-05(PDF, Chapter 7 new)

aaicourse-15-06-04(PDF, Chapter 6 modified)

aaicourse-15-06-03(PDF, Chapter 5 modified)

aaicourse-15-06-02(PDF, Chapter 4 modified)

aaicourse-15-06-01(PDF, Chapter 1 modified)

aaicourse-15-06 (PDF, chapters 1-6)

aaicourse-15-05-2 (PDF, chapters 1-6; chapter 6 only as a first stub)

DISTRIBUTED ACTOR ACTOR INTERACTION [DAAI]. Version 15.05.1, Dec 2, 2019:

aaicourse-15-05-1(PDF, chapters 1-5; minor corrections)

aaicourse-15-05 (PDF, chapters 1-5 of the new version 15.05)

Changes: Extension of title, extension of preface!, extension of chapter 4, new: chapter 5 MAS, extension of bibliography and indices.

HISTORY OF UPDATES

ACTOR ACTOR INTERACTION [AAI]. Version: June 17, 2019 – V.7: aaicourse-17june2019-incomplete

Change: June 19, 2019 (Update  to version 8; chapter 5 has been rewritten completely).

ACTOR ACTOR INTERACTION [AAI]. Version: June 19, 2019 – V.8: aaicourse-june 19-2019-v8-incomplete

Change: June 19, 2019 (Update to version 8.1; minor corrections in chapter 5)

ACTOR ACTOR INTERACTION [AAI]. Version: June 19, 2019 – V.8.1: aaicourse-june19-2019-v8.1-incomplete

Change: June 23, 2019 (Update to version 9; adding chapter 6 (Dynamic AS) and chapter 7 (Example of dynamic AS with two actors)

ACTOR ACTOR INTERACTION [AAI]. Version: June 23, 2019 – V.9: aaicourse-June-23-2019-V9-incomplete

Change: June 25, 2019 (Update to version 9.1; minor corrections in chapters 1+2)

ACTOR ACTOR INTERACTION [AAI]. Version: June 25, 2019 – V.9.1aaicourse-June25-2019-V9-1-incomplete

Change: June 29, 2019 (Update to version 10; )rewriting of chapter 4 Actor Story on account of changes in the chapters 5-7)

ACTOR ACTOR INTERACTION [AAI]. Version: June 29, 2019 – V.10: aaicourse-June-29-2019-V10-incomplete

Change: June 30, 2019 (Update to version 11; ) completing  chapter  3 Problem Definition)

ACTOR ACTOR INTERACTION [AAI]. Version: June 30, 2019 – V.11: aaicourse-June30-2019-V11-incomplete

Change: June 30, 2019 (Update to version 12; ) new chapter 5 for normative actor stories (NAS) Problem Definition)

ACTOR ACTOR INTERACTION [AAI]. Version: June 30, 2019 – V.12: aaicourse-June30-2019-V12-incomplete

Change: June 30, 2019 (Update to version 13; ) extending chapter 9 with the section about usability testing)

ACTOR ACTOR INTERACTION [AAI]. Version: June 30, 2019 – V.13aaicourse-June30-2019-V13-incomplete

Change: July 8, 2019 (Update to version 13.1 ) some more references to chapter 4; formatting the bibliography alphabetically)

ACTOR ACTOR INTERACTION [AAI]. Version: July 8, 2019 – V.13.1: aaicourse-July8-2019-V13.1-incomplete

Change: July 15, 2019 (Update to version 13.3 ) (In chapter 9 Testing an AS extending the description of Usability Testing with more concrete details to the test procedure)

ACTOR ACTOR INTERACTION [AAI]. Version: July 15, 2019 – V.13.3: aaicourse-13-3

Change: Aug 7, 2019 (Only some minor changes in Chapt. 1 Introduction, pp.15ff, but these changes make clear, that the scope of the AAI analysis can go far beyond the normal analysis. An AAI analysis without explicit actor models (AMs) corresponds to the analysis phase of a systems engineering process (SEP), but an AAI analysis including explicit actor models will cover 50 – 90% of the (logical) design phase too. How much exactly could only be answered if  there would exist an elaborated formal SEP theory with quantifications, but there exists  no such theory. The quantification here is an estimate.)

ACTOR ACTOR INTERACTION [AAI]. Version: Aug 7, 2019 – V.14:aaicourse-14

ACTOR ACTOR INTERACTION [AAI]. Version 15, Nov 9, 2019:

aaicourse-15(PDF, 1st chapter of the new version 15)

ACTOR ACTOR INTERACTION [AAI]. Version 15.01, Nov 11, 2019:

aaicourse-15-01 (PDF, 1st chapter of the new version 15.01)

ACTOR ACTOR INTERACTION [AAI]. Version 15.02, Nov 11, 2019:

aaicourse-15-02 (PDF, 1st chapter of the new version 15.02)

ACTOR ACTOR INTERACTION [AAI]. Version 15.03, Nov 13, 2019:

aaicourse-15-03 (PDF, 1st chapter of the new version 15.03)

ACTOR ACTOR INTERACTION [AAI]. Version 15.04, Nov 19, 2019:

(update of chapter 3, new created chapter 4)

aaicourse-15-04 (PDF, chapters 1-4 of the new version 15.04)

HISTORY OF CHANGES OF THIS PAGE

Change: May 20, 2019 (Stopping Circulating Acronyms :-))

Change: May 21,  2019 (Adding the Slavery-Empowerment topic)

Change: May 26, 2019 (Improving the general introduction of this first page)

HISTORY OF AAI-TEXT

After a previous post of the new AAI approach I started the first  re-formulation of the general framework of  the AAI theory, which later has been replaced by a more advanced AAI version V2. But even this version became a change candidate and mutated to the   Actor-Cognition Interaction (ACI) paradigm, which still was not the endpoint. Then new arguments grew up to talk rather from the Augmented Collective Intelligence (ACI). Because even this view on the subject can  change again I stopped following the different aspects of the general Actor-Actor Interaction paradigm and decided to keep the general AAI paradigm as the main attractor capable of several more specialized readings.

ACI – TWO DIFFERENT READINGS

eJournal: uffmm.org
ISSN 2567-6458, 11.-12.May 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Change: May-17, 2019 (Some Corrections, ACI associations)
Change: May-20, 2019 (Reframing ACI with AAI)
CONTEXT

This text is part of the larger text dealing with the Actor-Actor Interaction (AAI)  paradigm.

HCI – HMI – AAI ==> ACI ?

Who has followed the discussion in this blog remembers several different phases in the conceptual frameworks used here.

The first paradigm called Human-Computer Interface (HCI) has been only mentioned by historical reasons.  The next phase Human-Machine Interaction (HMI) was the main paradigm in the beginning of my lecturing in 2005. Later, somewhere 2011/2012, I switched to the paradigm Actor-Actor Interaction (AAI) because I tried to generalize over  the different participating machines, robots, smart interfaces, humans as well as animals. This worked quite nice and some time I thought that this is now the final formula. But reality is often different compared to  our thinking. Many occasions showed up where the generalization beyond the human actor seemed to hide the real processes which are going on, especially I got the impression that very important factors rooted in the special human actor became invisible although they are playing decisive role in many  processes. Another punch against the AAI view came from application scenarios during the last year when I started to deal with whole cities as actors. At the end  I got the feeling that the more specialized expressions like   Actor-Cognition Interaction (ACI) or  Augmented Collective Intelligence (ACI) can indeed help  to stress certain  special properties  better than the more abstract AAI acronym, but using structures like ACI  within general theories and within complex computing environments it became clear that the more abstract acronym AAI is in the end more versatile and simplifies the general structures. ACI became a special sub-case

HISTORY

To understand this oscillation between AAI and  ACI one has to look back into the history of Human Computer/ Machine Interaction, but not only until the end of the World War II, but into the more extended evolutionary history of mankind on this planet.

It is a widespread opinion under the researchers that the development of tools to help mastering material processes was one of the outstanding events which changed the path of  the evolution a lot.  A next step was the development of tools to support human cognition like scripture, numbers, mathematics, books, libraries etc. In this last case of cognitive tools the material of the cognitive  tools was not the primary subject the processes but the cognitive contents, structures, even processes encoded by the material structures of the tools.

Only slowly mankind understood how the cognitive abilities and capabilities are rooted in the body, in the brain, and that the brain represents a rather complex biological machinery which enables a huge amount of cognitive functions, often interacting with each other;  these cognitive functions show in the light of observable behavior clear limits with regard to the amount of features which can be processed in some time interval, with regard to precision, with regard to working interconnections, and more. And therefore it has been understood that the different kinds of cognitive tools are very important to support human thinking and to enforce it in some ways.

Only in the 20th century mankind was able to built a cognitive tool called computer which could show   capabilities which resembled some human cognitive capabilities and which even surpassed human capabilities in some limited areas. Since then these machines have developed a lot (not by themselves but by the thinking and the engineering of humans!) and meanwhile the number and variety of capabilities where the computer seems to resemble a human person or surpasses human capabilities have extend in a way that it has become a common slang to talk about intelligent machines or smart devices.

While the original intention for the development of computers was to improve the cognitive tools with the intend  to support human beings one can  get today  the impression as if the computer has turned into a goal on its own: the intelligent and then — as supposed — the super-intelligent computer appears now as the primary goal and mankind appears as some old relic which has to be surpassed soon.

As will be shown later in this text this vision of the computer surpassing mankind has some assumptions which are

What seems possible and what seems to be a promising roadmap into the future is a continuous step-wise enhancement of the biological structure of mankind which absorbs the modern computing technology by new cognitive interfaces which in turn presuppose new types of physical interfaces.

To give a precise definition of these new upcoming structures and functions is not yet possible, but to identify the actual driving factors as well as the exciting combinations of factors seems possible.

COGNITION EMBEDDED IN MATTER
Actor-Cognition Interaction (ACI): A simple outline of the whole paradigm
Cognition within the Actor-Actor Interaction (AAI)  paradigm: A simple outline of the whole paradigm

The main idea is the shift of the focus away from the physical grounding of the interaction between actors looking instead more to the cognitive contents and processes, which shall be mediated  by the physical conditions. Clearly the analysis of the physical conditions as well as the optimal design of these physical conditions is still a challenge and a task, but without a clear knowledge manifested in a clear model about the intended cognitive contents and processes one has not enough knowledge for the design of the physical layout.

SOLVING A PROBLEM

Thus the starting point of an engineering process is a group of people (the stakeholders (SH)) which identify some problem (P) in their environment and which have some minimal idea of a possible solution (S) for this problem. This can be commented by some non-functional requirements (NFRs) articulating some more general properties which shall hold through the whole solution (e.g. ‘being save’, ‘being barrier-free’, ‘being real-time’ etc.). If the description of the problem with a first intended solution including the NFRs contains at least one task (T) to be solved, minimal intended users (U) (here called executive actors (eA)), minimal intended assistive actors (aA) to assist the user in doing the task, as well as a description of the environment of the task to do, then the minimal ACI-Check can be passed and the ACI analysis process can be started.

COGNITION AND AUGMENTED COLLECTIVE INTELLIGENCE

If we talk about cognition then we think usually about cognitive processes in an individual person.  But in the real world there is no cognition without an ongoing exchange between different individuals by communicative acts. Furthermore it has to be taken into account that the cognition of an individual person is in itself partitioned into two unequal parts: the unconscious part which covers about 99% of all the processes in the body and in the brain and about 1% which covers the conscious part. That an individual person can think somehow something this person has to trigger his own unconsciousness by stimuli to respond with some messages from his before unknown knowledge. Thus even an individual person alone has to organize a communication with his own unconsciousness to be able to have some conscious knowledge about its own unconscious knowledge. And because no individual person has at a certain point of time a clear knowledge of his unconscious knowledge  the person even does not really know what to look for — if there is no event, not perception, no question and the like which triggers the person to interact with its unconscious knowledge (and experience) to get some messages from this unconscious machinery, which — as it seems — is working all the time.

On account of this   logic of the individual internal communication with the individual cognition  an external communication with the world and the manifested cognition of other persons appears as a possible enrichment in the   interactions with the distributed knowledge in the different persons. While in the following approach it is assumed to represent the different knowledge responses in a common symbolic representation viewable (and hearable)  from all participating persons it is growing up a possible picture of something which is generally more rich, having more facets than a picture generated by an individual person alone. Furthermore can such a procedure help all participants to synchronize their different knowledge fragments in a bigger picture and use it further on as their own picture, which in turn can trigger even more aspects out of the distributed unconscious knowledge.

If one organizes this collective triggering of distributed unconscious knowledge within a communication process not only by static symbolic models but beyond this with dynamic rules for changes, which can be interactively simulated or even played with defined states of interest then the effect of expanding the explicit and shared knowledge will be boosted even more.

From this background it makes some sense to turn the wording Actor-Cognition Interaction into the wording Augmented Collective Intelligence where Intelligence is the component of dynamic cognition in a system — here a human person –, Collective means that different individual person are sharing their unconscious knowledge by communicative interactions, and Augmented can be interpreted that one enhances, extends this sharing of knowledge by using new tools of modeling, simulation and gaming, which expands and intensifies the individual learning as well as the commonly shared opinions. For nearly all problems today this appears to be  absolutely necessary.

ACI ANALYSIS PROCESS

Here it will be assumed that there exists a group of ACI experts which can supervise  other actors (stakeholders, domain experts, …) in a process to analyze the problem P with the explicit goal of finding a satisfying solution (S+).

For the whole ACI analysis process an appropriate ACI software should be available to support the ACI experts as well as all the other domain experts.

In this ACI analysis process one can distinguish two main phases: (1) Construct an actor story (AS) which describes all intended states and intended changes within the actor story. (2) Make several tests of the actor story to exploit their explanatory power.

ACTOR STORY (AS)

The actor story describes all possible states (S) of the tasks (T) to be realized to reach intended goal states (S+). A mapping from one state to a follow-up state will be described by a change rule (X). Thus having start state (S0) and appropriate change rules one can construct the follow-up states from the actual state (S*)  with the aid of the change rules. Formally this computation of the follow-up state (S’) will be computed by a simulator function (σ), written as: σ: S* x X  —> S.

SEVERAL TESTS

With the aid of an explicit actor story (AS) one can define the non-functional requirements (NFRs) in a way that it will become decidable whether  a NFR is valid with regard to an actor story or not. In this case this test of being valid can be done as an automated verification process (AVP). Part of this test paradigm is the so-called oracle function (OF) where one can pose a question to the system and the system will answer the question with regard to all theoretically possible states without the necessity to run a (passive) simulation.

If the size of the group is large and it is important that all members of the group have a sufficient similar knowledge about the problem(s) in question (as it is the usual case in a city with different kinds of citizens) then is can be very helpful to enable interactive simulations or even games, which allow a more direct experience of the possible states and changes. Furthermore, because the participants can act according to their individual reflections and goals the process becomes highly uncertain and nearly unpredictable. Especially for these highly unpredictable processes can interactive simulations (and games) help to improve a common understanding of the involved factors and their effects. The difference between a normal interactive simulation and a game is given in the fact that a game has explicit win-states whereas the interactive simulations doesn’t. Explicit win-states can improve learning a lot.

The other interesting question is whether an actor story AS with a certain idea for an assistive actor (aA) is usable for the executive actors. This requires explicit measurements of the usability which in turn requires a clear norm of reference with which the behavior of an executive actor (eA) during a process can be compared. Usually is the actor Story as such the norm of reference with which the observable behavior of the executing actors will be compared. Thus for the measurement one needs real executive actors which represent the intended executive actors and one needs a physical realization of the intended assistive actors called mock-up. A mock-up is not yet  the final implementation of the intended assistive actor but a physical entity which can show all important physical properties of the intended assistive actor in a way which allows a real test run. While in the past it has been assumed to be sufficient to test a test person only once it is here assumed that a test person has to be tested at least three times. This follows from the assumption that every executive (biological) actor is inherently a learning system. This implies that the test person will behave differently in different tests. The degree of changes can be a hint of the easiness and the learnability of the assistive actor.

COLLECTIVE MEMORY

If an appropriate ACI software is available then one can consider an actor story as a simple theory (ST) embracing a model (M) and a collection of rules (R) — ST(x) iff x = <M,R> –which can be used as a kind of a     building block which in turn can be combined with other such building blocks resulting in a complex network of simple theories. If these simple theories are stored in a  public available data base (like a library of theories) then one can built up in time a large knowledge base on their own.

 

 

THE BIG PICTURE: HCI – HMI – AAI in History – Engineering – Society – Philosophy

eJournal: uffmm.org,
ISSN 2567-6458, 20.April 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

A first draft version …

CONTEXT

The context for this text is the whole block dedicated to the AAI (Actor-Actor Interaction)  paradigm. The aim of this text is to give the big picture of all dimensions and components of this subject as it shows up during April 2019.

The first dimension introduced is the historical dimension, because this allows a first orientation in the course of events which lead  to the actual situation. It starts with the early days of real computers in the thirties and forties of the 20 century.

The second dimension is the engineering dimension which describes the special view within which we are looking onto the overall topic of interactions between human persons and computers (or machines or technology or society). We are interested how to transform a given problem into a valuable solution in a methodological sound way called engineering.

The third dimension is the whole of society because engineering happens always as some process within a society.  Society provides the resources which can be used and spends the preferences (values) what is understood as ‘valuable’, as ‘good’.

The fourth dimension is Philosophy as that kind of thinking which takes everything into account which can be thought and within thinking Philosophy clarifies conditions of thinking, possible tools of thinking and has to clarify when some symbolic expression becomes true.

HISTORY

In history we are looking back in the course of events. And this looking back is in a first step guided by the  concepts of HCI (Human-Computer Interface) and  HMI (Human-Machine Interaction).

It is an interesting phenomenon how the original focus of the interface between human persons and the early computers shifted to  the more general picture of interaction because the computer as machine developed rapidly on account of the rapid development of the enabling hardware (HW)  the enabling software (SW).

Within the general framework of hardware and software the so-called artificial intelligence (AI) developed first as a sub-topic on its own. Since the last 10 – 20 years it became in a way productive that it now  seems to become a normal part of every kind of software. Software and smart software seem to be   interchangeable. Thus the  new wording of augmented or collective intelligence is emerging intending to bridge the possible gap between humans with their human intelligence and machine intelligence. There is some motivation from the side of society not to allow the impression that the smart (intelligent) machines will replace some day the humans. Instead one is propagating the vision of a new collective shape of intelligence where human and machine intelligence allows a symbiosis where each side gives hist best and receives a maximum in a win-win situation.

What is revealing about the actual situation is the fact that the mainstream is always talking about intelligence but not seriously about learning! Intelligence is by its roots a static concept representing some capabilities at a certain point of time, while learning is the more general dynamic concept that a system can change its behavior depending from actual external stimuli as well as internal states. And such a change includes real changes of some of its internal states. Intelligence does not communicate this dynamics! The most demanding aspect of learning is the need for preferences. Without preferences learning is impossible. Today machine learning is a very weak example of learning because the question of preferences is not a real topic there. One assumes that some reward is available, but one does not really investigate this topic. The rare research trying to do this job is stating that there is not the faintest idea around how a general continuous learning could happen. Human society is of no help for this problem while human societies have a clash of many, often opposite, values, and they have no commonly accepted view how to improve this situation.

ENGINEERING

Engineering is the art and the science to transform a given problem into a valuable and working solution. What is valuable decides the surrounding enabling society and this judgment can change during the course of time.  Whether some solution is judged to be working can change during the course of time too but the criteria used for this judgment are more stable because of their adherence to concrete capabilities of technical solutions.

While engineering was and is  always  a kind of an art and needs such aspects like creativity, innovation, intuition etc. it is also and as far as possible a procedure driven by defined methods how to do things, and these methods are as far as possible backed up by scientific theories. The real engineer therefore synthesizes art, technology and science in a unique way which can not completely be learned in the schools.

In the past as well as in the present engineering has to happen in teams of many, often many thousands or even more, people which coordinate their brains by communication which enables in the individual brains some kind of understanding, of emerging world pictures,  which in turn guide the perception, the decisions, and the concrete behavior of everybody. And these cognitive processes are embedded — in every individual team member — in mixtures of desires, emotions, as well as motivations, which can support the cognitive processes or obstruct them. Therefore an optimal result can only be reached if the communication serves all necessary cognitive processes and the interactions between the team members enable the necessary constructive desires, emotions, and motivations.

If an engineering process is done by a small group of dedicated experts  — usually triggered by the given problem of an individual stakeholder — this can work well for many situations. It has the flavor of a so-called top-down approach. If the engineering deals with states of affairs where different kinds of people, citizens of some town etc. are affected by the results of such a process, the restriction to  a small group of experts  can become highly counterproductive. In those cases of a widespread interest it seems promising to include representatives of all the involved persons into the executing team to recognize their experiences and their kinds of preferences. This has to be done in a way which is understandable and appreciative, showing esteem for the others. This manner of extending the team of usual experts by situative experts can be termed bottom-up approach. In this usage of the term bottom-up this is not the opposite to top-down but  is reflecting the extend in which members of a society are included insofar they are affected by the results of a process.

SOCIETY

Societies in the past and the present occur in a great variety of value systems, organizational structures, systems of power etc.  Engineering processes within a society  are depending completely on the available resources of a society and of its value systems.

The population dynamics, the needs and wishes of the people, the real territories, the climate, housing, traffic, and many different things are constantly producing demands to be solved if life shall be able and continue during the course of time.

The self-understanding and the self-management of societies is crucial for their ability to used engineering to improve life. This deserves communication and education to a sufficient extend, appropriate public rules of management, otherwise the necessary understanding and the freedom to act is lacking to use engineering  in the right way.

PHILOSOPHY

Without communication no common constructive process can happen. Communication happens according to many  implicit rules compressed in the formula who when can speak how about what with whom etc. Communication enables cognitive processes of for instance  understanding, explanations, lines of arguments.  Especially important for survival is the ability to make true descriptions and the ability to decide whether a statement is true or not. Without this basic ability communication will break down, coordination will break down, life will break down.

The basic discipline to clarify the rules and conditions of true communication, of cognition in general, is called Philosophy. All the more modern empirical disciplines are specializations of the general scope of Philosophy and it is Philosophy which integrates all the special disciplines in one, coherent framework (this is the ideal; actually we are far from this ideal).

Thus to describe the process of engineering driven by different kinds of actors which are coordinating themselves by communication is primarily the task of philosophy with all their sub-disciplines.

Thus some of the topics of Philosophy are language, text, theory, verification of a  theory, functions within theories as algorithms, computation in general, inferences of true statements from given theories, and the like.

In this text I apply Philosophy as far as necessary. Especially I am introducing a new process model extending the classical systems engineering approach by including the driving actors explicitly in the formal representation of the process. Learning machines are included as standard tools to improve human thinking and communication. You can name this Augmented Social Learning Systems (ASLS). Compared to the wording Augmented Intelligence (AI) (as used for instance by the IBM marketing) the ASLS concept stresses that the primary point of reference are the biological systems which created and create machine intelligence as a new tool to enhance biological intelligence as part of biological learning systems. Compared to the wording Collective Intelligence (CI) (as propagated by the MIT, especially by Thomas W.Malone and colleagues) the spirit of the CI concept seems to be   similar, but perhaps only a weak similarity.

BACKGROUND INFORMATION 19.Dec.2018: The e-Politics Project

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

If You are wondering why no new updates appear on the main page the reason why is, that some heavy work is going on in the background using the AAI paradigm published here so far within a German course  called Mensch-Maschine Interaktion (MMI) in the Frankfurt University of Applied Sciences (FRA-UAS) as well in a growing interdisciplinary project where the AAI paradigm is applied to the topic of ‘communal planning using e-gaming’. Because both activities are in German there is time lacking to continue writing in English :-). In the context of the ‘communal planning with e-gaming’  project  we are planning to do some more field-experiments in the upcoming months with ‘normal citizens’ using these methods as a ‘bottom-up strategy’ for getting shared models of their cities which can be simulated. It is highly probable that a small booklet in German will appear to support these experiments before this English version will be expanded.

During  the time since Nov-4, 2018  the theory of the AAI paradigm could be improved in many points (documented in the German texts) and meanwhile I have started to program a first version of a software (in python) by myself. Doing this the experience is always the same: You think You ‘know’ the subject matter’ because You have written some texts with formulas, but if You are starting programming, You are challenged in a much more concrete way. Without theory the programming wouldn’t know what to do,  but without programming you will never understand in a sufficient concrete way what You are thinking

 

ACTOR-ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP). An Actor Centered Approach to Problem Solving

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

ATTENTION: The actual Version  you will find HERE.

Draft version 22.June 2018

Update 26.June 2018 (Chapter AS-AM Summary)

Update 4.July 2018 (Chapter 4 Actor Model; improving the terminology of environments with actors, actors as input-output systems, basic and real interface, a first typology of input-output systems…)

Update 17.July 2018 (Preface, Introduction new)

Update 19.July 2018 (Introduction final paragraph!, new chapters!)

Update 20.July 2018 (Disentanglement of chapter ‘Simulation & Verification’ into two independent chapters; corrections in the chapter ‘Introduction’; corrections in chapter ‘AAI Analysis’; extracting ‘Simulation’ from chapter ‘Actor Story’ to new chapter ‘Simulation’; New chapter ‘Simulation’; Rewriting of chapter ‘Looking Forward’)

Update 22.July 2018 (Rewriting the beginning of the chapter ‘Actor Story (AS)’, not completed; converting chapter ‘AS+AM Summary’ to ‘AS and AM Philosophy’, not completed)

Update 23.July 2018 (Attaching a new chapter with a Case Study illustrating an actor story (AS). This case study is still unfinished. It is a case study of  a real project!)

Update 7.August 2018 (Modifying chapter Actor Story, the introduction)

Update 8.August 2018 (Modifying chapter  AS as Text, Comic, Graph; especially section about the textual mode and the pictorial mode; first sketch for a mapping from the textual mode into the pictorial mode)

Update 9.August 2018 (Modification of the section ‘Mathematical Actor Story (MAS) in chapter 4).

Update 11.August 2018 (Improving chapter 3 ‘Actor Story; nearly complete rewriting of chapter 4 ‘AS as text, comic, graph’.)

Update 12.August 2018 (Minor corrections in the chapters 3+4)

Update 13.August 2018 (I am still catched by the chapters 3+4. In chapter  the cognitive structure of the actors has been further enhanced; in chapter 4 a complete example of a mathematical actor story could now been attached.)

Update 14.August 2018 (minor corrections to chapter 4 + 5; change-statements define for each state individual combinatorial spaces (a little bit like a quantum state); whether and how these spaces will be concretized/ realized depends completely from the participating actors)

Update 15.August 2018 (Canceled the appendix with the case study stub and replaced it with an overview for  a supporting software tool which is needed for the real usage of this theory. At the moment it is open who will write the software.)

Update 2.October 2018 (Configuring the whole book now with 3 parts: I. Theory, II. Application, III. Software. Gerd has his focus on part I, Zeynep will focus on part II and ‘somebody’ will focus on part III (in the worst case we will — nevertheless — have a minimal version :-)). For a first quick overview about everything read the ‘Preface’ and the ‘Introduction’.

Update 4.November 2018 (Rewriting the Introduction (and some minor corrections in the Preface). The idea of the rewriting was to address all the topics which will be discussed in the book and pointing out to the logical connections between them. This induces some wrong links in the following chapters, which are not yet updated. Some chapters are yet completely missing. But to improve the clearness of the focus and the logical inter-dependencies helps to elaborate the missing texts a lot. Another change is the wording of the title. Until now it is difficult to find a title which is exactly matching the content. The new proposal shows the focus ‘AAI’ but lists the keywords of the main topics within AAA analysis because these topics are usually not necessarily associated with AAI.)

ACTOR-ACTOR INTERACTION [AAI]. An Actor Centered Approach to Problem Solving. Combining Engineering and Philosophy

by

GERD DOEBEN-HENISCH in cooperation with  LOUWRENCE ERASMUS, ZEYNEP TUNCER

LATEST  VERSION AS PDF

BACKGROUND INFORMATION 19.Dec.2018: Application domain ‘Communal Planning and e-Gaming’

BACKGROUND INFORMATION 24.Dec.2018: The AAI-paradigm and Quantum Logic

PRE-VIEW: NEW EXPANDED AAI THEORY 23.January 2019: Outline of the new expanded  AAI Paradigm. Before re-writing the main text with these ideas the new advanced AAI theory will first be tested during the summer 2019 within a lecture with student teams as well as in  several workshops outside the Frankfurt University of Applied Sciences with members of different institutions.

AASE – Actor-Actor Systems Engineering. Theory & Applications. Micro-Edition (Vers.9)

eJournal: uffmm.org, ISSN 2567-6458
13.June  2018
Email: info@uffmm.org
Authors: Gerd Doeben-Henisch, Zeynep Tuncer,  Louwrence Erasmus
Email: doeben@fb2.fra-uas.de
Email: gerd@doeben-henisch.de

PDF

CONTENTS

1 History: From HCI to AAI …
2 Different Views …
3 Philosophy of the AAI-Expert …
4 Problem (Document) …
5 Check for Analysis …
6 AAI-Analysis …
6.1 Actor Story (AS) . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1 Textual Actor Story (TAS) . . . . . . . . . . . . . . .
6.1.2 Pictorial Actor Story (PAT) . . . . . . . . . . . . . .
6.1.3 Mathematical Actor Story (MAS) . . . . . . . . . . .
6.1.4 Simulated Actor Story (SAS) . . . . . . . . . . . . .
6.1.5 Task Induced Actor Requirements (TAR) . . . . . . .
6.1.6 Actor Induced Actor Requirements (UAR) . . . . . .
6.1.7 Interface-Requirements and Interface-Design . . . .
6.2 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Actor and Actor Story . . . . . . . . . . . . . . . . .
6.2.2 Actor Model . . . . . . . . . . . . . . . . . . . . . .
6.2.3 Actor as Input-Output System . . . . . . . . . . . .
6.2.4 Learning Input-Output Systems . . . . . . . . . . . .
6.2.5 General AM . . . . . . . . . . . . . . . . . . . . . .
6.2.6 Sound Functions . . . . . . . . . . . . . . . . . . .
6.2.7 Special AM . . . . . . . . . . . . . . . . . . . . . .
6.2.8 Hypothetical Model of a User – The GOMS Paradigm
6.2.9 Example: An Electronically Locked Door . . . . . . .
6.2.10 A GOMS Model Example . . . . . . . . . . . . . . .
6.2.11 Further Extensions . . . . . . . . . . . . . . . . . .
6.2.12 Design Principles; Interface Design . . . . . . . . .
6.3 Simulation of Actor Models (AMs) within an Actor Story (AS) .
6.4 Assistive Actor-Demonstrator . . . . . . . . . . . . . . . . . .
6.5 Approaching an Optimum Result . . . . .
7 What Comes Next: The Real System
7.1 Logical Design, Implementation, Validation . . . .
7.2 Conceptual Gap In Systems Engineering? . . .
8 The AASE-Paradigm …
References

Abstract

This text is based on the the paper “AAI – Actor-Actor Interaction. A Philosophy of Science View” from 3.Oct.2017 and version 11 of the paper “AAI – Actor-Actor Interaction. An Example Template” and it   transforms these views in the new paradigm ‘Actor- Actor Systems Engineering’ understood as a theory as well as a paradigm for and infinite set of applications. In analogy to the slogan ’Object-Oriented Software Engineering (OO SWE)’ one can understand the new acronym AASE as a systems engineering approach where the actor-actor interactions are the base concepts for the whole engineering process. Furthermore it is a clear intention to view the topic AASE explicitly from the point of view of a theory (as understood in Philosophy of Science) as well as from the point of view of possible applications (as understood in systems engineering). Thus the classical term of Human-Machine Interaction (HMI) or even the older Human-Computer Interaction (HCI) is now embedded within the new AASE approach. The same holds for the fuzzy discipline of Artificial Intelligence (AI) or the subset of AI called Machine Learning (ML). Although the AASE-approach is completely in its beginning one can already see how powerful this new conceptual framework  is.

 

 

AAI – Actor-Actor Interaction. A Philosophy of Science View

AAI – Actor-Actor Interaction.
A Philosophy of Science View
eJournal: uffmm.org, ISSN 2567-6458

Gerd Doeben-Henisch
info@uffmm.org
gerd@doeben-henisch.de

PDF

ABSTRACT

On the cover page of this blog you find a first general view on the subject matter of an integrated engineering approach for the future. Here we give a short description of the main idea of the analysis phase of systems engineering how this will be realized within the actor-actor interaction paradigm as described in this text.

INTRODUCTION

Overview of the analysis phase of systems engineering as realized within an actor-actor interaction paradigm
Overview of the analysis phase of systems engineering as realized within an actor-actor interaction paradigm

As you can see in figure Nr.1 there are the following main topics within the Actor-Actor Interaction (AAI) paradigm as used in this text (Comment: The more traditional formula is known as Human-Machine Interaction (HMI)):

Triggered by a problem document D_p from the problem phase (P) of the engineering process the AAI-experts have to analyze, what are the potential requirements following from this document, all the time also communicating with the stakeholder to keep in touch with the hidden intentions of the stakeholder.

The idea is to identify at least one task (T) with at least one goal state (G) which shall be arrived after running a task.

A task is assumed to represent a sequence of states (at least a start state and a goal state) which can have more than one option in every state, not excluding repetitions.

Every task presupposes some context (C) which gives the environment for the task.

The number of tasks and their length is in principle not limited, but their can be certain constraints (CS) given which have to be fulfilled required by the stakeholder or by some other important rules/ laws. Such constraints will probably limit the number of tasks as well as their length.

Actor Story

Every task as a sequence of states can be viewed as a story which describes a process. A story is a text (TXT) which is static and hides the implicit meaning in the brains of the participating actors. Only if an actor has some (learned) understanding of the used language then the actor is able to translate the perceptions of the process in an appropriate text and vice versa the text into corresponding perceptions or equivalently ‘thoughts’ representing the perceptions.

In this text it is assumed that a story is describing only the observable behavior of the participating actors, not their possible internal states (IS). For to describe the internal states (IS) it is further assumed that one describes the internal states in a new text called actor model (AM). The usual story is called an actor story (AS). Thus the actor story (AS) is the environment for the actor models (AM).

In this text three main modes of actor stories are distinguished:

  1. An actor story written in some everyday language L_0 called AS_L0 .
  2. A translation of the everyday language L_0 into a mathematical language L_math which can represent graphs, called AS_Lmath.
  3. A translation of the hidden meaning which resides in the brains of the AAI-experts into a pictorial language L_pict (like a comic strip), called AS_Lpict.

To make the relationship between the graph-version AS_Lmath and the pictorial version AS_Lpict visible one needs an explicit mapping Int from one version into the other one, like: Int : AS_Lmath <—> AS_Lpict. This mapping Int works like a lexicon from one language into another one.

From a philosophy of science point of view one has to consider that the different kinds of actor stories have a meaning which is rooted in the intended processes assumed to be necessary for the realization of the different tasks. The processes as such are dynamic, but the stories as such are static. Thus a stakeholder (SH) or an AAI-expert who wants to get some understanding of the intended processes has to rely on his internal brain simulations associated with the meaning of these stories. Because every actor has its own internal simulation which can not be perceived from the other actors there is some probability that the simulations of the different actors can be different. This can cause misunderstandings, errors, and frustrations.(Comment: This problem has been discussed in [DHW07])

One remedy to minimize such errors is the construction of automata (AT) derived from the math mode AS_Lmath of the actor stories. Because the math mode represents a graph one can derive Der from this version directly (and automatically) the description of an automaton which can completely simulate the actor story, thus one can assume Der(AS_Lmath) = AT_AS_Lmath.

But, from the point of view of Philosophy of science this derived automaton AT_AS_Lmath is still only a static text. This text describes the potential behavior of an automaton AT. Taking a real computer (COMP) one can feed this real computer with the description of the automaton AT AT_AS_Lmath and make the real computer behave like the described automaton. If we did this then we have a real simulation (SIM) of the theoretical behavior of the theoretical automaton AT realized by the real computer COMP. Thus we have SIM = COMP(AT_AS_Lmath). (Comment: These ideas have been discussed in [EDH11].)

Such a real simulation is dynamic and visible for everybody. All participating actors can see the same simulation and if there is some deviation from the intention of the stakeholder then this can become perceivable for everybody immediately.

Actor Model

As mentioned above the actor story (AS) describes only the observable behavior of some actor, but not possible internal states (IS) which could be responsible for the observable behavior.

If necessary it is possible to define for every actor an individual actor model; indeed one can define more than one model to explore the possibilities of different internal structures to enable a certain behavior.

The general pattern of actor models follows in this text the concept of input-output systems (IOSYS), which are in principle able to learn. What the term ‘learning’ designates concretely will be explained in later sections. The same holds of the term ‘intelligent’ and ‘intelligence’.

The basic assumptions about input-output systems used here reads a follows:

Def: Input-Output System (IOSYS)

IOSYS(x) iff x=< I, O, IS, phi>
phi : I x IS —> IS x O
I := Input
O := Output
IS := Internal

As in the case of the actor story (AS) the primary descriptions of actor models (AM) are static texts. To make the hidden meanings of these descriptions ‘explicit’, ‘visible’ one has again to convert the static texts into descriptions of automata, which can be feed into real computers which in turn then simulate the behavior of these theoretical automata as a real process.

Combining the real simulation of an actor story with the real simulations of all the participating actors described in the actor models can show a dynamic, impressive process which is full visible to all collaborating stakeholders and AAI-experts.

Testing

Having all actor stories and actor models at hand, ideally implemented as real simulations, one has to test the interaction of the elaborated actors with real actors, which are intended to work within these explorative stories and models. This is done by actor tests (former: usability tests) where (i) real actors are confronted with real tasks and have to perform in the intended way; (ii) real actors are interviewed with questionnaires about their subjective feelings during their task completion.

Every such test will yield some new insights how to change the settings a bit to gain eventually some improvements. Repeating these cycles of designing, testing, and modifying can generate a finite set of test-results T where possibly one subset is the ‘best’ compared to all the others. This can give some security that this design is probably the ‘relative best design’ with regards to T.

Further Readings:

  1. Analysis
  2. Simulation
  3. Testing
  4. User Modeling
  5. User Modeling and AI

For a newer version of the AAi-text see HERE..

REFERENCES

[DHW07] G. Doeben-Henisch and M. Wagner. Validation within safety critical systems engineering from a computation semiotics point of view.
Proceedings of the IEEE Africon2007 Conference, pages Pages: 1 – 7, 2007.
[EDH11] Louwrence Erasmus and Gerd Doeben-Henisch. A theory of the
system engineering process. In ISEM 2011 International Conference. IEEE, 2011.

EXAMPLE

For a toy-example to these concepts please see the post AAI – Actor-Actor Interaction. A Toy-Example, No.1