AAI THEORY V2 – USABILITY AND USEFULNESS

eJournal: uffmm.org
ISSN 2567-6458, 4.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

An overview of the enhanced AAI theory  version 2 you can find here.  In this post we talk about the sixth chapter dealing with usability and usefulness.

USABILITY AND USEFULNESS

In the AAI paradigm the concept of usability is seen as a sub-topic of the more broader concept of usefulness. Furthermore Usefulness  as well as usability are understood as measurements comparing some target with some presupposed norm.

Example: If someone wants to buy a product A whose prize fits well with the available budget and this product A shows only  an average usability then the product is probably ‘more useful’ for the buyer than another product B which does not fit with the budget although it  has a better usability. A conflict can  arise if the weaker value of the usability of product A causes during the usage of product A ‘bad effects’ onto the user of product A which in turn produce additional negative costs which enhance the original ‘nice price’ to a degree where the product A becomes finally  ‘more costly’ than product B.

Therefore  the concept usefulness will be  defined independently from the concept usability and depends completely  from the person or company who is searching for the solution of a problem. The concept of usability depends directly on the real structure of an  actor, a biological one or a non-biological one. Thus independent of the definition of the actual usefulness the given structure of an actor implies certain capabilities with regard to input, output as well as to  internal   processing. Therefore if an X seems to be highly useful for someone and to get X  needs a certain actor story to become realized with certain actors then it can matter whether this process includes a ‘good usability’ for the participating actors or not.

In the AAI paradigm both concepts usefulness as well as usability will be analyzed to provide a  chance to check the contributions of both concepts  in some predefined duration of usage. This allows the analysis of the sustainability of the wanted usefulness restricted to  usability as a parameter. There can be even more parameters   included in the evaluation of the actor story  to enhance the scope of   sustainability. Depending from the definition of the concept of resilience one can interpret the concept of sustainability used in this AAI paradigm as compatible with the resilience concept too.

MEASUREMENT

To speak about ‘usefulness’, ‘usability’, ‘sustainability’ (or ‘resilience’) requires some kind of a scale of values with an   ordering relation R allowing to state about  some values x,y   whether R(x,y) or R(y,x) or EQUAL(x,y). The values used in the scale have to be generated by some defined process P which is understood as a measurement process M which basically compares some target X with some predefined norm N and gives as a result a pair (v,N) telling a number v associated with the applied norm N. Written: M : X x N —> V x N.

A measurement procedure M must be transparent and repeatable in the sense that the repeated application of the measurement procedure M will generate the same results than before. Associated with the measurement procedure there can exist many additional parameters like ‘location’, ‘time’, ‘temperature’, ‘humidity’,  ‘used technologies’, etc.

Because there exist targets X which are not static it can be a problem when and how often one has to measure these targets to get some reliable value. And this problem becomes even worse if the target includes adaptive systems which are changing constantly like in the case of  biological systems.

All biological systems have some degree of learnability. Thus if a human actor is acting as part of an actor story  the human actor will learn every time he is working through the process. Thus making errors during his first run of the process does not imply that he will repeat these errors the next time. Usually one can observe a learning curve associated with n-many runs which show — mostly — a decrease in errors, a decrease in processing time, and — in general — a change of all parameters, which can be measured. Thus a certain actor story can receive a good usability value after a defined number of usages.  But there are other possible subjective parameters like satisfaction, being excited, being interested and the like which can change in the opposite direction, because to become well adapted to  the process can be boring which in turn can lead to less concentrations with many different negative consequences.

 

 

 

 

ADVANCED AAI-THEORY

eJournal: uffmm.org,
ISSN 2567-6458, 21.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Here You can find a new version of this post

CONTEXT

The last official update of the AAI theory dates back to Oct-2, 2018. Since that time many new thoughts have been detected and have been configured for further extensions and improvements. Here I try to give an overview of all the actual known aspects of the expanded AAI theory as a possible guide for the further elaborations of the main text.

CLARIFYING THE PROBLEM

  1. Generally it is assumed that the AAI theory is embedded in a general systems engineering approach starting with the clarification of a problem.
  2. Two cases will be distinguished:
    1. A stakeholder is associated with a certain domain of affairs with some prominent aspect/ parameter P and the stakeholder wants to clarify whether P poses some ‘problem’ in this domain. This presupposes some explained ‘expectations’ E how it should be and some ‘findings’ x pointing to the fact that P is ‘sufficiently different’ from some y>x. If the stakeholder judges that this difference is ‘important’, than P matching x will be classified as a problem, which will be documented in a ‘problem document D_p’. One interpret this this analysis as a ‘measurement M’ written as M(P,E) = x and x<y.
    2. Given a problem document D_p a stakeholder invites some experts to find a ‘solution’ which transfers the old ‘problem P’ into a ‘configuration S’ which at least should ‘minimize the problem P’. Thus there must exist some ‘measurements’ of the given problem P with regard to certain ‘expectations E’ functioning as a ‘norm’ as M(P,E)=x and some measurements of the new configuration S with regard to the same expectations E as M(S,E)=y and a metric which allows the judgment y > x.
  3. From this follows that already in the beginning of the analysis of a possible solution one has to refer to some measurement process M, otherwise there exists no problem P.

CHECK OF FRAMING CONDITIONS

  1. The definition of a problem P presupposes a domain of affairs which has to be characterized in at least two respects:
    1. A minimal description of an environment ENV of the problem P and
    2. a list of so-called non-functional requirements (NFRs).
  2. Within the environment it mus be possible to identify at least one task T to be realized from some start state to some end state.
  3. Additionally it mus be possible to identify at least one executing actor A_exec doing this task and at least one actor assisting A_ass the executing actor to fulfill the task.
  4. For the  following analysis of a possible solution one can distinguish two strategies:
    1. Top-down: There exists a group of experts EXPs which will analyze a possible solution, will test these, and then will propose these as a solution for others.
    2. Bottom-up: There exists a group of experts EXPs too but additionally there exists a group of customers CTMs which will be guided by the experts to use their own experience to find a possible solution.

ACTOR STORY (AS)

  1. The goal of an actor story (AS) is a full specification of all identified necessary tasks T which lead from a start state q* to a goal state q+, including all possible and necessary changes between the different states M.
  2. A state is here considered as a finite set of facts (F) which are structured as an expression from some language L distinguishing names of objects (LIKE ‘d1’, ‘u1’, …) as well as properties of objects (like ‘being open’, ‘being green’, …) or relations between objects (like ‘the user stands before the door’). There can also e a ‘negation’ like ‘the door is not open’. Thus a collection of facts like ‘There is a door D1’ and ‘The door D1 is open’ can represent a state.
  3. Changes from one state q to another successor state q’ are described by the object whose action deletes previous facts or creates new facts.
  4. In this approach at least three different modes of an actor story will be distinguished:
    1. A pictorial mode generating a Pictorial Actor Story (PAS). In a pictorial mode the drawings represent the main objects with their properties and relations in an explicit visual way (like a Comic Strip).
    2. A textual mode generating a Textual Actor Story (TAS): In a textual mode a text in some everyday language (e.g. in English) describes the states and changes in plain English. Because in the case of a written text the meaning of the symbols is hidden in the heads of the writers it can be of help to parallelize the written text with the pictorial mode.
    3. A mathematical mode generating a Mathematical Actor Story (MAS): n the mathematical mode the pictorial and the textual modes are translated into sets of formal expressions forming a graph whose nodes are sets of facts and whose edges are labeled with change-expressions.

TASK INDUCED ACTOR-REQUIREMENTS (TAR)

If an actor story AS is completed, then one can infer from this story all the requirements which are directed at the executing as well as the assistive actors of the story. These requirements are targeting the needed input- as well as output-behavior of the actors from a 3rd person point of view (e.g. what kinds of perception are required, what kinds of motor reactions, etc.).

ACTOR INDUCED ACTOR-REQUIREMENTS (AAR)

Depending from the kinds of actors planned for the real work (biological systems, animals or humans; machines, different kinds of robots), one has to analyze the required internal structures of the actors needed to enable the required perceptions and responses. This has to be done in a 1st person point of view.

ACTOR MODELS (AMs)

Based on the AARs one has to construct explicit actor models which are fulfilling the requirements.

USABILITY TESTING (UTST)

Using the actor as a ‘norm’ for the measurement one has to organized an ‘usability test’ in he way, that a real executing test actor having the required profiles has to use a real assisting actor in the context of the specified actor story. Place in a start state of the actor story the executing test actor has to show that and how he will reach the defined goal state of the actor story. For this he has to use a real assistive actor which usually is an experimental device (a mock-up), which allows the test of the story.

Because an executive actor is usually a ‘learning actor’ one has to repeat the usability test n-times to see, whether the learning curve approaches a minimum. Additionally to such objective tests one should also organize an interview to get some judgments about the subjective states of the test persons.

SIMULATION

With an increasing complexity of an actor story AS it becomes important to built a simulator (SIM) which can take as input the start state of the actor story together with all possible changes. Then the simulator can compute — beginning with the start state — all possible successor states. In the interactive mode participating actors will explicitly be asked to interact with the simulator.

Having a simulator one can use a simulator as part of an usability test to mimic the behavior of an assistive actor. This mode can also be used for training new executive actors.

A TOP-DOWN ACTOR STORY

The elaboration of an actor story will usually be realized in a top-down style: some AAI experts will develop the actor story based on their experience and will only ask for some test persons if they have elaborated everything so far that they can define some tests.

A BOTTOM-UP ACTOR STORY

In a bottom-up style the AAI experts collaborate from the beginning with a group of common users from the application domain. To do this they will (i) extract the knowledge which is distributed in the different users, then (ii) they will start some modeling from these different facts to (iii) enable some basic simulations. This simple simulation (iv) will be enhanced to an interactive simulation which allows serious gaming either (iv.a) to test the model or to enable the users (iv.b) to learn the space of possible states. The test case will (v) generate some data which can be used to evaluate the model with regard to pre-defined goals. Depending from these findings (vi) one can try to improve the model further.

THE COGNITIVE SPACE

To be able to construct executive as well as assistive actors which are close to the way how human persons do communicate one has to set up actor models which are as close as possible with the human style of cognition. This requires the analysis of phenomenal experience as well as the psychological behavior as well as the analysis of a needed neuron-physiological structures.

STATE DYNAMICS

To model in an actor story the possible changes from one given state to another one (or to many successor states) one needs eventually besides explicit deterministic changes different kinds of random rules together with adaptive ones or decision-based behavior depending from a whole network of changing parameters.

LIBRARIES AS ACTORS. WHAT ABOUT THE CITIZENS?

eJournal: uffmm.org, ISSN 2567-6458, 19.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

In this blog a new approach to the old topic of ‘Human-Machine Interaction (HMI)’ is developed turning the old Human-Machine dyad into the many-to-many relation of ‘Actor-Actor Interaction (AAI)’. And, moreover, in this new AAI approach the classical ‘top-down’ approach of engineering is expanded with a truly ‘bottom-up’ approach locating the center of development in the distributed knowledge of a population of users assisted by the AAI experts.

PROBLEM

From this perspective it is interesting to see how on an international level the citizens of a community/ city are not at the center of research, but again the city and its substructures – here public libraries – are called ‘actors’ while the citizens as such are only an anonymous matter of driving these structures to serve the international ‘buzz word’ of a ‘smart city’ empowered by the ‘Internet of Things (IoT)’.

This perspective is published in a paper from Shannon Mersand et al. (2019) which reviews all the main papers available focusing on the role of public libraries in cities. It seems – I could not check by myself the search space — that the paper gives a good overview of this topic in 48 cited papers.

The main idea underlined by the authors is that public libraries are already so-called ‘anchor institutions’ in a community which either already include or could be extended as “spaces for innovation, collaboration and hands on learning that are open to adults and younger children as well”. (p.3312) Or, another formulation “that libraries are consciously working to become a third space; a place for learning in multiple domains and that provides resources in the form of both materials and active learning opportunities”. (p.3312)

The paper is rich on details but for the context of the AAI paradigm I am interested only on the general perspective how the roles of the actors are described which are identified as responsible for the process of problem solving.

The in-official problem of cities is how to organize the city to respond to the needs of its citizens. There are some ‘official institutions’ which ‘officially’ have to fulfill this job. In democratic societies these institutions are ‘elected’. Ideally these official institutions are the experts which try to solve the problem for the citizens, which are the main stakeholder! To help in this job of organizing the ‘best fitting city-layout’ there exists usually at any point of time a bunch of infrastructures. The modern ‘Internet of Things (IoT)’ is only one of many possible infrastructures.

To proceed in doing the job of organizing the ‘best fitting city-layout’ there are generally two main strategies: ‘top-down’ as usual in most cities or ‘bottom-‘ in nearly no cities.

In the top-down approach the experts organize the processes of the cities more or less on their own. They do not really include the expertise of their citizens, not their knowledge, not their desires and visions. The infrastructures are provided from a birds perspective and an abstract systems thinking.

The case of the public libraries is matching this top-down paradigm. At the end of their paper the authors classify public libraries not only as some ‘infrastructure’ but “… recognize the potential of public libraries … and to consider them as a key actor in the governance of the smart community”. (p.3312) The term ‘actor’ is very strong. This turns an institution into an actor with some autonomy of deciding what to do. The users of the library, the citizens, the primary stakeholder of the city, are not seen as actors, they are – here – the material to ‘feed’ – to use a picture — the actor library which in turn has to serve the governance of the ‘smart community’.

DISCUSSION

Yes, this comment can be understood as a bit ‘harsh’ because one can read the text of the authors a bit different in the sense that the citizens are not only some matter to ‘feed’ the actor library but to see the public library as an ‘environment’ for the citizens which find in the libraries many possibilities to learn and empower themselves. In this different reading the citizens are clearly seen as actors too.

This different reading is possible, but within an overall ‘top-down’ approach the citizens as actors are not really included as actors but only as passive receivers of infrastructure offers; in a top-down approach the main focus are the infrastructures, and from all the infrastructures the ‘smart’ structures are most prominent, the internet of things.

If one remembers two previous papers of Mila Gascó (2016) and Mila Gascó-Hernandez (2018) then this is a bit astonishing because in these earlier papers she has analyzed that the ‘failure’ of the smart technology strategy in Barcelona was due to the fact that the city government (the experts in our framework) did not include sufficiently enough the citizens as actors!

From the point of view of the AAI paradigm this ‘hiding of the citizens as main actors’ is only due to the inadequate methodology of a top-down approach where a truly bottom-up approach is needed.

In the Oct-2, 2018 version of the AAI theory the bottom-up approach is not yet included. It has been worked out in the context of the new research project about ‘City Planning and eGaming‘  which in turn has been inspired by Mila Gascó-Hernandez!

REFERENCES

  • S.Mersand, M. Gasco-Hernandez, H. Udoh, and J.R. Gil-Garcia. “Public libraries as anchor institutions in smart communities: Current practices and future development”, Proceedings of the 52nd Hawaii International Conference on System Sciences, pages 3305 – 3314, 2019. URL https: //hdl.handle.net/10125/59766 .

  • Mila Gascó, “What makes a city smart? lessons from Barcelona”. 2016 49th Hawaii International Conference on System Sciences (HICSS), pages 2983–2989, Jan 2016. D O I : 10.1109/HICSS.2016.373.

  • Mila Gascó-Hernandez, “Building a smart city: Lessons from Barcelona.”, Commun. ACM, 61(4):50–57, March 2018. ISSN 0001-0782. D O I : 10.1145/3117800. URL http://doi.acm.org/10.1145/3117800 .

THE BETTER WORLD PROJECT IDEA

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org

Last changes: 9.Oct.2018 (Engineering part)

Author: Gerd Doeben-Henisch

Enhanced version of the 'Better World Project' Idea by making explicit the engineering part touching all other aspects
Enhanced version of the ‘Better World Project’ Idea by making explicit the engineering part touching all other aspects

 

The online-book project published on the uffmm.org website has to be seen within a bigger idea which can be named ‘The better world project’.

As outlined in the figure above you can see that the AAIwSE theory is the nucleus of a project which intends to enable a global learning space which connects individual persons as well as schools, universities, cities as well as companies, and even more if wanted.

There are other ideas around using the concept ‘better world’, butt these other concepts are targeting other subjects. In this view here the engineering perspective is laying the ground to build new more effective systems to enhance all aspects of life.

As you already can detect in the AAAIwSE theory published so far there exists a new and enlarged vision of the acting persons, the engineers as the great artists of the real world. Taking this view seriously there will be a need for a new kind of spirituality too which is enabling the acting persons to do all this with a vital interest in the future of life in the universe.

Actually the following websites are directly involved in the ‘Better World Project Idea’: this site ‘uffmm.org’ (in English)  and (in German)  ‘cognitiveagent.org‘ and ‘Kommunalpolitik & eGaming‘. The last link points to an official project of the Frankfurt University of Applied Sciences (FRA-UAS) which will apply the AAI-Methods to all communities in Germany (about 11.000).

ACTOR-ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP). An Actor Centered Approach to Problem Solving

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org

Author: Gerd Doeben-Henisch

Email: gerd@doeben-henisch.de

Draft version 22.June 2018

Update 26.June 2018 (Chapter AS-AM Summary)

Update 4.July 2018 (Chapter 4 Actor Model; improving the terminology of environments with actors, actors as input-output systems, basic and real interface, a first typology of input-output systems…)

Update 17.July 2018 (Preface, Introduction new)

Update 19.July 2018 (Introduction final paragraph!, new chapters!)

Update 20.July 2018 (Disentanglement of chapter ‘Simulation & Verification’ into two independent chapters; corrections in the chapter ‘Introduction’; corrections in chapter ‘AAI Analysis’; extracting ‘Simulation’ from chapter ‘Actor Story’ to new chapter ‘Simulation’; New chapter ‘Simulation’; Rewriting of chapter ‘Looking Forward’)

Update 22.July 2018 (Rewriting the beginning of the chapter ‘Actor Story (AS)’, not completed; converting chapter ‘AS+AM Summary’ to ‘AS and AM Philosophy’, not completed)

Update 23.July 2018 (Attaching a new chapter with a Case Study illustrating an actor story (AS). This case study is still unfinished. It is a case study of  a real project!)

Update 7.August 2018 (Modifying chapter Actor Story, the introduction)

Update 8.August 2018 (Modifying chapter  AS as Text, Comic, Graph; especially section about the textual mode and the pictorial mode; first sketch for a mapping from the textual mode into the pictorial mode)

Update 9.August 2018 (Modification of the section ‘Mathematical Actor Story (MAS) in chapter 4).

Update 11.August 2018 (Improving chapter 3 ‘Actor Story; nearly complete rewriting of chapter 4 ‘AS as text, comic, graph’.)

Update 12.August 2018 (Minor corrections in the chapters 3+4)

Update 13.August 2018 (I am still catched by the chapters 3+4. In chapter  the cognitive structure of the actors has been further enhanced; in chapter 4 a complete example of a mathematical actor story could now been attached.)

Update 14.August 2018 (minor corrections to chapter 4 + 5; change-statements define for each state individual combinatorial spaces (a little bit like a quantum state); whether and how these spaces will be concretized/ realized depends completely from the participating actors)

Update 15.August 2018 (Canceled the appendix with the case study stub and replaced it with an overview for  a supporting software tool which is needed for the real usage of this theory. At the moment it is open who will write the software.)

Update 2.October 2018 (Configuring the whole book now with 3 parts: I. Theory, II. Application, III. Software. Gerd has his focus on part I, Zeynep will focus on part II and ‘somebody’ will focus on part III (in the worst case we will — nevertheless — have a minimal version :-)). For a first quick overview about everything read the ‘Preface’ and the ‘Introduction’.

Update 4.November 2018 (Rewriting the Introduction (and some minor corrections in the Preface). The idea of the rewriting was to address all the topics which will be discussed in the book and pointing out to the logical connections between them. This induces some wrong links in the following chapters, which are not yet updated. Some chapters are yet completely missing. But to improve the clearness of the focus and the logical inter-dependencies helps to elaborate the missing texts a lot. Another change is the wording of the title. Until now it is difficult to find a title which is exactly matching the content. The new proposal shows the focus ‘AAI’ but lists the keywords of the main topics within AAA analysis because these topics are usually not necessarily associated with AAI.)

ACTOR-ACTOR INTERACTION [AAI]. An Actor Centered Approach to Problem Solving. Combining Engineering and Philosophy

by

GERD DOEBEN-HENISCH in cooperation with  LOUWRENCE ERASMUS, ZEYNEP TUNCER

LATEST  VERSION AS PDF

BACKGROUND INFORMATION 19.Dec.2018: Application domain ‘Communal Planning and e-Gaming’

BACKGROUND INFORMATION 24.Dec.2018: The AAI-paradigm and Quantum Logic

PRE-VIEW: NEW EXPANDED AAI THEORY 23.January 2019: Outline of the new expanded  AAI Paradigm. Before re-writing the main text with these ideas the new advanced AAI theory will first be tested during the summer 2019 within a lecture with student teams as well as in  several workshops outside the Frankfurt University of Applied Sciences with members of different institutions.

ACTOR-ACTOR INTERACTION. Philosophy of the Actor

eJournal: uffmm.org, ISSN 2567-6458
16.March 2018
Email: info@uffmm.org
Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Frankfurt University of Applied Sciences (FRA-UAS)
Institut for New Media (INM, Frankfurt)

PDF

CONTENTS

I   A Vision as a Problem to be Solved … 1
II   Language, Meaning & Ontology …  2
     II-A   Language Levels . . . . . . . . .  . . 2
     II-B  Common Empirical Matter .  . . . . . 2
     II-C   Perceptual Levels . . . . . . .  . . . . 3
     II-D   Space & Time . . . . . . . .  . . . . . 4
     II-E    Different Language Modes . . . 4
     II-F    Meaning of Expressions & Ontology … 4
     II-G   True Expressions . . . . . . .  . . . .  5
     II-H   The Congruence of Meaning  . . . .  5
III   Actor Algebra … 6
IV   World Algebra  … 7
V    How to continue … 8
VI References … 8

Abstract

As preparation for this text one should read the chapter about the basic layout of an Actor-Actor Analysis (AAA) as part of an systems engineering process (SEP). In this text it will be described which internal conditions one has to assume for an actor who uses a language to talk about his observations oft he world to someone else in a verifiable way. Topics which are explained in this text are e.g. ’language’,’meaning’, ’ontology’, ’consciousness’, ’true utterance’, ’synonymous expression.

uffmm – RESTART AS SCIENTIFIC WORKPLACE

RESTART OF UFFMM AS SCIENTIFIC WORKPLACE.
For the Integrated Engineering of the Future (SW4IEF)
Campaining the Actor-Actor Systems Engineering (AASE) paradigm

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org

Last Update June-22, 2018, 15:32 CET.  See below: Case Studies —  Templates – AASE Micro Edition – and Scheduling 2018 —

RESTART

This is a complete new restart of the old uffmm-site. It is intended as a working place for those people who are interested in an integrated engineering of the future.

SYSTEMS ENGINEERING

A widely known and useful concept for a general approach to the engineering of problems is systems engineering (SE).

Open for nearly every kind of a possible problem does a systems engineering process (SEP) organize the process how to analyze the problem, and turn this analysis into a possible design for a solution. This proposed solution will be examined by important criteria and, if it reaches an optimal version, it will be implemented as a real working system. After final evaluations this solution will start its carrier in the real world.

PHILOSOPHY OF SCIENCE

In a meta-scientific point of view the systems engineering process can become itself the object of an analysis. This is usually done by a discipline called philosophy of science (PoS). Philosophy of science is asking, e.g., what the ‘ingredients’ of an systems-engineering process are, or how these ingredients do interact? How can such a process ‘fail’? ‘How can such a process be optimized’? Therefore a philosophy of science perspective can help to make a systems engineering process more transparent and thereby supports an optimization of these processes.

AAI (KNOWN AS HMI, HCI …)

A core idea of the philosophy of science perspective followed in this text is the assumption, that a systems engineering process is primarily based on different kinds of actors (AC) whose interactions enable and direct the whole process. These assumptions are also valid in that case, where the actors are not any more only biological systems like human persons and non-biological systems called machines, but also in that case where the traditional machines (M) are increasingly replaced by ‘intelligent machines (IM)‘. Therefore the well know paradigm of human-machine interaction (HMI) — or earlier ‘human-computer interaction (HCI)’  will be replaced in this text by the new paradigm of Actor-Actor Interaction (AAI). In this new version the main perspective is not the difference of man on one side and machines on the other but the kind of interactions between actors of all kind which are necessary and possible.

INTELLIGENT MACHINES

The  concept of intelligent machines (IM) is understood here as a special case of the general Actor (A) concept which includes as other sub-cases biological systems, predominantly humans as instantiations of the species Homo Sapiens. While until today the question of biological intelligence and machine intelligence is usually treated separately and differently it is intended in this text to use one general concept of intelligence for all actors. This allows then more direct comparisons and evaluations. Whether biological actors are in some sense better than the non-biological actors or vice versa can seriously only be discussed when the used concept of intelligence is the same.

ACTOR STORY AND ACTOR MODELS

And, as it will be explained in the following sections, the used paradigm of actor-actor interactions uses the two main concepts of actor story (AS) as well as actor model (AM). Actor models are embedded in the actor stories. Whether an actor model describes biological or non-biological actors does not matter. Independent of the inner structures of an actor model (which can be completely different) the actor story is always  completely described in terms of observable behavior which are the same for all kinds of actors (Comment: The major scientific disciplines for the analysis of behavior are biology, psychology, and sociology).

AASE PARADIGM

In analogy to the so-called ‘Object-Oriented (OO) approach in Software-Engineering (SWE)’ we campaign here the ‘Actor-Actor (AA) Systems Engineering (SE)’ approach. This takes the systems Engineering approach as a base concepts and re-works the whole framework from the point of view of the actor-actor paradigm.  AASE is seen here as a theory as well as an   domain of applications.

Ontologies of the AASE paradigm
Figure: Ontologies of the AASE paradigm

To understand the different perspectives of the used theory it can help to the figure ‘AASE-Paradigm Ontologies’. Within the systems engineering process (SEP) we have AAI-experts as acting actors. To describe these we need a ‘meta-level’ realized by a ‘philosophy of the actor’. The AAI-experts themselves are elaborating within an AAI-analysis an actor story (AS) as framework for different kinds of intended actors. To describe the inner structures of these intended actors one needs different kinds of ‘actor models’. The domain of actor-model structures overlaps with the domain of ‘machine learning (ML)’ and with ‘artificial intelligence (AI)’.

SOFTWARE

What will be described and developed separated from these theoretical considerations is an appropriate software environment which allows the construction of solutions within the AASE approach including e.g. the construction of intelligent machines too. This software environment is called in this text emerging-mind lab (EML) and it will be another public blog as well.

 

THEORY MICRO EDITION & CASE STUDIES

How we proceed

Because the overall framework of the intended integrated theory is too large to write it down in one condensed text with  all the necessary illustrating examples we decided in Dec 2017 to follow a bottom-up approach by writing primarily case studies from different fields. While doing this we can introduce stepwise the general theory by developing a Micro Edition of the Theory in parallel to the case studies. Because the Theory Micro Edition has gained a sufficient minimal completeness already in April 2018 we do not need anymore a separate   template for case studies. We will use the Theory Micro Edition  as  ‘template’ instead.

To keep the case studies readable as far as possible all needed mathematical concepts and formulas will be explained in a separate appendix section which is central for all case studies. This allows an evolutionary increase in the formal apparatus used for the integrated theory.

THEORY IN A BOOK FORMAT

(Still not final)

Here you can find the actual version of the   theory which will continuously be updated and extended by related topics.

At the end of the text you find a list of ToDos where everybody is invited to collaborate. The main editor is Gerd Doeben-Henisch deciding whether the proposal fits into the final text or not.

Last Update 22.June 2018

Philosophy of the Actor

This sections describes basic assumptions about the cognitive structure of the human AAI expert.

From HCI to AAI. Some Bits of History

This sections describes main developments in the history from HCI to AAI.

SCHEDULE 2018

The Milestone for a first outline in a book format has been reached June-22, 2018. The   milestone for a first final version   is  scheduled   for October-4, 2018.