Category Archives: collective intelligence

Collective human-machine intelligence and text generation. A transdisciplinary analysis.

Author: Gerd Doeben-Henisch

Email: info@uffmm.org

Time: Sept 25, 2023 – Oct 3, 2023

Translation: This text is a translation from the German Version into English with the aid of the software deepL.com as well as with chatGPT4, moderated by the author. The style of the two translators is different. The author is not good enough to classify which translator is ‘better’.

CONTEXT

This text is the outcome of a conference held at the Technical University of Darmstadt (Germany) with the title: Discourses of disruptive digital technologies using the example of AI text generators ( https://zevedi.de/en/topics/ki-text-2/ ). A German version of this article will appear in a book from de Gruyter as open access in the beginning of 2024.

Collective human-machine intelligence and text generation. A transdisciplinary analysis.

Abstract

Based on the conference theme “AI – Text and Validity. How do AI text generators change scientific discourse?” as well as the special topic “Collective human-machine intelligence using the example of text generation”, the possible interaction relationship between text generators and a scientific discourse will be played out in a transdisciplinary analysis. For this purpose, the concept of scientific discourse will be specified on a case-by-case basis using the text types empirical theory as well as sustained empirical theory in such a way that the role of human and machine actors in these discourses can be sufficiently specified. The result shows a very clear limitation of current text generators compared to the requirements of scientific discourse. This leads to further fundamental analyses on the example of the dimension of time with the phenomenon of the qualitatively new as well as on the example of the foundations of decision-making to the problem of the inherent bias of the modern scientific disciplines. A solution to the inherent bias as well as the factual disconnectedness of the many individual disciplines is located in the form of a new service of transdisciplinary integration by re-activating the philosophy of science as a genuine part of philosophy. This leaves the question open whether a supervision of the individual sciences by philosophy could be a viable path? Finally, the borderline case of a world in which humans no longer have a human counterpart is pointed out.

AUDIO: Keyword Sound

STARTING POINT

This text takes its starting point from the conference topic “AI – Text and Validity. How do AI text generators change scientific discourses?” and adds to this topic the perspective of a Collective Human-Machine Intelligence using the example of text generation. The concepts of text and validity, AI text generators, scientific discourse, and collective human-machine intelligence that are invoked in this constellation represent different fields of meaning that cannot automatically be interpreted as elements of a common conceptual framework.

TRANSDISCIPLINARY

In order to be able to let the mentioned terms appear as elements in a common conceptual framework, a meta-level is needed from which one can talk about these terms and their possible relations to each other. This approach is usually located in the philosophy of science, which can have as its subject not only single terms or whole propositions, but even whole theories that are compared or possibly even united. The term transdisciplinary [1] , which is often used today, is understood here in this philosophy of science understanding as an approach in which the integration of different concepts is redeemed by introducing appropriate meta-levels. Such a meta-level ultimately always represents a structure in which all important elements and relations can gather.

[1] Jürgen Mittelstraß paraphrases the possible meaning of the term transdisciplinarity as a “research and knowledge principle … that becomes effective wherever a solely technical or disciplinary definition of problem situations and problem solutions is not possible…”. Article Methodological Transdisciplinarity, in LIFIS ONLINE, www.leibniz-institut.de, ISSN 1864-6972, p.1 (first published in: Technology Assessment – Theory and Practice No.2, 14.Jg., June 2005, 18-23). In his text Mittelstrass distinguishes transdisciplinarity from the disciplinary and from the interdisciplinary. However, he uses only a general characterization of transdisciplinarity as a research guiding principle and scientific form of organization. He leaves the concrete conceptual formulation of transdisciplinarity open. This is different in the present text: here the transdisciplinary theme is projected down to the concreteness of the related terms and – as is usual in philosophy of science (and meta-logic) – realized by means of the construct of meta-levels.

SETTING UP A STRUCTURE

Here the notion of scientific discourse is assumed as a basic situation in which different actors can be involved. The main types of actors considered here are humans, who represent a part of the biological systems on planet Earth as a kind of Homo sapiens, and text generators, which represent a technical product consisting of a combination of software and hardware.

It is assumed that humans perceive their environment and themselves in a species-typical way, that they can process and store what they perceive internally, that they can recall what they have stored to a limited extent in a species-typical way, and that they can change it in a species-typical way, so that internal structures can emerge that are available for action and communication. All these elements are attributed to human cognition. They are working partially consciously, but largely unconsciously. Cognition also includes the subsystem language, which represents a structure that on the one hand is largely species-typically fixed, but on the other hand can be flexibly mapped to different elements of cognition.

In the terminology of semiotics [2] the language system represents a symbolic level and those elements of cognition, on which the symbolic structures are mapped, form correlates of meaning, which, however, represent a meaning only insofar as they occur in a mapping relation – also called meaning relation. A cognitive element as such does not constitute meaning in the linguistic sense. In addition to cognition, there are a variety of emotional factors that can influence both cognitive processes and the process of decision-making. The latter in turn can influence thought processes as well as action processes, consciously as well as unconsciously. The exact meaning of these listed structural elements is revealed in a process model [3] complementary to this structure.

[2] See, for example, Winfried Nöth: Handbuch der Semiotik. 2nd, completely revised edition. Metzler, Stuttgart/Weimar, 2000

[3] Such a process model is presented here only in partial aspects.

SYMBOLIC COMMUNICATION SUB-PROCESS

What is important for human actors is that they can interact in the context of symbolic communication with the help of both spoken and written language. Here it is assumed – simplistically — that spoken language can be mapped sufficiently accurately into written language, which in the standard case is called text. It should be noted that texts only represent meaning if the text producers involved, as well as the text recipients, have a meaning function that is sufficiently similar.
For texts by human text producers it is generally true that, with respect to concrete situations, statements as part of texts can be qualified under agreed conditions as now matching the situation (true) or as now not now matching the situation (false). However, a now-true can become a now-not-true again in the next moment and vice versa.

This dynamic fact refers to the fact that a punctual occurrence or non-occurrence of a statement is to be distinguished from a structural occurrence/ non-occurrence of a statement, which speaks about occurrence/ non-occurrence in context. This refers to relations which are only indirectly apparent in the context of a multitude of individual events, if one considers chains of events over many points in time. Finally, one must also consider that the correlates of meaning are primarily located within the human biological system. Meaning correlates are not automatically true as such, but only if there is an active correspondence between a remembered/thought/imagined meaning correlate and an active perceptual element, where an intersubjective fact must correspond to the perceptual element. Just because someone talks about a rabbit and the recipient understands what a rabbit is, this does not mean that there is also a real rabbit which the recipient can perceive.

TEXT-GENERATORS

When distinguishing between the two different types of actors – here biological systems of the type Homo sapiens and there technical systems of the type text-generators – a first fundamental asymmetry immediately strikes the eye: so-called text-generators are entities invented and built by humans; furthermore, it is humans who use them, and the essential material used by text-generators are furthermore texts, which are considered human cultural property, created and used by humans for a variety of discourse types, here restricted to scientific discourse.


In the case of text generators, let us first note that we are dealing with machines that have input and output, a minimal learning capability, and whose input and output can process text-like objects.
Insofar as text generators can process text-like objects as input and process them again as output, an exchange of texts between humans and text generators can take place in principle.

At the current state of development (September 2023), text generators do not yet have an independent real-world perception within the scope of their input, and the entire text generator system does not yet have such processes as those that enable species-typical cognitions in humans. Furthermore, a text generator does not yet have a meaning function as it is given with humans.

From this fact it follows automatically that text generators cannot decide about selective or structural correctness/not correctness in the case of statements of a text. In general, they do not have their own assignment of meaning as with humans. Texts generated by text generators only have a meaning if a human as a recipient automatically assigns a meaning to a text due to his species-typical meaning relation, because this is the learned behavior of a human. In fact, the text generator itself has never assigned any meaning to the generated text. Salopp one could also formulate that a technical text generator works like a parasite: it collects texts that humans have generated, rearranges them combinatorially according to formal criteria for the output, and for the receiving human a meaning event is automatically triggered by the text in the human, which does not exist anywhere in the text generator.
Whether this very restricted form of text generation is now in any sense detrimental or advantageous for the type of scientific discourse (with texts), that is to be examined in the further course.

SCIENTIFIC DISCOURSE

There is no clear definition for the term scientific discourse. This is not surprising, since an unambiguous definition presupposes that there is a fully specified conceptual framework within which terms such as discourse and scientific can be clearly delimited. However, in the case of a scientific enterprise with a global reach, broken down into countless individual disciplines, this does not seem to be the case at present (Sept 2023). For the further procedure, we will therefore fall back on core ideas of the discussion in philosophy of science since the 20th century [4]and we will introduce working hypotheses on the concept of empirical theory as well as sustainable empirical theory, so that a working hypothesis on the concept of scientific discourse will be possible, which has a minimal sharpness.

[4] A good place to start may be: F. Suppe, Editor. The Structure of Scientific Theories. University of Illinois Press, Urbana, 2 edition, 1979.

EMPIRICAL THEORY

The following assumptions are made for the notion of an empirical theory:

  1. an empirical theory is basically a text, written in a language that all participants understand.
  2. one part of the theory contains a description of an initial situation, the statements of which can be qualified by the theory users as now matching (true) or now not matching (false).
  3. another part of the theory contains a text that lists all changes that, to the knowledge of the participants, occur in the context of the initial situation and can change parts of the initial situation.
  4. changes in the initial situation are expressed by replacing certain statements of the initial situation with other statements. The resulting new text replaces the previous text.
  5. through the possibility of generating new initial situations, there is the possibility of making predictions (forming expectations) by applying rules of change to an applicable initial situation several times (at least once) in succession. The texts that are generated in each case induce in the minds of the participants, on the basis of the available meaning functions, the idea of a situation that is demanded to become qualified as now matching with intersubjective reality, should it occur. In the case of occurrence, the situation must correspond to the conception in the mind via perception. Whether such a correspondence can be established, after how long time and to what extent, this is basically open in the presence of the prediction making (the formation of an expectation) (autonomy of the object!).

SCIENTIFIC DISCOURSE NEW

Even before the introduction of the notion of a sustainable empirical theory, the notion of an empirical theory just introduced allows for initial statements about what a scientific discourse could or should be.
It is assumed here that the participants in a scientific discourse exchange their opinions about the world in the form of texts, all of which meet the requirements of an empirical theory.

WITH HUMANS

Insofar as the participants in the discourse are human beings, we know that they have basic species-typical abilities to generate subjective meanings by means of language, which can be decided as now true or now not true by reference to a real situation.

WITH TEXT GENERATORS

Insofar as the discourse participants would be text generators lacking these elementary skills (meaning, reality reference), they drop out as independent actors for a scientific discourse.
To illustrate this, here is a self-assessment of chatGPT4, a current text generator:

ChatGPT

Yes, your summary of our previous dialogue is accurate based on the points you’ve listed:

  1. I cannot read a book in the same way a human does, meaning I don’t interpret or comprehend in the same manner.
  2. My knowledge is up to September 2021, which means that I might not be aware of events, advancements, or publications after that point.
  3. My “learning” is different from human learning. I don’t learn from new experiences or information after my last update. Instead, I generate responses based on patterns in the data I was trained on.
  4. I don’t cite individual sources in my responses. I provide information based on the patterns recognized during my training.
  5. Responses I give can vary slightly even if the same question is posed multiple times.
  6. I can’t directly attribute my statements to specific, individual sources.
  7. The specifics about my training data and the processes that determine my responses are not transparently provided in each interaction.

You’ve captured the essence of our prior conversation well. If you have further questions or need clarifications on any of these points, please let me know. [5]

[5] This text is from a chat experiment conducted by the author with chatGPT4 on August 31, 2023. The citation can be found in: Gerd Doeben-Henisch, CONTINUE EXPERIMENT WITH CHATGPT4: Science, Empirical Science, Philosophy of Science, uffmm, Integrating Engineering and the Human Factor, eJournal uffmm.org ISSN 2567-6458,
8/31/2023 in [https://www.uffmm.org/2023/08/31/continue-experiment-with-chatgpt4-science-empirical-science-philosophy-of-science/ ] (accessed 9/27/2023).

The question then arises whether (current) text generators, despite their severely limited capabilities, could nevertheless contribute to scientific discourse, and what this contribution means for human participants. Since text generators fail for the hard scientific criteria (decidable reality reference, reproducible predictive behavior, separation of sources), one can only assume a possible contribution within human behavior: since humans can understand and empirically verify texts, they would in principle be able to rudimentarily classify a text from a text generator within their considerations.

For hard theory work, these texts would not be usable, but due to their literary-associative character across a very large body of texts, the texts of text generators could – in the positive case – at least introduce thoughts into the discourse through texts as stimulators via the detour of human understanding, which would stimulate the human user to examine these additional aspects to see if they might be important for the actual theory building after all. In this way, the text generators would not participate independently in the scientific discourse, but they would indirectly support the knowledge process of the human actors as aids to them.[6]

[6] A detailed illustration of this associative role of a text generator can also be found in (Doeben-Henisch, 2023) on the example of the term philosophy of science and on the question of the role of philosophy of science.

CHALLENGE DECISION

The application of an empirical theory can – in the positive case — enable an expanded picture of everyday experience, in that, related to an initial situation, possible continuations (possible futures) are brought before one’s eyes.
For people who have to shape their own individual processes in their respective everyday life, however, it is usually not enough to know only what one can do. Rather, everyday life requires deciding in each case which continuation to choose, given the many possible continuations. In order to be able to assert themselves in everyday life with as little effort as possible and with – at least imagined – as little risk as possible, people have adopted well-rehearsed behavior patterns for as many everyday situations as possible, which they follow spontaneously without questioning them anew each time. These well-rehearsed behavior patterns include decisions that have been made. Nevertheless, there are always situations in which the ingrained automatisms have to be interrupted in order to consciously clarify the question for which of several possibilities one wants to decide.

The example of an individual decision-maker can also be directly applied to the behavior of larger groups. Normally, even more individual factors play a role here, all of which have to be integrated in order to reach a decision. However, the characteristic feature of a decision situation remains the same: whatever knowledge one may have at the time of decision, when alternatives are available, one has to decide for one of many alternatives without any further, additional knowledge at this point. Empirical science cannot help here [7]: it is an indisputable basic ability of humans to be able to decide.

So far, however, it remains rather hidden in the darkness of not knowing oneself, which ultimately leads to deciding for one and not for the other. Whether and to what extent the various cultural patterns of decision-making aids in the form of religious, moral, ethical or similar formats actually form or have formed a helpful role for projecting a successful future appears to be more unclear than ever.[8]

[7] No matter how much detail she can contribute about the nature of decision-making processes.

[8] This topic is taken up again in the following in a different context and embedded there in a different solution context.

SUSTAINABLE EMPIRICAL THEORY

Through the newly flared up discussion about sustainability in the context of the United Nations, the question of prioritizing action relevant to survival has received a specific global impulse. The multitude of aspects that arise in this discourse context [9] are difficult, if not impossible, to classify into an overarching, consistent conceptual framework.

[9] For an example see the 17 development goals: [https://unric.org/de/17ziele/] (Accessed: September 27, 2023)

A rough classification of development goals into resource-oriented and actor-oriented can help to make an underlying asymmetry visible: a resource problem only exists if there are biological systems on this planet that require a certain configuration of resources (an ecosystem) for their physical existence. Since the physical resources that can be found on planet Earth are quantitatively limited, it is possible, in principle, to determine through thought and science under what conditions the available physical resources — given a prevailing behavior — are insufficient. Added to this is the factor that biological systems, by their very existence, also actively alter the resources that can be found.

So, if there should be a resource problem, it is exclusively because the behavior of the biological systems has led to such a biologically caused shortage. Resources as such are neither too much, nor too little, nor good, nor bad. If one accepts that the behavior of biological systems in the case of the species Homo sapiens can be controlled by internal states, then the resource problem is primarily a cognitive and emotional problem: Do we know enough? Do we want the right thing? And these questions point to motivations beyond what is currently knowable. Is there a dark spot in the human self-image here?

On the one hand, this questioning refers to the driving forces for a current decision beyond the possibilities of the empirical sciences (trans-empirical, meta-physical, …), but on the other hand, this questioning also refers to the center/ core of human competence. This motivates to extend the notion of empirical theory to the notion of a sustainable empirical theory. This does not automatically solve the question of the inner mechanism of a value decision, but it systematically classifies the problem. The problem thus has an official place. The following formulation is suggested as a characterization for the concept of a sustainable empirical theory:

  1. a sustainable empirical theory contains an empirical theory as its core.
    1. besides the parts of initial situation, rules of change and application of rules of change, a sustainable theory also contains a text with a list of such situations, which are considered desirable for a possible future (goals, visions, …).
    2. under the condition of goals, it is possible to minimally compare each current situation with the available goals and thereby indicate the degree of goal achievement.

Stating desired goals says nothing about how realistic or promising it is to pursue those goals. It only expresses that the authors of this theory know these goals and consider them optimal at the time of theory creation. [10] The irrationality of chosen goals is in this way officially included in the domain of thought of the theory creators and in this way facilitates the extension of the rational to the irrational without already having a real solution. Nobody can exclude that the phenomenon of bringing forth something new, respectively of preferring a certain point of view in comparison to others, can be understood further and better in the future.

[10] Something can only be classified as optimal if it can be placed within an overarching framework, which allows for positioning on a scale. This refers to a minimal cognitive model as an expression of rationality. However, the decision itself takes place outside of such a rational model; in this sense, the decision as an independent process is pre-rational.

EXTENDED SCIENTIFIC DISCOURSE

If one accepts the concept of a sustainable empirical theory, then one can extend the concept of a scientific discourse in such a way that not only texts that represent empirical theories can be introduced, but also those texts that represent sustainable empirical theories with their own goals. Here too, one can ask whether the current text generators (September 2023) can make a constructive contribution. Insofar as a sustainable empirical theory contains an empirical theory as a hard core, the preceding observations on the limitations of text generators apply. In the creative part of the development of an empirical theory, they can contribute text fragments through their associative-combinatorial character based on a very large number of documents, which may inspire the active human theory authors to expand their view. But what about that part that manifests itself in the selection of possible goals? At this point, one must realize that it is not about any formulations, but about those that represent possible solution formulations within a systematic framework; this implies knowledge of relevant and verifiable meaning structures that could be taken into account in the context of symbolic patterns. Text generators fundamentally do not have these abilities. But it is – again – not to be excluded that their associative-combinatorial character based on a very large number of documents can still provide one or the other suggestion.

In retrospect of humanity’s history of knowledge, research, and technology, it is suggested that the great advances were each triggered by something really new, that is, by something that had never existed before in this form. The praise for Big Data, as often heard today, represents – colloquially speaking — exactly the opposite: The burial of the new by cementing the old.[11]

[11] A prominent example of the naive fixation on the old as a standard for what is right can be seen, for example, in the book by Seth Stephens-Davidowitz, Don’t Trust Your Gut. Using Data Instead of Instinct To Make Better Choices, London – Oxford New York et al., 2022.

EXISTENTIALLY NEW THROUGH TIME

The concept of an empirical theory inherently contains the element of change, and even in the extended concept of a sustainable empirical theory, in addition to the fundamental concept of change, there is the aspect of a possible goal. A possible goal itself is not a change, but presupposes the reality of changes! The concept of change does not result from any objects but is the result of a brain performance, through which a current present is transformed into a partially memorable state (memory contents) by forming time slices in the context of perception processes – largely unconsciously. These produced memory contents have different abstract structures, are networked differently with each other, and are assessed in different ways. In addition, the brain automatically compares current perceptions with such stored contents and immediately reports when a current perception has changed compared to the last perception contents. In this way, the phenomenon of change is a fundamental cognitive achievement of the brain, which thus makes the character of a feeling of time available in the form of a fundamental process structure. The weight of this property in the context of evolution is hardly to be overestimated, as time as such is in no way perceptible.

[12] The modern invention of machines that can generate periodic signals (oscillators, clocks) has been successfully integrated into people’s everyday lives. However, the artificially (technically) producible time has nothing to do with the fundamental change found in reality. Technical time is a tool that we humans have invented to somehow structure the otherwise amorphous mass of a phenomenon stream. Since structure itself shows in the amorphous mass, which manifest obviously for all, repeating change cycles (e.g., sunrise and sunset, moonrise and moonset, seasons, …), a correlation of technical time models and natural time phenomena was offered. From the correlations resulting here, however, one should not conclude that the amorphous mass of the world phenomenon stream actually behaves according to our technical time model. Einstein’s theory of relativity at least makes us aware that there can be various — or only one? — asymmetries between technical time and world phenomenon stream.


Assuming this fundamental sense of time in humans, one can in principle recognize whether a current phenomenon, compared to all preceding phenomena, is somehow similar or markedly different, and in this sense indicates something qualitatively new.[13]

[13] Ultimately, an individual human only has its individual memory contents available for comparison, while a collective of people can in principle consult the set of all records. However, as is known, only a minimal fraction of the experiential reality is symbolically transformed.

By presupposing the concept of directed time for the designation of qualitatively new things, such a new event is assigned an information value in the Shannonian sense, as well as the phenomenon itself in terms of linguistic meaning, and possibly also in the cognitive area: relative to a spanned knowledge space, the occurrence of a qualitatively new event can significantly strengthen a theoretical assumption. In the latter case, the cognitive relevance may possibly mutate to a sustainable relevance if the assumption marks a real action option that could be important for further progress. In the latter case, this would provoke the necessity of a decision: should we adopt this action option or not? Humans can accomplish the finding of qualitatively new things. They are designed for it by evolution. But what about text generators?

Text generators so far do not have a sense of time comparable to that of humans. Their starting point would be texts that are different, in such a way that there is at least one text that is the most recent on the timeline and describes real events in the real world of phenomena. Since a text generator (as of September 2023) does not yet have the ability to classify texts regarding their applicability/non-applicability in the real world, its use would normally end here. Assuming that there are people who manually perform this classification for a text generator [14] (which would greatly limit the number of possible texts), then a text generator could search the surface of these texts for similar patterns and, relative to them, for those that cannot be compared. Assuming that the text generator would find a set of non-comparable patterns in acceptable time despite a massive combinatorial explosion, the problem of semantic qualification would arise again: which of these patterns can be classified as an indication of something qualitatively new? Again, humans would have to become active.

[14] Such support of machines by humans in the field of so-called intelligent algorithms has often been applied (and is still being applied today, see: [https://www.mturk.com/] (Accessed: September 27, 2023)), and is known to be very prone to errors.

As before, the verdict is mixed: left to itself, a text generator will not be able to solve this task, but in cooperation with humans, it may possibly provide important auxiliary services, which could ultimately be of existential importance to humans in search of something qualitatively new despite all limitations.

THE IMMANENT PREJUDICE OF THE SCIENCES

A prejudice is known to be the assessment of a situation as an instance of a certain pattern, which the judge assumes applies, even though there are numerous indications that the assumed applicability is empirically false. Due to the permanent requirement of everyday life that we have to make decisions, humans, through their evolutionary development, have the fundamental ability to make many of their everyday decisions largely automatically. This offers many advantages, but can also lead to conflicts.

Daniel Kahneman introduced in this context in his book [15] the two terms System 1 and System 2 for a human actor. These terms describe in his concept of a human actor two behavioral complexes that can be distinguished based on some properties.[16] System 1 is set by the overall system of human actor and is characterized by the fact that the actor can respond largely automatically to requirements by everyday life. The human actor has automatic answers to certain stimuli from his environment, without having to think much about it. In case of conflicts within System 1 or from the perspective of System 2, which exercises some control over the appropriateness of System 1 reactions in a certain situation in conscious mode, System 2 becomes active. This does not have automatic answers ready, but has to laboriously work out an answer to a given situation step by step. However, there is also the phenomenon that complex processes, which must be carried out frequently, can be automated to a certain extent (bicycling, swimming, playing a musical instrument, learning language, doing mental arithmetic, …). All these processes are based on preceding decisions that encompass different forms of preferences. As long as these automated processes are appropriate in the light of a certain rational model, everything seems to be OK. But if the corresponding model is distorted in any sense, then it would be said that these models carry a prejudice.

[15] Daniel Kahnemann, Thinking Fast and Slow, Pinguin Boooks Random House, UK, 2012 (zuerst 2011)

[16] See the following Chapter 1 in Part 1 of (Kahnemann, 2012, pages 19-30).

In addition to the countless examples that Kahneman himself cites in his book to show the susceptibility of System 1 to such prejudices, it should be pointed out here that the model of Kahneman himself (and many similar models) can carry a prejudice that is of a considerably more fundamental nature. The division of the behavioral space of a human actor into a System 1 and 2, as Kahneman does, obviously has great potential to classify many everyday events. But what about all the everyday phenomena that fit neither the scheme of System 1 nor the scheme of System 2?

In the case of making a decision, System 1 comments that people – if available – automatically call up and execute an available answer. Only in the case of conflict under the control of System 2 can there be lengthy operations that lead to other, new answers.

In the case of decisions, however, it is not just about reacting at all, but there is also the problem of choosing between known possibilities or even finding something new because the known old is unsatisfactory.

Established scientific disciplines have their specific perspectives and methods that define areas of everyday life as a subject area. Phenomena that do not fit into this predefined space do not occur for the relevant discipline – methodically conditioned. In the area of decision-making and thus the typical human structures, there are not a few areas that have so far not found official entry into a scientific discipline. At a certain point in time, there are ultimately many, large phenomenon areas that really exist, but methodically are not present in the view of individual sciences. For a scientific investigation of the real world, this means that the sciences, due to their immanent exclusions, are burdened with a massive reservation against the empirical world. For the task of selecting suitable sustainable goals within the framework of sustainable science, this structurally conditioned fact can be fatal. Loosely formulated: under the banner of actual science, a central principle of science – the openness to all phenomena – is simply excluded, so as not to have to change the existing structure.

For this question of a meta-reflection on science itself, text generators are again only reduced to possible abstract text delivery services under the direction of humans.

SUPERVISION BY PHILOSOPHY

The just-described fatal dilemma of all modern sciences is to be taken seriously, as without an efficient science, sustainable reflection on the present and future cannot be realized in the long term. If one agrees that the fatal bias of science is caused by the fact that each discipline works intensively within its discipline boundaries, but does not systematically organize communication and reflection beyond its own boundaries with a view to other disciplines as meta-reflection, the question must be answered whether and how this deficit can be overcome.

There is only one known answer to this question: one must search for that conceptual framework within which these guiding concepts can meaningfully interact both in their own right and in their interaction with other guiding concepts, starting from those guiding concepts that are constitutive for the individual disciplines.

This is genuinely the task of philosophy, concretized by the example of the philosophy of science. However, this would mean that each individual science would have to use a sufficiently large part of its capacities to make the idea of the one science in maximum diversity available in a real process.

For the hard conceptual work hinted at here, text generators will hardly be able to play a central role.

COLLECTIVE INTELLIGENCE

Since so far there is no concept of intelligence in any individual science that goes beyond a single discipline, it makes little sense at first glance to apply the term intelligence to collectives. However, looking at the cultural achievements of humanity as a whole, and here not least with a view to the used language, it is undeniable that a description of the performance of an individual person, its individual performance, is incomplete without reference to the whole.

So, if one tries to assign an overarching meaning to the letter combination intelligence, one will not be able to avoid deciphering this phenomenon of the human collective in the form of complex everyday processes in a no less complex dynamic world, at least to the extent that one can identify a somewhat corresponding empirical something for the letter combination intelligence, with which one could constitute a comprehensible meaning.

Of course, this term should be scalable for all biological systems, and one would have to have a comprehensible procedure that allows the various technical systems to be related to this collective intelligence term in such a way that direct performance comparisons between biological and technical systems would be possible.[17]

[17] The often quoted and popular Turing Test (See: Alan M. Turing: Computing Machinery and Intelligence. In: Mind. Volume LIX, No. 236, 1950, 433–460, [doi:10.1093/mind/LIX.236.433] (Accessed: Sept 29, 2023) in no way meets the methodological requirements that one would have to adhere to if one actually wanted to come to a qualified performance comparison between humans and machines. Nevertheless, the basic idea of Turing in his meta-logical text from 1936, published in 1937 (see: A. M. Turing: On Computable Numbers, with an Application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society. s2-42. Volume, No. 1, 1937, 230–265 [doi:10.1112/plms/s2-42.1.230] (Accessed: Sept 29, 2023) seems to be a promising starting point, since he, in trying to present an alternative formulation to Kurt Gödel’s (1931) proof on the undecidability of arithmetic, leads a meta-logical proof, and in this context Turing introduces the concept of a machine that was later called Universal Turing Machine.

Already in this proof approach, it can be seen how Turing transforms the phenomenon of a human bookkeeper at a meta-level into a theoretical concept, by means of which he can then meta-logically examine the behavior of this bookkeeper in a specific behavioral space. His meta-logical proof not only confirmed Gödel’s meta-logical proof, but also indirectly indicates how ultimately any phenomenal complexes can be formalized on a meta-level in such a way that one can then argue formally demanding with it.

CONCLUSION STRUCTURALLY

The idea of philosophical supervision of the individual sciences with the goal of a concrete integration of all disciplines into an overall conceptual structure seems to be fundamentally possible from a philosophy of science perspective based on the previous considerations. From today’s point of view, specific phenomena claimed by individual disciplines should no longer be a fundamental obstacle for a modern theory concept. This would clarify the basics of the concept of Collective Intelligence and it would surely be possible to more clearly identify interactions between human collective intelligence and interactive machines. Subsequently, the probability would increase that the supporting machines could be further optimized, so that they could also help in more demanding tasks.

CONCLUSION SUBJECTIVELY

Attempting to characterize the interactive role of text generators in a human-driven scientific discourse, assuming a certain scientific model, appears to be somewhat clear from a transdisciplinary (and thus structural) perspective. However, such scientific discourse represents only a sub-space of the general human discourse space. In the latter, the reception of texts from the perspective of humans inevitably also has a subjective view [18]: People are used to suspecting a human author behind a text. With the appearance of technical aids, texts have increasingly become products, which increasingly gaining formulations that are not written down by a human author alone, but by the technical aids themselves, mediated by a human author. With the appearance of text generators, the proportion of technically generated formulations increases extremely, up to the case that ultimately the entire text is the direct output of a technical aid. It becomes difficult to impossible to recognize to what extent a controlling human share can still be spoken of here. The human author thus disappears behind a text; the sign reality which does not prevent an existential projection of the inner world of the human reader into a potential human author, but threatens to lose itself or actually loses itself in the real absence of a human author in the face of a chimeric human counterpart. What happens in a world where people no longer have human counterparts?

[18] There is an excellent analysis on this topic by Hannes Bajohr titled “Artifizielle und postartifizielle Texte. Über Literatur und Künstliche Intelligenz” (Artificial and Post-Artificial Texts: On Literature and Artificial Intelligence). It was the Walter-Höllerer-Lecture 2022, delivered on December 8, 2022, at the Technical University of Berlin. The lecture can be accessed here [ https://hannesbajohr.de/wp-content/uploads/2022/12/Hoellerer-Vorlesung-2022.pdf ] (Accessed: September 29, 2023). The reference to this lecture was provided to me by Jennifer Becker.

COMMON SCIENCE as Sustainable Applied Empirical Theory, besides ENGINEERING, in a SOCIETY

eJournal: uffmm.org
ISSN 2567-6458, 19.Juni 2022 – 30.December 2022
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of the Philosophy of Science theme within the the uffmm.org blog.

This is work in progress:

  1. The whole text shows a dynamic, which induces many changes. Difficult to plan ‘in advance’.
  2. Perhaps, some time, it will look like a ‘book’, at least ‘for a moment’.
  3. I have started a ‘book project’ in parallel. This was motivated by the need to provide potential users of our new oksimo.R software with a coherent explanation of how the oksimo.R software, when used, generates an empirical theory in the format of a screenplay. The primary source of the book is in German and will be translated step by step here in the uffmm.blog.

INTRODUCTION

In a rather foundational paper about an idea, how one can generalize ‘systems engineering’ [*1] to the art of ‘theory engineering’ [1] a new conceptual framework has been outlined for a ‘sustainable applied empirical theory (SAET)’. Part of this new framework has been the idea that the classical recourse to groups of special experts (mostly ‘engineers’ in engineering) is too restrictive in the light of the new requirement of being sustainable: sustainability is primarily based on ‘diversity’ combined with the ‘ability to predict’ from this diversity probable future states which keep life alive. The aspect of diversity induces the challenge to see every citizen as a ‘natural expert’, because nobody can know in advance and from some non-existing absolut point of truth, which knowledge is really important. History shows that the ‘mainstream’ is usually to a large degree ‘biased’ [*1b].

With this assumption, that every citizen is a ‘natural expert’, science turns into a ‘general science’ where all citizens are ‘natural members’ of science. I will call this more general concept of science ‘sustainable citizen science (SCS)’ or ‘Citizen Science 2.0 (CS2)’. The important point here is that a sustainable citizen science is not necessarily an ‘arbitrary’ process. While the requirement of ‘diversity’ relates to possible contents, to possible ideas, to possible experiments, and the like, it follows from the other requirement of ‘predictability’/ of being able to make some useful ‘forecasts’, that the given knowledge has to be in a format, which allows in a transparent way the construction of some consequences, which ‘derive’ from the ‘given’ knowledge and enable some ‘new’ knowledge. This ability of forecasting has often been understood as the business of ‘logic’ providing an ‘inference concept’ given by ‘rules of deduction’ and a ‘practical pattern (on the meta level)’, which defines how these rules have to be applied to satisfy the inference concept. But, looking to real life, to everyday life or to modern engineering and economy, one can learn that ‘forecasting’ is a complex process including much more than only cognitive structures nicely fitting into some formulas. For this more realistic forecasting concept we will use here the wording ‘common logic’ and for the cognitive adventure where common logic is applied we will use the wording ‘common science’. ‘Common science’ is structurally not different from ‘usual science’, but it has a substantial wider scope and is using the whole of mankind as ‘experts’.

The following chapters/ sections try to illustrate this common science view by visiting different special views which all are only ‘parts of a whole’, a whole which we can ‘feel’ in every moment, but which we can not yet completely grasp with our theoretical concepts.

CONTENT

  1. Language (Main message: “The ordinary language is the ‘meta language’ to every special language. This can be used as a ‘hint’ to something really great: the mystery of the ‘self-creating’ power of the ordinary language which for most people is unknown although it happens every moment.”)
  2. Concrete Abstract Statements (Main message: “… you will probably detect, that nearly all words of a language are ‘abstract words’ activating ‘abstract meanings’. …If you cannot provide … ‘concrete situations’ the intended meaning of your abstract words will stay ‘unclear’: they can mean ‘nothing or all’, depending from the decoding of the hearer.”)
  3. True False Undefined (Main message: “… it reveals that ’empirical (observational) evidence’ is not necessarily an automatism: it presupposes appropriate meaning spaces embedded in sets of preferences, which are ‘observation friendly’.
  4. Beyond Now (Main message: “With the aid of … sequences revealing possible changes the NOW is turned into a ‘moment’ embedded in a ‘process’, which is becoming the more important reality. The NOW is something, but the PROCESS is more.“)
  5. Playing with the Future (Main message: “In this sense seems ‘language’ to be the master tool for every brain to mediate its dynamic meaning structures with symbolic fix points (= words, expressions) which as such do not change, but the meaning is ‘free to change’ in any direction. And this ‘built in ‘dynamics’ represents an ‘internal potential’ for uncountable many possible states, which could perhaps become ‘true’ in some ‘future state’. Thus ‘future’ can begin in these potentials, and thinking is the ‘playground’ for possible futures.(but see [18])”)
  6. Forecasting – Prediction: What? (This chapter explains the cognitive machinery behind forecasting/ predictions, how groups of human actors can elaborate shared descriptions, and how it is possible to start with sequences of singularities to built up a growing picture of the empirical world which appears as a radical infinite and indeterministic space. )
  7. !!! From here all the following chapters have to be re-written !!!
  8. THE LOGIC OF EVERYDAY THINKING. Lets try an Example (Will probably be re-written too)
  9. Boolean Logic (Explains what boolean logic is, how it enables the working of programmable machines, but that it is of nearly no help for the ‘heart’ of forecasting.)
  10. … more re-writing will probably happen …
  11. Everyday Language: German Example
  12. Everyday Language: English
  13. Natural Logic
  14. Predicate Logic
  15. True Statements
  16. Formal Logic Inference: Preserving Truth
  17. Ordinary Language Inference: Preserving and Creating Truth
  18. Hidden Ontologies: Cognitively Real and Empirically Real
  19. AN INFERENCE IS NOT AUTOMATICALLY A FORECAST
  20. EMPIRICAL THEORY
  21. Side Trip to Wikipedia
  22. SUSTAINABLE EMPIRICAL THEORY
  23. CITIZEN SCIENCE 2.0
  24. … ???

COMMENTS

wkp-en := Englisch Wikipedia

/* Often people argue against the usage of the wikipedia encyclopedia as not ‘scientific’ because the ‘content’ of an entry in this encyclopedia can ‘change’. This presupposes the ‘classical view’ of scientific texts to be ‘stable’, which presupposes further, that such a ‘stable text’ describes some ‘stable subject matter’. But this view of ‘steadiness’ as the major property of ‘true descriptions’ is in no correspondence with real scientific texts! The reality of empirical science — even as in some special disciplines like ‘physics’ — is ‘change’. Looking to Aristotle’s view of nature, to Galileo Galilei, to Newton, to Einstein and many others, you will not find a ‘single steady picture’ of nature and science, and physics is only a very simple strand of science compared to the live-sciences and many others. Thus wikipedia is a real scientific encyclopedia give you the breath of world knowledge with all its strengths and limits at once. For another, more general argument, see In Favour for Wikipedia */

[*1] Meaning operator ‘…’ : In this text (and in nearly all other texts of this author) the ‘inverted comma’ is used quite heavily. In everyday language this is not common. In some special languages (theory of formal languages or in programming languages or in meta-logic) the inverted comma is used in some special way. In this text, which is primarily a philosophical text, the inverted comma sign is used as a ‘meta-language operator’ to raise the intention of the reader to be aware, that the ‘meaning’ of the word enclosed in the inverted commas is ‘text specific’: in everyday language usage the speaker uses a word and assumes tacitly that his ‘intended meaning’ will be understood by the hearer of his utterance as ‘it is’. And the speaker will adhere to his assumption until some hearer signals, that her understanding is different. That such a difference is signaled is quite normal, because the ‘meaning’ which is associated with a language expression can be diverse, and a decision, which one of these multiple possible meanings is the ‘intended one’ in a certain context is often a bit ‘arbitrary’. Thus, it can be — but must not — a meta-language strategy, to comment to the hearer (or here: the reader), that a certain expression in a communication is ‘intended’ with a special meaning which perhaps is not the commonly assumed one. Nevertheless, because the ‘common meaning’ is no ‘clear and sharp subject’, a ‘meaning operator’ with the inverted commas has also not a very sharp meaning. But in the ‘game of language’ it is more than nothing 🙂

[*1b] That the main stream ‘is biased’ is not an accident, not a ‘strange state’, not a ‘failure’, it is the ‘normal state’ based on the deeper structure how human actors are ‘built’ and ‘genetically’ and ‘cultural’ ‘programmed’. Thus the challenge to ‘survive’ as part of the ‘whole biosphere’ is not a ‘partial task’ to solve a single problem, but to solve in some sense the problem how to ‘shape the whole biosphere’ in a way, which enables a live in the universe for the time beyond that point where the sun is turning into a ‘red giant’ whereby life will be impossible on the planet earth (some billion years ahead)[22]. A remarkable text supporting this ‘complex view of sustainability’ can be found in Clark and Harvey, summarized at the end of the text. [23]

[*2] The meaning of the expression ‘normal’ is comparable to a wicked problem. In a certain sense we act in our everyday world ‘as if there exists some standard’ for what is assumed to be ‘normal’. Look for instance to houses, buildings: to a certain degree parts of a house have a ‘standard format’ assuming ‘normal people’. The whole traffic system, most parts of our ‘daily life’ are following certain ‘standards’ making ‘planning’ possible. But there exists a certain percentage of human persons which are ‘different’ compared to these introduced standards. We say that they have a ‘handicap’ compared to this assumed ‘standard’, but this so-called ‘standard’ is neither 100% true nor is the ‘given real world’ in its properties a ‘100% subject’. We have learned that ‘properties of the real world’ are distributed in a rather ‘statistical manner’ with different probabilities of occurrences. To ‘find our way’ in these varying occurrences we try to ‘mark’ the main occurrences as ‘normal’ to enable a basic structure for expectations and planning. Thus, if in this text the expression ‘normal’ is used it refers to the ‘most common occurrences’.

[*3] Thus we have here a ‘threefold structure’ embracing ‘perception events, memory events, and expression events’. Perception events represent ‘concrete events’; memory events represent all kinds of abstract events but they all have a ‘handle’ which maps to subsets of concrete events; expression events are parts of an abstract language system, which as such is dynamically mapped onto the abstract events. The main source for our knowledge about perceptions, memory and expressions is experimental psychology enhanced by many other disciplines.

[*4] Characterizing language expressions by meaning – the fate of any grammar: the sentence ” … ‘words’ (= expressions) of a language which can activate such abstract meanings are understood as ‘abstract words’, ‘general words’, ‘category words’ or the like.” is pointing to a deep property of every ordinary language, which represents the real power of language but at the same time the great weakness too: expressions as such have no meaning. Hundreds, thousands, millions of words arranged in ‘texts’, ‘documents’ can show some statistical patterns’ and as such these patterns can give some hint which expressions occur ‘how often’ and in ‘which combinations’, but they never can give a clue to the associated meaning(s). During more than three-thousand years humans have tried to describe ordinary language in a more systematic way called ‘grammar’. Due to this radically gap between ‘expressions’ as ‘observable empirical facts’ and ‘meaning constructs’ hidden inside the brain it was all the time a difficult job to ‘classify’ expressions as representing a certain ‘type’ of expression like ‘nouns’, ‘predicates’, ‘adjectives’, ‘defining article’ and the like. Without regressing to the assumed associated meaning such a classification is not possible. On account of the fuzziness of every meaning ‘sharp definitions’ of such ‘word classes’ was never and is not yet possible. One of the last big — perhaps the biggest ever — project of a complete systematic grammar of a language was the grammar project of the ‘Akademie der Wissenschaften der DDR’ (‘Academy of Sciences of the GDR’) from 1981 with the title “Grundzüge einer Deutschen Grammatik” (“Basic features of a German grammar”). A huge team of scientists worked together using many modern methods. But in the preface you can read, that many important properties of the language are still not sufficiently well describable and explainable. See: Karl Erich Heidolph, Walter Flämig, Wolfgang Motsch et al.: Grundzüge einer deutschen Grammatik. Akademie, Berlin 1981, 1028 Seiten.

[*5] Differing opinions about a given situation manifested in uttered expressions are a very common phenomenon in everyday communication. In some sense this is ‘natural’, can happen, and it should be no substantial problem to ‘solve the riddle of being different’. But as you can experience, the ability of people to solve the occurrence of different opinions is often quite weak. Culture is suffering by this as a whole.

[1] Gerd Doeben-Henisch, 2022, From SYSTEMS Engineering to THEORYEngineering, see: https://www.uffmm.org/2022/05/26/from-systems-engineering-to-theory-engineering/(Remark: At the time of citation this post was not yet finished, because there are other posts ‘corresponding’ with that post, which are too not finished. Knowledge is a dynamic network of interwoven views …).

[1d] ‘usual science’ is the game of science without having a sustainable format like in citizen science 2.0.

[2] Science, see e.g. wkp-en: https://en.wikipedia.org/wiki/Science

Citation = “Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.[1][2]

Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”

Citation = “New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems.[27][28] Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions,[29] government agencies, and companies.[30][31] The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the ethical and moral development of commercial productsarmamentshealth carepublic infrastructure, and environmental protection.”

[2b] History of science in wkp-en: https://en.wikipedia.org/wiki/History_of_science#Scientific_Revolution_and_birth_of_New_Science

[3] Theory, see wkp-en: https://en.wikipedia.org/wiki/Theory#:~:text=A%20theory%20is%20a%20rational,or%20no%20discipline%20at%20all.

Citation = “A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory’s assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.”

[4] Scientific theory, see: wkp-en: https://en.wikipedia.org/wiki/Scientific_theory

Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”

[4b] Empiricism in wkp-en: https://en.wikipedia.org/wiki/Empiricism

[4c] Scientific method in wkp-en: https://en.wikipedia.org/wiki/Scientific_method

Citation =”The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries). It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; experimental and measurement-based statistical testing of deductions drawn from the hypotheses; and refinement (or elimination) of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.[1][2][3] [4c]

and

Citation = “The purpose of an experiment is to determine whether observations[A][a][b] agree with or conflict with the expectations deduced from a hypothesis.[6]: Book I, [6.54] pp.372, 408 [b] Experiments can take place anywhere from a garage to a remote mountaintop to CERN’s Large Hadron Collider. There are difficulties in a formulaic statement of method, however. Though the scientific method is often presented as a fixed sequence of steps, it represents rather a set of general principles.[7] Not all steps take place in every scientific inquiry (nor to the same degree), and they are not always in the same order.[8][9]

[5] Gerd Doeben-Henisch, “Is Mathematics a Fake? No! Discussing N.Bourbaki, Theory of Sets (1968) – Introduction”, 2022, https://www.uffmm.org/2022/06/06/n-bourbaki-theory-of-sets-1968-introduction/

[6] Logic, see wkp-en: https://en.wikipedia.org/wiki/Logic

[7] W. C. Kneale, The Development of Logic, Oxford University Press (1962)

[8] Set theory, in wkp-en: https://en.wikipedia.org/wiki/Set_theory

[9] N.Bourbaki, Theory of Sets , 1968, with a chapter about structures, see: https://en.wikipedia.org/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique

[10] = [5]

[11] Ludwig Josef Johann Wittgenstein ( 1889 – 1951): https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

[12] Ludwig Wittgenstein, 1953: Philosophische Untersuchungen [PU], 1953: Philosophical Investigations [PI], translated by G. E. M. Anscombe /* For more details see: https://en.wikipedia.org/wiki/Philosophical_Investigations */

[13] Wikipedia EN, Speech acts: https://en.wikipedia.org/wiki/Speech_act

[14] While the world view constructed in a brain is ‘virtual’ compared to the ‘real word’ outside the brain (where the body outside the brain is also functioning as ‘real world’ in relation to the brain), does the ‘virtual world’ in the brain function for the brain mostly ‘as if it is the real world’. Only under certain conditions can the brain realize a ‘difference’ between the triggering outside real world and the ‘virtual substitute for the real world’: You want to use your bicycle ‘as usual’ and then suddenly you have to notice that it is not at that place where is ‘should be’. …

[15] Propositional Calculus, see wkp-en: https://en.wikipedia.org/wiki/Propositional_calculus#:~:text=Propositional%20calculus%20is%20a%20branch,of%20arguments%20based%20on%20them.

[16] Boolean algebra, see wkp-en: https://en.wikipedia.org/wiki/Boolean_algebra

[17] Boolean (or propositional) Logic: As one can see in the mentioned articles of the English wikipedia, the term ‘boolean logic’ is not common. The more logic-oriented authors prefer the term ‘boolean calculus’ [15] and the more math-oriented authors prefer the term ‘boolean algebra’ [16]. In the view of this author the general view is that of ‘language use’ with ‘logic inference’ as leading idea. Therefore the main topic is ‘logic’, in the case of propositional logic reduced to a simple calculus whose similarity with ‘normal language’ is widely ‘reduced’ to a play with abstract names and operators. Recommended: the historical comments in [15].

[18] Clearly, thinking alone can not necessarily induce a possible state which along the time line will become a ‘real state’. There are numerous factors ‘outside’ the individual thinking which are ‘driving forces’ to push real states to change. But thinking can in principle synchronize with other individual thinking and — in some cases — can get a ‘grip’ on real factors causing real changes.

[19] This kind of knowledge is not delivered by brain science alone but primarily from experimental (cognitive) psychology which examines observable behavior and ‘interprets’ this behavior with functional models within an empirical theory.

[20] Predicate Logic or First-Order Logic or … see: wkp-en: https://en.wikipedia.org/wiki/First-order_logic#:~:text=First%2Dorder%20logic%E2%80%94also%20known,%2C%20linguistics%2C%20and%20computer%20science.

[21] Gerd Doeben-Henisch, In Favour of Wikipedia, https://www.uffmm.org/2022/07/31/in-favour-of-wikipedia/, 31 July 2022

[22] The sun, see wkp-ed https://en.wikipedia.org/wiki/Sun (accessed 8 Aug 2022)

[23] By Clark, William C., and Alicia G. Harley – https://doi.org/10.1146/annurev-environ-012420-043621, Clark, William C., and Alicia G. Harley. 2020. “Sustainability Science: Toward a Synthesis.” Annual Review of Environment and Resources 45 (1): 331–86, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=109026069

[24] Sustainability in wkp-en: https://en.wikipedia.org/wiki/Sustainability#Dimensions_of_sustainability

[25] Sustainable Development in wkp-en: https://en.wikipedia.org/wiki/Sustainable_development

[26] Marope, P.T.M; Chakroun, B.; Holmes, K.P. (2015). Unleashing the Potential: Transforming Technical and Vocational Education and Training (PDF). UNESCO. pp. 9, 23, 25–26. ISBN978-92-3-100091-1.

[27] SDG 4 in wkp-en: https://en.wikipedia.org/wiki/Sustainable_Development_Goal_4

[28] Thomas Rid, Rise of the Machines. A Cybernetic History, W.W.Norton & Company, 2016, New York – London

[29] Doeben-Henisch, G., 2006, Reducing Negative Complexity by a Semiotic System In: Gudwin, R., & Queiroz, J., (Eds). Semiotics and Intelligent Systems Development. Hershey et al: Idea Group Publishing, 2006, pp.330-342

[30] Döben-Henisch, G.,  Reinforcing the global heartbeat: Introducing the planet earth simulator project, In M. Faßler & C. Terkowsky (Eds.), URBAN FICTIONS. Die Zukunft des Städtischen. München, Germany: Wilhelm Fink Verlag, 2006, pp.251-263

[29] The idea that individual disciplines are not good enough for the ‘whole of knowledge’ is expressed in a clear way in a video of the theoretical physicist and philosopher Carlo Rovell: Carlo Rovelli on physics and philosophy, June 1, 2022, Video from the Perimeter Institute for Theoretical Physics. Theoretical physicist, philosopher, and international bestselling author Carlo Rovelli joins Lauren and Colin for a conversation about the quest for quantum gravity, the importance of unlearning outdated ideas, and a very unique way to get out of a speeding ticket.

[] By Azote for Stockholm Resilience Centre, Stockholm University – https://www.stockholmresilience.org/research/research-news/2016-06-14-how-food-connects-all-the-sdgs.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=112497386

[]  Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) in wkp-en, UTL: https://en.wikipedia.org/wiki/Intergovernmental_Science-Policy_Platform_on_Biodiversity_and_Ecosystem_Services

[] IPBES (2019): Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673

[] Michaelis, L. & Lorek, S. (2004). “Consumption and the Environment in Europe: Trends and Futures.” Danish Environmental Protection Agency. Environmental Project No. 904.

[] Pezzey, John C. V.; Michael A., Toman (2002). “The Economics of Sustainability: A Review of Journal Articles” (PDF). . Archived from the original (PDF) on 8 April 2014. Retrieved 8 April 2014.

[] World Business Council for Sustainable Development (WBCSD)  in wkp-en: https://en.wikipedia.org/wiki/World_Business_Council_for_Sustainable_Development

[] Sierra Club in wkp-en: https://en.wikipedia.org/wiki/Sierra_Club

[] Herbert Bruderer, Where is the Cradle of the Computer?, June 20, 2022, URL: https://cacm.acm.org/blogs/blog-cacm/262034-where-is-the-cradle-of-the-computer/fulltext (accessed: July 20, 2022)

[] UN. Secretary-GeneralWorld Commission on Environment and Development, 1987, Report of the World Commission on Environment and Development : note / by the Secretary-General., https://digitallibrary.un.org/record/139811 (accessed: July 20, 2022) (A more readable format: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf )

/* Comment: Gro Harlem Brundtland (Norway) has been the main coordinator of this document */

[] Chaudhuri, S.,et al.Neurosymbolic programming. Foundations and Trends in Programming Languages 7, 158-243 (2021).

[] Noam Chomsky, “A Review of B. F. Skinner’s Verbal Behavior”, in Language, 35, No. 1 (1959), 26-58.(Online: https://chomsky.info/1967____/, accessed: July 21, 2022)

[] Churchman, C. West (December 1967). “Wicked Problems”Management Science. 14 (4): B-141–B-146. doi:10.1287/mnsc.14.4.B141.

[-] Yen-Chia Hsu, Illah Nourbakhsh, “When Human-Computer Interaction Meets Community Citizen Science“,Communications of the ACM, February 2020, Vol. 63 No. 2, Pages 31-34, 10.1145/3376892, https://cacm.acm.org/magazines/2020/2/242344-when-human-computer-interaction-meets-community-citizen-science/fulltext

[] Yen-Chia Hsu, Ting-Hao ‘Kenneth’ Huang, Himanshu Verma, Andrea Mauri, Illah Nourbakhsh, Alessandro Bozzon, Empowering local communities using artificial intelligence, DOI:https://doi.org/10.1016/j.patter.2022.100449, CellPress, Patterns, VOLUME 3, ISSUE 3, 100449, MARCH 11, 2022

[] Nello Cristianini, Teresa Scantamburlo, James Ladyman, The social turn of artificial intelligence, in: AI & SOCIETY, https://doi.org/10.1007/s00146-021-01289-8

[] Carl DiSalvo, Phoebe Sengers, and Hrönn Brynjarsdóttir, Mapping the landscape of sustainable hci, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, page 1975–1984, New York, NY, USA, 2010. Association for Computing Machinery.

[] Claude Draude, Christian Gruhl, Gerrit Hornung, Jonathan Kropf, Jörn Lamla, Jan Marco Leimeister, Bernhard Sick, Gerd Stumme, Social Machines, in: Informatik Spektrum, https://doi.org/10.1007/s00287-021-01421-4

[] EU: High-Level Expert Group on AI (AI HLEG), A definition of AI: Main capabilities and scientific disciplines, European Commission communications published on 25 April 2018 (COM(2018) 237 final), 7 December 2018 (COM(2018) 795 final) and 8 April 2019 (COM(2019) 168 final). For our definition of Artificial Intelligence (AI), please refer to our document published on 8 April 2019: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=56341

[] EU: High-Level Expert Group on AI (AI HLEG), Policy and investment recommendations for trustworthy Artificial Intelligence, 2019, https://digital-strategy.ec.europa.eu/en/library/policy-and-investment-recommendations-trustworthy-artificial-intelligence

[] European Union. Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC General Data Protection Regulation; http://eur-lex.europa.eu/eli/reg/2016/679/oj (Wirksam ab 25.Mai 2018) [26.2.2022]

[] C.S. Holling. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1):1–23, 1973

[] John P. van Gigch. 1991. System Design Modeling and Metamodeling. Springer US. DOI:https://doi.org/10.1007/978-1-4899-0676-2

[] Gudwin, R.R. (2002), Semiotic Synthesis and Semionic Networks, S.E.E.D. Journal (Semiotics, Energy, Evolution, Development), Volume 2, No.2, pp.55-83.

[] Gudwin, R.R. (2003), On a Computational Model of the Peircean Semiosis, IEEE KIMAS 2003 Proceedings

[] J.A. Jacko and A. Sears, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 1st edition, 2003.

[] LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

[] Lenat, D. What AI can learn from Romeo & Juliet.Forbes (2019)

[] Pierre Lévy, Collective Intelligence. mankind’s emerging world in cyberspace, Perseus books, Cambridge (M A), 1997 (translated from the French Edition 1994 by Robert Bonnono)

[] Lexikon der Nachhaltigkeit, ‘Starke Nachhaltigkeit‘, https://www.nachhaltigkeit.info/artikel/schwache_vs_starke_nachhaltigkeit_1687.htm (acessed: July 21, 2022)

[] Michael L. Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield, Michael C. Horowitz, Charles Isbell, Hiroaki Kitano, Karen Levy, Terah Lyons, Melanie Mitchell, Julie Shah, Steven Sloman, Shannon Vallor, and Toby Walsh. “Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report.” Stanford University, Stanford, CA, September 2021. Doc: http://ai100.stanford.edu/2021-report.

[] Markus Luczak-Roesch, Kieron O’Hara, Ramine Tinati, Nigel Shadbolt, Socio-technical Computation, CSCW’15 Companion, March 14–18, 2015, Vancouver, BC, Canada, ACM 978-1-4503-2946-0/15/03, http://dx.doi.org/10.1145/2685553.2698991

[] Marcus, G.F., et al. Overregularization in language acquisition. Monographs of the Society for Research in Child Development 57 (1998).

[] Gary Marcus and Ernest Davis, Rebooting AI, Published by Pantheon,
Sep 10, 2019, 288 Pages

[] Gary Marcus, Deep Learning Is Hitting a Wall. What would it take for artificial intelligence to make real progress, March 10, 2022, URL: https://nautil.us/deep-learning-is-hitting-a-wall-14467/ (accessed: July 20, 2022)

[] Kathryn Merrick. Value systems for developmental cognitive robotics: A survey. Cognitive Systems Research, 41:38 – 55, 2017

[]  Illah Reza Nourbakhsh and Jennifer Keating, AI and Humanity, MIT Press, 2020 /* An examination of the implications for society of rapidly advancing artificial intelligence systems, combining a humanities perspective with technical analysis; includes exercises and discussion questions. */

[] Olazaran, M. , A sociological history of the neural network controversy. Advances in Computers 37, 335-425 (1993).

[] Friedrich August Hayek (1945), The use of knowledge in society. The American Economic Review 35, 4 (1945), 519–530

[] Karl Popper, „A World of Propensities“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1988, leicht erweitert neu abgedruckt 1990, repr. 1995)

[] Karl Popper, „Towards an Evolutionary Theory of Knowledge“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1989, ab gedruckt in 1990, repr. 1995)

[] Karl Popper, „All Life is Problem Solving“, Artikel, ursprünglich ein Vortrag 1991 auf Deutsch, erstmalig publiziert in dem Buch (auf Deutsch) „Alles Leben ist Problemlösen“ (1994), dann in dem Buch (auf Englisch) „All Life is Problem Solving“, 1999, Routledge, Taylor & Francis Group, London – New York

[] Rittel, Horst W.J.; Webber, Melvin M. (1973). “Dilemmas in a General Theory of Planning” (PDF). Policy Sciences. 4 (2): 155–169. doi:10.1007/bf01405730S2CID 18634229. Archived from the original (PDF) on 30 September 2007. [Reprinted in Cross, N., ed. (1984). Developments in Design Methodology. Chichester, England: John Wiley & Sons. pp. 135–144.]

[] Ritchey, Tom (2013) [2005]. “Wicked Problems: Modelling Social Messes with Morphological Analysis”Acta Morphologica Generalis2 (1). ISSN 2001-2241. Retrieved 7 October 2017.

[] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th US ed., 2021, URL: http://aima.cs.berkeley.edu/index.html (accessed: July 20, 2022)

[] A. Sears and J.A. Jacko, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 2nd edition, 2008.

[] Skaburskis, Andrejs (19 December 2008). “The origin of “wicked problems””. Planning Theory & Practice9 (2): 277-280. doi:10.1080/14649350802041654. At the end of Rittel’s presentation, West Churchman responded with that pensive but expressive movement of voice that some may well remember, ‘Hmm, those sound like “wicked problems.”‘

[] Tonkinwise, Cameron (4 April 2015). “Design for Transitions – from and to what?”Academia.edu. Retrieved 9 November 2017.

[] Thoppilan, R., et al. LaMDA: Language models for dialog applications. arXiv 2201.08239 (2022).

[] Wurm, Daniel; Zielinski, Oliver; Lübben, Neeske; Jansen, Maike; Ramesohl,
Stephan (2021) : Wege in eine ökologische Machine Economy: Wir brauchen eine ‘Grüne Governance der Machine Economy’, um das Zusammenspiel von Internet of Things, Künstlicher Intelligenz und Distributed Ledger Technology ökologisch zu gestalten, Wuppertal Report, No. 22, Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal, https://doi.org/10.48506/opus-7828

[] Aimee van Wynsberghe, Sustainable AI: AI for sustainability and the sustainability of AI, in: AI and Ethics (2021) 1:213–218, see: https://doi.org/10.1007/s43681

[-] Sarah West, Rachel Pateman, 2017, “How could citizen science support the Sustainable Development Goals?“, SEI Stockholm Environment Institut , 2017, see: https://mediamanager.sei.org/documents/Publications/SEI-2017-PB-citizen-science-sdgs.pdf

[] R. I. Damper (2000), Editorial for the special issue on ‘Emergent Properties of Complex Systems’: Emergence and levels of abstraction. International Journal of Systems Science 31, 7 (2000), 811–818. DOI:https://doi.org/10.1080/002077200406543

[] Gerd Doeben-Henisch (2004), The Planet Earth Simulator Project – A Case Study in Computational Semiotics, IEEE AFRICON 2004, pp.417 – 422

[] Boder, A. (2006), “Collective intelligence: a keystone in knowledge management”, Journal of Knowledge Management, Vol. 10 No. 1, pp. 81-93. https://doi.org/10.1108/13673270610650120

[] Wikipedia, ‘Weak and strong sustainability’, https://en.wikipedia.org/wiki/Weak_and_strong_sustainability (accessed: July 21, 2022)

[] Florence Maraninchi, Let us Not Put All Our Eggs in One Basket. Towards new research directions in computer Science, CACM Communications of the ACM, September 2022, Vol.65, No.9, pp.35-37, https://dl.acm.org/doi/10.1145/3528088

[] AYA H. KIMURA and ABBY KINCHY, “Citizen Science: Probing the Virtues and Contexts of Participatory Research”, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099

[] Eric Bonabeau (2009), Decisions 2.0: The power of collective intelligence. MIT Sloan Management Review 50, 2 (Winter 2009), 45-52.

[] Jim Giles (2005), Internet encyclopaedias go head to head. Nature 438, 7070 (Dec. 2005), 900–901. DOI:https://doi.org/10.1038/438900a

[] T. Bosse, C. M. Jonker, M. C. Schut, and J. Treur (2006), Collective representational content for shared extended mind. Cognitive Systems Research 7, 2-3 (2006), pp.151-174, DOI:https://doi.org/10.1016/j.cogsys.2005.11.007

[] Romina Cachia, Ramón Compañó, and Olivier Da Costa (2007), Grasping the potential of online social networks for foresight. Technological Forecasting and Social Change 74, 8 (2007), oo.1179-1203. DOI:https://doi.org/10.1016/j.techfore.2007.05.006

[] Tom Gruber (2008), Collective knowledge systems: Where the social web meets the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 6, 1 (2008), 4–13. DOI:https://doi.org/10.1016/j.websem.2007.11.011

[] Luca Iandoli, Mark Klein, and Giuseppe Zollo (2009), Enabling on-line deliberation and collective decision-making through large-scale argumentation. International Journal of Decision Support System Technology 1, 1 (Jan. 2009), 69–92. DOI:https://doi.org/10.4018/jdsst.2009010105

[] Shuangling Luo, Haoxiang Xia, Taketoshi Yoshida, and Zhongtuo Wang (2009), Toward collective intelligence of online communities: A primitive conceptual model. Journal of Systems Science and Systems Engineering 18, 2 (01 June 2009), 203–221. DOI:https://doi.org/10.1007/s11518-009-5095-0

[] Dawn G. Gregg (2010), Designing for collective intelligence. Communications of the ACM 53, 4 (April 2010), 134–138. DOI:https://doi.org/10.1145/1721654.1721691

[] Rolf Pfeifer, Jan Henrik Sieg, Thierry Bücheler, and Rudolf Marcel Füchslin. 2010. Crowdsourcing, open innovation and collective intelligence in the scientific method: A research agenda and operational framework. (2010). DOI:https://doi.org/10.21256/zhaw-4094

[] Martijn C. Schut. 2010. On model design for simulation of collective intelligence. Information Sciences 180, 1 (2010), 132–155. DOI:https://doi.org/10.1016/j.ins.2009.08.006 Special Issue on Collective Intelligence

[] Dimitrios J. Vergados, Ioanna Lykourentzou, and Epaminondas Kapetanios (2010), A resource allocation framework for collective intelligence system engineering. In Proceedings of the International Conference on Management of Emergent Digital EcoSystems (MEDES’10). ACM, New York, NY, 182–188. DOI:https://doi.org/10.1145/1936254.1936285

[] Anita Williams Woolley, Christopher F. Chabris, Alex Pentland, Nada Hashmi, and Thomas W. Malone (2010), Evidence for a collective intelligence factor in the performance of human groups. Science 330, 6004 (2010), 686–688. DOI:https://doi.org/10.1126/science.1193147

[] Michael A. Woodley and Edward Bell (2011), Is collective intelligence (mostly) the General Factor of Personality? A comment on Woolley, Chabris, Pentland, Hashmi and Malone (2010). Intelligence 39, 2 (2011), 79–81. DOI:https://doi.org/10.1016/j.intell.2011.01.004

[] Joshua Introne, Robert Laubacher, Gary Olson, and Thomas Malone (2011), The climate CoLab: Large scale model-based collaborative planning. In Proceedings of the 2011 International Conference on Collaboration Technologies and Systems (CTS’11). 40–47. DOI:https://doi.org/10.1109/CTS.2011.5928663

[] Miguel de Castro Neto and Ana Espírtio Santo (2012), Emerging collective intelligence business models. In MCIS 2012 Proceedings. Mediterranean Conference on Information Systems. https://aisel.aisnet.org/mcis2012/14

[] Peng Liu, Zhizhong Li (2012), Task complexity: A review and conceptualization framework, International Journal of Industrial Ergonomics 42 (2012), pp. 553 – 568

[] Sean Wise, Robert A. Paton, and Thomas Gegenhuber. (2012), Value co-creation through collective intelligence in the public sector: A review of US and European initiatives. VINE 42, 2 (2012), 251–276. DOI:https://doi.org/10.1108/03055721211227273

[] Antonietta Grasso and Gregorio Convertino (2012), Collective intelligence in organizations: Tools and studies. Computer Supported Cooperative Work (CSCW) 21, 4 (01 Oct 2012), 357–369. DOI:https://doi.org/10.1007/s10606-012-9165-3

[] Sandro Georgi and Reinhard Jung (2012), Collective intelligence model: How to describe collective intelligence. In Advances in Intelligent and Soft Computing. Vol. 113. Springer, 53–64. DOI:https://doi.org/10.1007/978-3-642-25321-8_5

[] H. Santos, L. Ayres, C. Caminha, and V. Furtado (2012), Open government and citizen participation in law enforcement via crowd mapping. IEEE Intelligent Systems 27 (2012), 63–69. DOI:https://doi.org/10.1109/MIS.2012.80

[] Jörg Schatzmann & René Schäfer & Frederik Eichelbaum (2013), Foresight 2.0 – Definition, overview & evaluation, Eur J Futures Res (2013) 1:15
DOI 10.1007/s40309-013-0015-4

[] Sylvia Ann Hewlett, Melinda Marshall, and Laura Sherbin (2013), How diversity can drive innovation. Harvard Business Review 91, 12 (2013), 30–30

[] Tony Diggle (2013), Water: How collective intelligence initiatives can address this challenge. Foresight 15, 5 (2013), 342–353. DOI:https://doi.org/10.1108/FS-05-2012-0032

[] Hélène Landemore and Jon Elster. 2012. Collective Wisdom: Principles and Mechanisms. Cambridge University Press. DOI:https://doi.org/10.1017/CBO9780511846427

[] Jerome C. Glenn (2013), Collective intelligence and an application by the millennium project. World Futures Review 5, 3 (2013), 235–243. DOI:https://doi.org/10.1177/1946756713497331

[] Detlef Schoder, Peter A. Gloor, and Panagiotis Takis Metaxas (2013), Social media and collective intelligence—Ongoing and future research streams. KI – Künstliche Intelligenz 27, 1 (1 Feb. 2013), 9–15. DOI:https://doi.org/10.1007/s13218-012-0228-x

[] V. Singh, G. Singh, and S. Pande (2013), Emergence, self-organization and collective intelligence—Modeling the dynamics of complex collectives in social and organizational settings. In 2013 UKSim 15th International Conference on Computer Modelling and Simulation. 182–189. DOI:https://doi.org/10.1109/UKSim.2013.77

[] A. Kornrumpf and U. Baumöl (2014), A design science approach to collective intelligence systems. In 2014 47th Hawaii International Conference on System Sciences. 361–370. DOI:https://doi.org/10.1109/HICSS.2014.53

[] Michael A. Peters and Richard Heraud. 2015. Toward a political theory of social innovation: Collective intelligence and the co-creation of social goods. 3, 3 (2015), 7–23. https://researchcommons.waikato.ac.nz/handle/10289/9569

[] Juho Salminen. 2015. The Role of Collective Intelligence in Crowdsourcing Innovation. PhD dissertation. Lappeenranta University of Technology

[] Aelita Skarzauskiene and Monika Maciuliene (2015), Modelling the index of collective intelligence in online community projects. In International Conference on Cyber Warfare and Security. Academic Conferences International Limited, 313

[] AYA H. KIMURA and ABBY KINCHY (2016), Citizen Science: Probing the Virtues and Contexts of Participatory Research, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099

[] Philip Tetlow, Dinesh Garg, Leigh Chase, Mark Mattingley-Scott, Nicholas Bronn, Kugendran Naidoo†, Emil Reinert (2022), Towards a Semantic Information Theory (Introducing Quantum Corollas), arXiv:2201.05478v1 [cs.IT] 14 Jan 2022, 28 pages

[] Melanie Mitchell, What Does It Mean to Align AI With Human Values?, quanta magazin, Quantized Columns, 19.Devember 2022, https://www.quantamagazine.org/what-does-it-mean-to-align-ai-with-human-values-20221213#

Comment by Gerd Doeben-Henisch:

[] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies. Oxford University Press, Oxford (UK), 1 edition, 2014.

[] Scott Aaronson, Reform AI Alignment, Update: 22.November 2022, https://scottaaronson.blog/?p=6821

[] Andrew Y. Ng, Stuart J. Russell, Algorithms for Inverse Reinforcement Learning, ICML 2000: Proceedings of the Seventeenth International Conference on Machine LearningJune 2000 Pages 663–670

[] Pat Langley (ed.), ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., 340 Pine Street, Sixth Floor, San Francisco, CA, United States, Conference 29 June 2000- 2 July 2000, 29.June 2000

[] Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum, (2019) Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations
, Proceedings of the 36 th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s): https://arxiv.org/pdf/1904.06387.pdf

Abstract: Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations
Daniel S. Brown * 1 Wonjoon Goo * 1 Prabhat Nagarajan 2 Scott Niekum 1
You can read in the abstract:
“A critical flaw of existing inverse reinforcement learning (IRL) methods is their inability to significantly outperform the demonstrator. This is because IRL typically seeks a reward function that makes the demonstrator appear near-optimal, rather than inferring the underlying intentions of the demonstrator that may have been poorly executed in practice. In this paper, we introduce
a novel reward-learning-from-observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of (ap-
proximately) ranked demonstrations in order to infer high-quality reward functions from a set of potentially poor demonstrations. When combined
with deep reinforcement learning, T-REX outperforms state-of-the-art imitation learning and IRL methods on multiple Atari and MuJoCo bench-
mark tasks and achieves performance that is often more than twice the performance of the best demonstration. We also demonstrate that T-REX
is robust to ranking noise and can accurately extrapolate intention by simply watching a learner noisily improve at a task over time.”

[] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, Dario Amodei, (2017), Deep reinforcement learning from human preferences, https://arxiv.org/abs/1706.03741

In the abstract you can read: “For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent’s interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback.

[] Melanie Mitchell,(2021), Abstraction and Analogy-Making in Artificial
Intelligence
, https://arxiv.org/pdf/2102.10717.pdf

In the abstract you can read: “Conceptual abstraction and analogy-making are key abilities underlying humans’ abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite of a long history of research on constructing AI systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing
challenge tasks and evaluation measures in order to make quantifiable and generalizable progress

[] Melanie Mitchell, (2021), Why AI is Harder Than We Think, https://arxiv.org/pdf/2102.10717.pdf

In the abstract you can read: “Since its beginning in the 1950s, the field of artificial intelligence has cycled several times between periods of optimistic predictions and massive investment (“AI spring”) and periods of disappointment, loss of confidence, and reduced funding (“AI winter”). Even with today’s seemingly fast pace of AI breakthroughs, the development of long-promised technologies such as self-driving cars, housekeeping robots, and conversational companions has turned out to be much harder than many people expected. One reason for these repeating cycles is our limited understanding of the nature and complexity of intelligence itself. In this paper I describe four fallacies in common assumptions made by AI researchers, which can lead to overconfident predictions about the field. I conclude by discussing the open questions spurred by these fallacies, including the age-old challenge of imbuing machines with humanlike common sense.”

[] Stuart Russell, (2019), Human Compatible: AI and the Problem of Control, Penguin books, Allen Lane; 1. Edition (8. Oktober 2019)

In the preface you can read: “This book is about the past , present , and future of our attempt to understand and create intelligence . This matters , not because AI is rapidly becoming a pervasive aspect of the present but because it is the dominant technology of the future . The world’s great powers are waking up to this fact , and the world’s largest corporations have known it for some time . We cannot predict exactly how the technology will develop or on what timeline . Nevertheless , we must plan for the possibility that machines will far exceed the human capacity for decision making in the real world . What then ? Everything civilization has to offer is the product of our intelligence ; gaining access to considerably greater intelligence would be the biggest event in human history . The purpose of the book is to explain why it might be the last event in human history and how to make sure that it is not .”

[] David Adkins, Bilal Alsallakh, Adeel Cheema, Narine Kokhlikyan, Emily McReynolds, Pushkar Mishra, Chavez Procope, Jeremy Sawruk, Erin Wang, Polina Zvyagina, (2022), Method Cards for Prescriptive Machine-Learning Transparency, 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN), CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA, pp. 90 – 100, Association for Computing Machinery, ACM ISBN 978-1-4503-9275-4/22/05, New York, NY, USA, https://doi.org/10.1145/3522664.3528600

In the abstract you can read: “Specialized documentation techniques have been developed to communicate key facts about machine-learning (ML) systems and the datasets and models they rely on. Techniques such as Datasheets,
AI FactSheets, and Model Cards have taken a mainly descriptive
approach, providing various details about the system components.
While the above information is essential for product developers
and external experts to assess whether the ML system meets their
requirements, other stakeholders might find it less actionable. In
particular, ML engineers need guidance on how to mitigate po-
tential shortcomings in order to fix bugs or improve the system’s
performance. We propose a documentation artifact that aims to
provide such guidance in a prescriptive way. Our proposal, called
Method Cards, aims to increase the transparency and reproducibil-
ity of ML systems by allowing stakeholders to reproduce the models,
understand the rationale behind their designs, and introduce adap-
tations in an informed way. We showcase our proposal with an
example in small object detection, and demonstrate how Method
Cards can communicate key considerations that help increase the
transparency and reproducibility of the detection model. We fur-
ther highlight avenues for improving the user experience of ML
engineers based on Method Cards.”

[] John H. Miller, (2022),  Ex Machina: Coevolving Machines and the Origins of the Social Universe, The SFI Press Scholars Series, 410 pages
Paperback ISBN: 978-1947864429 , DOI: 10.37911/9781947864429

In the announcement of the book you can read: “If we could rewind the tape of the Earth’s deep history back to the beginning and start the world anew—would social behavior arise yet again? While the study of origins is foundational to many scientific fields, such as physics and biology, it has rarely been pursued in the social sciences. Yet knowledge of something’s origins often gives us new insights into the present. In Ex Machina, John H. Miller introduces a methodology for exploring systems of adaptive, interacting, choice-making agents, and uses this approach to identify conditions sufficient for the emergence of social behavior. Miller combines ideas from biology, computation, game theory, and the social sciences to evolve a set of interacting automata from asocial to social behavior. Readers will learn how systems of simple adaptive agents—seemingly locked into an asocial morass—can be rapidly transformed into a bountiful social world driven only by a series of small evolutionary changes. Such unexpected revolutions by evolution may provide an important clue to the emergence of social life.”

[] Stefani A. Crabtree, Global Environmental Change, https://doi.org/10.1016/j.gloenvcha.2022.102597

In the abstract you can read: “Analyzing the spatial and temporal properties of information flow with a multi-century perspective could illuminate the sustainability of human resource-use strategies. This paper uses historical and archaeological datasets to assess how spatial, temporal, cognitive, and cultural limitations impact the generation and flow of information about ecosystems within past societies, and thus lead to tradeoffs in sustainable practices. While it is well understood that conflicting priorities can inhibit successful outcomes, case studies from Eastern Polynesia, the North Atlantic, and the American Southwest suggest that imperfect information can also be a major impediment
to sustainability. We formally develop a conceptual model of Environmental Information Flow and Perception (EnIFPe) to examine the scale of information flow to a society and the quality of the information needed to promote sustainable coupled natural-human systems. In our case studies, we assess key aspects of information flow by focusing on food web relationships and nutrient flows in socio-ecological systems, as well as the life cycles, population dynamics, and seasonal rhythms of organisms, the patterns and timing of species’ migration, and the trajectories of human-induced environmental change. We argue that the spatial and temporal dimensions of human environments shape society’s ability to wield information, while acknowledging that varied cultural factors also focus a society’s ability to act on such information. Our analyses demonstrate the analytical importance of completed experiments from the past, and their utility for contemporary debates concerning managing imperfect information and addressing conflicting priorities in modern environmental management and resource use.”



Pierre Lévy : Collective Intelligence – Chapter 1 – Introduction

eJournal: uffmm.org, ISSN 2567-6458, 17.March 2022 – 22.March 2022, 8:40
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

SCOPE

In the uffmm review section the different papers and books are discussed from the point of view of the oksimo paradigm. [1] In the following text the author discusses some aspects of the book “Collective Intelligence. mankind’s emerging world in cyberspace” by Pierre Lévy (translated by Robert Bonono),1997 (French: 1994)[2]

PREVIEW

Before starting a more complete review here a notice in advance.

Only these days I started reading this book of Pierre Lévy after working more than 4 years intensively with the problem of an open knowledge space for everybody as genuine part of the cyberspace. I have approached the problem from several disciplines culminating in a new theory concept which has additionally a direct manifestation in a new kind of software too. While I am now are just testing version 2 of this software and having in parallel worked through several papers of the early, the middle, and the late Karl Popper [3], I detected this book of Lévy [*] and was completely impressed by the preface of this book. His view of mankind and cyberspace is intellectual deep and a real piece of art. I had the feeling that this text could be without compromise a direct preview of our software paradigm although I didn’t know about him before.

Looking to know more about him I detected some more interesting books but especially also his blog intlekt – metadata [4], where he develops his vision of a new language for a new ‘collective intelligence’ being practiced in the cyberspace. While his ideas about ‘collective intelligence’ associated with the ‘cyberspace’ are fascinating, it appears to me that his ideas about a new language are strongly embedded in ‘classical’ concepts of language, semiotics, and computer, concepts which — in my view — are not sufficient for a new language enabling collective intelligence.

Thus it can become an exciting reading with continuous reflections about the conditions about ‘collective intelligence’ and the ‘role of language’ within this.

Chapter 1: Introduction

Position lévy

The following description of the position of Lévy described in his 1st chapter is clearly an ‘interpretation’ from the ‘viewpoint’ of the writer at this time. This is more or less ‘inevitable’. [5]

A good starting point for the project of ‘understanding the book’ seems to be the historical outline which Lévy gives on the pages 5-10. Starting with the appearance of the homo sapiens he characterizes different periods of time with different cultural patterns triggered by the homo sapiens. In the last period, which is still lasting, knowledge takes radical new ‘forms’; one central feature is the appearance of the ‘cyberspace’.

Primarily the cyberspace is ‘machine-based’, some material structure, enhanced with a certain type of dynamics enabled by algorithms working in the machine. But as part of the cultural life of the homo sapiens the cyberspace is also a cultural reality increasingly interacting directly with individuals, groups, institutions, companies, industry, nature, and even more. And in this space enabled by interactions the homo sapiens does not only encounter with technical entities alone, but also with effects/ events/ artifacts produced by other homo sapiens companions.

Lévy calls this a “re-creation of the social bond based on reciprocal apprenticeship, shared skills, imagination, and collective intelligence.” (p.10) And he adds as a supplement that “collective intelligence is not a purely cognitive object.” (p.10)

Looking into the future Lévy assumes two main axes: “The renewal of the social bond through our relation to knowledge and collective intelligence itself.” (p.11)

Important seems to be that ‘knowledge’ is also not be confined to ‘facts alone’ but it ‘lives’ in the reziproke interactions of human actors and thereby knowledge is a dynamic process.(cf. p.11) Humans as part of such knowledge processes receive their ‘identities’ from this flow. (cf. p.12) One consequence from this is “… the other remains enigmatic, becomes a desirable being in every respect.”(p.12) With some further comment: “No one knows everything, everyone knows something, all knowledge resides in humanity. There is no transcendent store of knowledge and knowledge is simply the sum of what we know.”(p.13f)

‘Collective intelligence’ dwells nearby to dynamic knowledge: “The basis and goal of collective intelligence is the mutual recognition and enrichment of individuals rather than the cult of fetishized or hypostatized communities.”(p.13) Thus Lévy can state that collective intelligence “is born with culture and growth with it.”(p.16) And making it more concrete with a direct embedding in a community: “In an intelligent community the specific objective is to permanently negotiate the order of things, language, the role of the individual, the identification and definition of objects, the reinterpretation of memory. Nothing is fixed.”(p.17)

These different aspects are accumulating in the vision of “a new humanism that incorporates and enlarges the scope of self knowledge into a form of group knowledge and collective thought. … [the] process of collective intelligence [is] leading to the creation of a distinct sense of community.”(p.17)

One side effect of such a new humanism could be “new forms of democracy, better suited to the complexity of contemporary problems…”.(p.18)

First COMMENTS

At this point I will give only some few comments, waiting with more general and final thoughts until the end of the reading of the whole text.

Shortened Timeline – Wrong Picture

The timeline which Lévy is using is helpful, but this timeline is ‘incomplete’. What is missing is the whole time ‘before’ the advent of the homo sapiens within the biological evolution. And this ‘absence’ hides the understanding of one, if not ‘the’, most important concept of all life, including the homo sapiens and its cultural process.

This central concept is today called ‘sustainable development’. It points to a ‘dynamical structure’, which is capable of ‘adapting to an ever changing environment’. Life on the planet earth is only possible from the very beginning on account of this fundamental capability starting with the first cells and being kept strongly alive through all the 3.5 Billion years (10^9) in all the following fascinating developments.

This capability to be able to ‘adapt to an ever changing environment’ implies the ability to change the ‘working structure, the body’ in a way, that the structure can change to respond in new ways, if the environment changes. Such a change has two sides: (i) the real ‘production’ of the working structures of a living system, and (ii) the ‘knowledge’, which is necessary to ‘inform’ the processes of formation and keeping an organism ‘in action’. And these basic mechanisms have additionally (iii) to be ‘distributed in a whole population’, whose sheer number gives enough redundancy to compensate for ‘wrong proposals’.

Knowing this the appearance of the homo sapiens life form manifests a qualitative shift in the structure of the adaption so far: surely prepared by several Millions of years the body of the homo sapiens with an unusual brain enabled new forms of ‘understanding the world’ in close connection with new forms of ‘communication’ and ‘cooperation’. With the homo sapiens the brains became capable to talk — mediated by their body and the surrounding body world — with other brains hidden in other bodies in a way, which enabled the sharing of ‘meaning’ rooted in the body world as well in the own body. This capability created by communication a ‘network of distributed knowledge’ encoded in the shared meaning of individual meaning functions. As long as communication with a certain meaning function with the shared meanings ‘works’, as long does this distributed knowledge’ exist. If the shared meaning weakens or breaks down this distributed knowledge is ‘gone’.

Thus, a homo sapiens population has not to wait for another generation until new varieties of their body structures could show up and compete with the changing environment. A homo sapiens population has the capability to perceive the environment — and itself — in a way, that allows additionally new forms of ‘transformations of the perceptions’ in a way, that ‘cognitive varieties of perceived environments’ can be ‘internally produced’ and being ‘communicated’ and being used for ‘sequences of coordinated actions’ which can change the environment and the homo sapiens them self.

The cultural history then shows — as Lévy has outlined shortly on his pages 5-10 — that the homo sapiens population (distributed in many competing smaller sub-populations) ‘invented’ more and more ‘behavior pattern’, ‘social rules’ and a rich ‘diversity of tools’ to improve communication and to improve the representation and processing of knowledge, which in turn helped for even more complex ‘sequences of coordinated actions’.

Sustainability & Collective Intelligence

Although until today there are no commonly accepted definitions of ‘intelligence’ and of ‘knowledge’ available [6], it makes some sense to locate ‘knowledge’ and ‘intelligence’ in this ‘communication based space of mutual coordinated actions’. And this embedding implies to think about knowledge and intelligence as a property of a population, which ‘collectively’ is learning, is understanding, is planning, is modifying its environment as well as them self.

And having this distributed capability a population has all the basics to enable a ‘sustainable development’.

Therefore the capability for a sustainable development is an emergent capability based on the processes enabled by a distributed knowledge enabled by a collective intelligence.

Having sketched out this then all the wonderful statements of Lévy seem to be ‘true’ in that they describe a dynamic reality which is provided by biological life as such.

A truly Open Space with Real Boundaries

Looking from the outside onto this biological mystery of sustainable processes based on collective intelligence using distributed knowledge one can identify incredible spaces of possible continuations. In principle these spaces are ‘open spaces’.

Looking to the details of this machinery — because we are ‘part of it’ — we know by historical and everyday experience that these processes can fail every minute, even every second.

To ‘improve’ a given situation one needs (i) not only a criterion which enables a judgment about something to be classified as being ‘not good’ (e.g. the given situation), one needs further (ii) some ‘minimal vision’ of a ‘different situation’, which can be classified by a criterion as being ‘better’. And, finally, one needs (iii) a minimal ‘knowledge’ about possible ‘actions’ which can change the given situation in successive steps to transform it into the envisioned ‘new better situation’ functioning as a ‘goal’.

Looking around, looking back, everybody has surely experiences from everyday life that these three tasks are far from being trivial. To judge something to be ‘not good’ or ‘not good enough’ presupposes a minimum of ‘knowledge’ which should be sufficiently evenly be ‘distributed’ in the ‘brains of all participants’. Without a sufficient agreement no common judgment will be possible. At the time of this writing it seems that there is plenty of knowledge around, but it is not working as a coherent knowledge space accepted by all participants. Knowledge battles against knowledge. The same is effective for the tasks (ii) and (iii).

There are many reasons why it is no working. While especially the ‘big challenges’ are of ‘global nature’ and are following a certain time schedule there is not too much time available to ‘synchronize’ the necessary knowledge between all. Mankind has until now supportet predominantly the sheer amount of knowledge and ‘individual specialized solutions’, but did miss the challenge to develop at the same time new and better ‘common processes’ of ‘shared knowledge’. The invention of computer, networks of computer, and then the multi-faceted cyberspace is a great and important invention, but is not really helpful as long as the cyberspace has not become a ‘genuin human-like’ tool for ‘distributed human knowledge’ and ‘distributed collective human-machine intelligence’.

Truth

One of the most important challenges for all kinds of knowledge is the ability to enable a ‘knowledge inspired view’ of the environment — including the actor — which is ‘in agreement with the reality of the environment’; otherwise the actions will not be able to support life in the long run. [7] Such an ‘agreement’ is a challenge, especially if the ‘real processes’ are ‘complex’ , ‘distributed’ and are happening in ‘large time frames’. As all human societies today demonstrate, this fundamental ability to use ’empirically valid knowledge’ is partially well developed, but in many other cases it seems to be nearly not in existence. There is a strong — inborn ! — tendency of human persons to think that the ‘pictures in their heads’ represent ‘automatically’ such a knowledge what is in agreement with the real world. It isn’t. Thus ‘dreams’ are ruling the everyday world of societies. And the proportion of brains with such ‘dreams’ seems to grow. In a certain sense this is a kind of ‘illness’: invisible, but strongly effective and highly infectious. Science alone seems to be not a sufficient remedy, but it is a substantial condition for a remedy.

COMMENTS

[*] The decisive hint for this book came from Athene Sorokowsky, who is member of my research group.

[1] Gerd Doeben-Henisch,The general idea of the oksimo paradigm: https://www.uffmm.org/2022/01/24/newsletter/, January 2022

[2] Pierre Lévy in wkp-en: https://en.wikipedia.org/wiki/Pierre_L%C3%A9vy

[3] Karl Popper in wkp-en: https://en.wikipedia.org/wiki/Karl_Popper. One of the papers I have written commenting on Popper can be found HERE.

[4] Pierre Lévy, intlekt – metadata, see: https://intlekt.io/blog/

[5] Who wants to know, what Lévy ‘really’ has written has to go back to the text of Lévy directly. … then the reader will read the text of Lévy with ‘his own point of view’ … indeed, even then the reader will not know with certainty, whether he did really understand Lévy ‘right’. … reading a text is always a ‘dialogue’ .. .

[6] Not in Philosophie, not in the so-called ‘Humanities’, not in the Social Sciences, not in the Empirical Sciences, and not in Computer Science!

[7] The ‘long run’ can be very short if you misjudge in the traffic a situation, or a medical doctor makes a mistake or a nuclear reactor has the wrong sensors or ….

Continuation

See HERE.

HMI Analysis for the CM:MI paradigm. Part 1

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, February 25, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Last change: March 16, 2021 (Some minor corrections)
HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 1
Introduction

Since January 2021 an intense series of posts has been published how the new ideas manifested in the new software published in this journal  can adequately be reflected in the DAAI theoretical framework. Because these ideas included in the beginning parts of philosophy, philosophy of science, philosophy of engineering, these posts have been first published in the German Blog of the author (cognitiveagent.org). This series of posts started with an online lecture for students of the University of Leipzig together with students of the ‘Hochschule für Technik, Wirtschaft und Kultur (HTWK)’ January 12, 2021.  Here is the complete list of posts:

In what follows in this text is an English version of the following 5 posts. This is not a 1-to-1 translation but rather a new version:

HMI Analysis as Part of Systems Engineering

HMI analysis as pat of systems engineering illustrated with the oksimo software
HMI analysis for the CM:MI paradigm illustrated with the oksimo software concept

As described in the original DAAI theory paper the whole topic of HMI is here understood as a job within the systems engineering paradigm.

The specification process is a kind of a ‘test’ whether the DAAI format of the HMI analysis works with this new  application too.

To remember, the main points of the integrated engineering concept are the following ones:

  1. A philosophical  framework (Philosophy of Science, Philosophy of Engineering, …), which gives the fundamentals for such a process.
  2. The engineering process as such where managers and engineers start the whole process and do it.
  3. After the clarification of the problem to be solved and a minimal vision, where to go, it is the job of the HMI analysis to clarify which requirements have to be fulfilled, to find an optimal solution for the intended product/ service. In modern versions of the HMI analysis substantial parts of the context, i.e. substantial parts of the surrounding society, have to be included in the analysis.
  4. Based on the HMI analysis  in  the logical design phase a mathematical structure has to be identified, which integrates all requirements sufficiently well. This mathematical structure has to be ‘map-able’ into a set of algorithms written in  appropriate programming languages running on  an appropriate platform (the mentioned phases Problem, Vision, HMI analysis, Logical Design are in reality highly iterative).
  5. During the implementation phase the algorithms will be translated into a real working system.
Which Kinds of Experts?

While the original version of the DAAI paper is assuming as ‘experts’ only the typical manager and engineers of an engineering process including all the typical settings, the new extended version under the label CM:MI (Collective Man-Machine Intelligence) has been generalized to any kind of human person as an expert, which allows a maximum of diversity. No one is the ‘absolute expert’.

Collective Intelligence

As ‘intelligence’ is understood here the whole of knowledge, experience, and motivations which can be the moving momentum inside of a human person. As ‘collective’  is meant  the situation, where more than one person is communicating with other persons to share it’s intelligence.

Man-Machine Symbiosis

Today there are discussions going around  about the future of man and (intelligent) machines. Most of these discussions are very weak because they are lacking clear concepts of intelligent machines as well of what is a human person. In the CM:MI paradigm the human person (together with all other biological systems)  is seen at the center of the future  (by  reasons based on modern theories of biological evolution) and the  intelligent machines are seen as supporting devices (although it is assumed here to use ‘strong’ intelligence compared to the actual ‘weak’ machine intelligence today).

CM:MI by Design

Although we know, that groups of many people are ‘in principal’ capable of sharing intelligence to define problems, visions, constructing solutions, testing the solutions etc., we know too, that the practical limits of the brains and the communication are quite narrow. For special tasks a computer can be much, much better. Thus the CM:MI paradigm provides an environment for groups of people to do the shared planning and testing in a new way, only using normal language. Thus the software is designed to enable new kinds of shared knowledge about shared common modes of future worlds. Only with such a truly general framework the vision of a sustainable society as pointed out by the United Nations since 1992 can become real.

Continuation

Look here.