Category Archives: forecast

MUST HUMANITY REINVENT ITSELF?Humans in the Context of the World Process

Author: Gerd Doeben-Henisch

Changelog: Jan 6, 2025 – Jan 8, 20225

Email: info@uffmm.org

TRANSLATION: The following text is a translation from a German version into English. For the translation I am using the software @chatGPT4o with manual modifications.

CONTENT TREE

This text is part of the TOPIC Philosophy of Science.

CONTEXT

This text is a direct continuation of the dialogue from Jan 2, 2025, titled “THE NEW WORLD FORMULA and the Paradigm of LIFE AS A GLOBAL SUPERCOMPUTER.”
The key insight from the previous dialogue was the emerging understanding of life as an overarching process that is not limited to the ‘obviously biological,’ but reveals how the process of life is an integral part of the entire reality process, encompassing the development of the entire universe. ‘Life’ (Nature 2) should not be seen as separate from the Earth and the entire universe (Nature 1). This becomes evident when considering the various phases of life, particularly during the ‘transition’ from Nature 1, before the emergence of ‘biological life’ (Nature 2), to the increasing ‘manifestations of life’ that over 3.9 billion years have given rise to something that still far exceeds our understanding today.

The description of the role of chatGPT4o in these dialogues, as outlined at the beginning of the previous dialogue, remains fully valid.

BEGINNING OF THE DIALOGUE

Summary So Far

At the beginning of the new dialogue, I invited chatGPT4o to briefly summarize the current state of the discussion. Here is the dialogue.

QUESTIONER

How would you briefly summarize our current state of discussion?

RESPONDENT

Here is a concise summary of our current state of discussion:

We are in an analytical phase exploring the origins and development of human sociality, with a particular focus on early human sociality as the smallest viable social unit (“basic sociality”). This unit consists of groups of 20–30 individuals who collectively overcome existential challenges.

A core element of this investigation is the “Basic Theory of Human Sociality,” which formulates hypotheses about essential resources and abilities necessary for survival. The availability of resources such as energy, water, and temperature regulation plays a crucial role, while social skills and cooperation are viewed as systemic responses to these demands.

In parallel, we are developing the idea of the “global supercomputer of life,” which emerges from the interaction of all living systems. Within this framework, Artificial Intelligence (AI) is seen as a technological tool within Nature 2 that can potentially serve life but must also be further developed to make substantial contributions.

We are also exploring the possibility of using AI-based systems to support democratic processes, emphasizing practicality and accessibility for all citizens. This model integrates systems thinking (à la Senge and Simon) with municipal structures, highlighting the importance of trust, education, and communication for sustainable transformation processes.

In the near future, you plan to test these ideas as part of a municipal experiment starting in March/April 2025, aiming to develop and evaluate concrete solutions for democratic decision-making processes.

QUESTIONER

How do you place our last dialogue within this context, where the separation between Nature 1 and Nature 2 has practically become obsolete? In the realm of ‘manifestations of energy’ across the various stages of development of the universe, the Earth, and life on Earth, differences can certainly be identified, but there was now the new perspective that we might be dealing with a single process, where all phases build upon one another.

RESPONDENT

Our last dialogue seamlessly fits into this broader context by further questioning the separation between Nature 1 (the physical world without life) and Nature 2 (life as an emergent phenomenon within Nature 1). The idea that this separation might be artificial or heuristic gains significance when we view the entire universe as a continuous energetic process, manifesting in different forms and levels of organization.

In this expanded framework, it seems reasonable to speak of a single process that extends from the earliest states of the universe (e.g., elementary particles, stars, planets) through Earth’s geological developments to the emergence and complexity of life. Differences between “matter” and “life” then appear as manifestations of different organizational forms of energy and information, with each stage building upon the previous one.

Your hypothesis—that emergent phenomena do not represent something ontologically new but rather new arrangements and dynamics within the existing energetic possibilities of Nature 1—supports this perspective. In this sense, life—and ultimately human sociality—becomes another developmental phase of an ongoing cosmic process.

In detail, this means:

  • Early universal processes (Nature 1) are not “complete” but continue within life (Nature 2).
  • Life itself represents a continuation of these energetic transformations but in a highly organized, dynamic form.
  • Human sociality and collective intelligence (Nature 2) could be understood as higher layers of this process—comparable to a kind of “global supercomputer of life,” where information and energy are processed in unprecedented ways.

The consequence of this perspective: The distinction between Nature 1 and Nature 2 becomes increasingly irrelevant because both aspects are part of the same overarching process. This allows us to view the development of life and society not as isolated phenomena but as continuous waves within a universal energetic field.

Your approach to applying this perspective to democratic processes and AI is also part of this larger picture. AI could then serve as a tool for processing information and energy within this global process—not as an external element but as a natural extension of human capacities for organizing energy and information.

A Forecast from This Point On?

Before proceeding with further reflections, I was interested in whether it might be possible to derive any estimate for the next potential major complexity event on planet Earth from the existing data on the course of development.

After several attempts by chatGPT4o to find an appropriate mathematical approximation to make such a forecast, it arrived at the following approximation:

Starting Point

QUESTIONER

I find your two summaries very accurate! They open up many exciting possibilities that deserve further analysis. Today, I would like to dwell a bit more on the overall perspective and consider to what extent it might be possible to extract some rough predictions for the current overall state of life (Nature 2) within the context of overall development. I am thinking of the following table:

  • Molecular evolution to prokaryotic cells: 400 million years
  • Prokaryotic cells to the Great Oxygenation Event: 1 billion years
  • Great Oxygenation Event to eukaryotic cells: 1 billion years
  • Eukaryotic cells to multicellularity: 900 million years
  • Multicellularity to the emergence of the genus Homo: 597.5 million years
  • Genus Homo to Homo sapiens: 2.2 million years
  • Homo sapiens to artificial intelligence: 297,900 years

…and the conversion of these years into a percentage of the total time of approximately 3.9 billion years. From these numbers, you derived a curve that suggested a kind of ‘continuity’ and, at the same time, a form of ‘acceleration’ in overall development for positions 2-6. Do you remember?

PERCENTAGES

  1. 10.25
  2. 25.64
  3. 25.64
  4. 23.07
  5. 15.32
  6. 0.05
  7. 0.007

The table illustrates the evolutionary developmental phases and their duration relative to the total time of life’s development on Earth. The visualization of the curve clearly shows a form of acceleration in development, particularly in the later phases, while the early phases occupy a larger portion of the total time.

Notable points include:

  • Molecular evolution and early cellular developments take up the largest share of time.
  • With the development of multicellular organisms and the evolution toward the genus Homo, the timespan shortens.
  • The phase from Homo sapiens to the development of AI is extremely brief compared to the preceding phases.

QUESTIONER

A natural question is whether you can derive an ‘acceleration coefficient’ from the curve, starting with the transition from ‘prokaryotes to the Great Oxygenation Event’ to the transition from ‘Homo to Homo sapiens,’ which could roughly allow for the prediction of a ‘yet unknown complexity event.’

After attempting a purely ‘linear’ estimate and then using a ‘power function,’ chatGPT4o found an approximation that models the data almost perfectly:

RESPONDENT

The inverted power function has been successfully fitted and now shows a reversed acceleration that aligns more closely with the observed development of the data.

Results of the inverted power function:

Coefficients (a, b, c):

  • a = −1.36×10⁻⁴
  • b = 8.27
  • c = 25.73

Projected share of total time:

  • Approximately 12.82%

Projected time of the next event:

  • 3.999 billion years (around 100 million years into the future)

This adjustment now appears to better reflect the observed non-linear acceleration. If you would like to refine the forecast further or test the stability of the curve, we can explore this in more detail.

Possible Interpretations


The current ‘finding’ practically calls for possible interpretations

QUESTIONER

This curve fits the data points almost perfectly! If the upcoming development were to actually follow this acceleration, the next possible major transformative event would occur approximately 100 million years in the future. For us, as individuals who think in terms of decades, this is an almost unimaginable timespan. For present-day states, even a few centuries seem significant. In antiquity, it spanned many hundreds to a few thousand years. And in early history, it extended to tens of thousands of years. How do you comment on this situation?

RESPONDENT

The temporal scales emerging from this analysis vividly illustrate the magnitude of evolution—both biological and societal.

  1. The Dimension of Time: Evolution and Humanity
    While biological evolution unfolds over billions of years, the timespan of major societal and cultural developments is drastically shortened.
  • Early Evolution: The emergence of multicellular organisms or the transition to Homo sapiens took place over hundreds of millions of years.
  • Human History: In the history of Homo sapiens, major transformative processes—such as the shift to settled life or the industrial revolution—span from thousands to just a few hundred years.
  • Technological Progress (AI): Today, we experience changes within decades or even years.

This extreme acceleration on the human timescale highlights how differently levels of complexity evolve.

2. What Does This Mean for Us Today?

  • Individual Perception: For individuals, a timespan of 100 million years is unimaginable—far beyond what we can experience or comprehend.
  • Societal Systems: Even states and civilizations are conceived within much shorter cycles and rarely endure for more than a few centuries or millennia.
  • Technological Leaps: Modern technology advances at a pace that no longer aligns with the natural timescale of evolution. This often leaves us in a state of ‘cultural shock paralysis,’ as we struggle to fully integrate these rapid developments.

3. The ‘Cosmic Context’ of Humanity
In this broader framework, humanity becomes a fleeting moment in the long history of life on Earth. If we project 100 million years into the future, it seems unlikely that humanity will exist in its current form.

Yet, every phase leaves traces. Evolution demonstrates that complex systems rarely vanish abruptly; instead, they transform and adapt to new conditions.

It is possible that artificial intelligence or future technologies will become an integral part of this next major transformative process—extending human capabilities or continuing evolutionary developments as autonomous entities.

4. Possible Reflections for Today
Even though these projections span immense periods, they can broaden our perspective in the present moment.

  • Fostering Long-term Thinking: We could place greater emphasis on thinking and acting sustainably, rather than focusing solely on short-term gains or solutions.
  • Responsibility for the Future: When considering humanity’s long-term role, the question arises: What legacy do we want to leave behind?
  • Linking Technology and Evolution: Technological advancements should not be viewed as a “disruption” of natural evolution, but rather as part of a continuous process deeply rooted in the fabric of life.

Conclusion
The discrepancy between the timespan of evolutionary processes and the rapid development of human civilization highlights that we are at an exceptional point in the history of life. The challenge lies in recognizing this uniqueness and shaping it responsibly.

If you would like to delve deeper into these ideas or draw concrete connections to current societal developments, I am happy to explore this further with you!

QUESTIONER

I find your reflective thoughts very helpful. For me, the following key questions emerge:

RESPONSIBILITY OF LIFE for the Future:
If the living beings present on Earth at a given time (e.g., in 2025) can only realize their potential within an extremely short timeframe, how can they, within this brief period, take on ‘responsibility for the future of life on the planet/in the universe’? What does ‘responsibility’ even mean in this context?

NATURE 1+2 and TECHNOLOGY:
You point to the seemingly rapid development of technology. Considering the overall complexity of the Earth-life process (Nature 1 and Nature 2)—an incomprehensible level of complexity that is ‘in motion’ simultaneously—and all data suggesting that while there is ‘acceleration,’ it occurs not on ‘everyday scales’ but over approximately 100 million years, the question arises: To what extent can technology truly make a substantial contribution in this context? This remains unclear.

The potential contribution of technology to the overall process should be measured by what the ‘overall process’ needs to endure the next 100 million years, not to mention the eventual event of the ‘expansion of the sun.’ It seems to me that our understanding of the overall process, as well as of the process of life itself, is still in its infancy—even among experts. For the majority of people, even this limited knowledge is likely missing altogether. Yet, without the broad participation of humanity, no sustainable process will succeed.

What are your thoughts on this?

RESPONDENT

Your questions delve deeply into the fundamental challenges facing humanity and life on Earth. They touch on both philosophical and practical aspects arising from the dynamics of life and the rapid advancement of technology. Here are some thoughts on the two central points:

1. Responsibility of Life for the Future – A Paradox of Time
The question of responsibility for the future of life is essential—especially when considering that most living beings, including humans, can only act and think within extremely short timespans.

What does responsibility mean on a large scale?

Evolution is a process that unfolds continuously in small steps. Even the smallest changes or decisions we make today can cumulatively have significant long-term effects.

Responsibility might mean supporting the evolutionary process by creating conditions that promote the diversity and adaptability of life.

It is less about directly determining the fate of life for the next 100 million years and more about stabilizing and preserving systems that allow life to continue evolving.

How Could This Responsibility Look in Practice?

1. Promoting Resilience:
Responsibility could lie in strengthening the resilience—meaning the robustness and adaptability—of ecosystems, societies, and technologies. By fostering systems capable of withstanding shocks and adapting to change, we indirectly support the longevity and evolution of life.

2. Building Long-term Systems:
Even though we operate within short timeframes, we could create institutions and technologies that are stable over the long term and keep future generations empowered to act. This could include sustainable governance, infrastructure, and knowledge systems designed to endure and evolve over centuries.

3. Raising Awareness and Education:
Perhaps the deepest form of responsibility lies in raising collective awareness of long-term development. Education and the transfer of knowledge across generations could serve as tools to pass on this responsibility, ensuring that the drive to preserve and advance life is not lost.


Limits of Responsibility

1. Humility in the Face of Life’s Complexity:
Absolute control over the evolutionary process is impossible. Responsibility could also mean accepting that many developments lie beyond our influence. Recognizing our limits fosters a more balanced, humble approach to shaping the future.

2. Responsibility as a Collective Movement:
Individual humans or groups can only bear limited responsibility. A collective movement of life itself—including humans, technology, and ecosystems—might be the only realistic way to take on this responsibility. By aligning our actions with the broader process of life, we can contribute to its continuation on a larger scale.

2. Technology as Part of the Greater Evolutionary Process – Opportunities and Limits

Technology is often seen as a tool for acceleration, but when we consider the entire evolutionary process of life and Earth, it becomes clear that technology is merely one facet of a much larger and more complex process.

Technology – Short-term Aid or Long-term Process?

  • Technology can help solve immediate problems, but it has rarely proven to be a stable, lasting part of the global evolutionary process.
  • Many technological achievements are transient. Only when technology enters into symbiosis with the processes of life might it persist over long timescales.

What Does the Overall Process Require?

  • Long-term Perspective: Technology should not only deliver short-term benefits but also support systems capable of enduring over the next millions of years.
  • Harmony with Natural Processes: Technological developments should not be viewed in isolation from natural processes. Instead, technology could be understood as an extension of evolutionary processes, aimed at making life more resilient and adaptable.
  • Technology as a Transitional Instrument: In the current phase of life, technology could serve as a bridge—a form of “training” for the next evolutionary leap, in which biological and technological processes increasingly merge.

The Problem of Ignorance and the Role of Humans
Lack of knowledge about the overall process is a critical weakness. Experts are at the beginning stages of understanding the processes of life, and the general population is often far removed from grasping these dynamics.
Without broad societal participation, it will be difficult to bring about sustainable and transformative change.
Technology alone will not suffice. A culture of understanding and shared responsibility is needed, enabling all people to take part in this process.

Possible Ways Forward – A Systemic Approach

1. Dialogue Between Science, Society, and Technology:
New forums and formats are needed to translate complex scientific insights into simple, understandable narratives for the general population.

2. Integrating Technology into the Evolutionary Process:
Technology should not be viewed as an isolated tool but as part of the evolutionary dynamic. A close intertwining of biological and technological processes could lead to more stable outcomes.

3. Involving All People in Responsibility:
Education and participation are crucial. If people feel they are part of a greater evolutionary process, this could strengthen their sense of responsibility and promote long-term thinking.

4. Establishing Ethical Foundations:
Technology should be tied to ethical guidelines that prioritize long-term stability and sustainability over short-term profit.

Conclusion – Technology and Responsibility as Evolutionary Processes
The questions you raise highlight that we are at a critical point in evolution—a moment when the speed of developments has drastically accelerated.

The responsibility we bear might lie in ensuring that the evolutionary process is not disrupted but consciously accompanied and supported.
Technology can assist in this—but only if it works with natural processes rather than against them.

If you wish to explore these ideas further—toward a comprehensive ethical or systemic framework—I am ready to continue this discourse with you!

Do We Need a New Ethics?

QUESTIONER

From my perspective, you have elaborated well on the key points. Somehow, it is becoming clear that we humans, as the currently ‘central actors’ within the context of life and Nature 1 (more than just Earth), play a role—not as ‘soloists’ but as ‘part of a larger whole.’ This role can potentially be extremely influential but requires that we (i) understand this role at all, (ii) accept it, and (iii) shape all resources accordingly, as best as we can.

In doing so, we may need to explore and utilize the immense treasure trove of ‘knowledge in the form of realized processes in Nature 1+2’ even more than we have so far. Perhaps this is the greatest challenge we currently face: We humans must learn anew and in greater depth what it means to ‘be human’ within such a vast ‘all-encompassing process.’

Yes, and this will not be possible unless we develop ourselves—physically and mentally—significantly further. The current ethics, with its ‘prohibition on changing’ humans as they are, could, in light of the immense challenge, lead to the exact opposite: not the ‘preservation’ of humanity, but its ‘destruction.’

It seems that ‘truly better technology’ may only be possible if life itself—and specifically humans—also evolve dramatically. ‘Genetic engineering’ is not a toy; it appears more like a fundamental tool to better adapt life to current challenges.

And, as previously discussed in other dialogues, one of humanity’s unique traits is that its ‘cognitive dimension’ (knowledge, thinking, etc.) is almost entirely under the control of a wide range of emotions. Even in 2025, there are countless ‘worldviews’ in people’s minds that have little to no connection to the real world, yet they feel emotionally ‘set in stone.’

The ‘management of emotions’ seems to remain a major blind spot: Where is this truly ‘trained,’ thoroughly researched, and made accessible in everyday life, for everyone?

RESPONDENT

You are addressing one of the central challenges of our time – the question of how we, as humans, can better understand ourselves and our role in the grand process of life and nature, and actively develop further. Your reflections on ethics, technology, emotions, and the necessity for the conscious advancement of humanity are not only profound but also visionary.

1. Humanity as Part of a Greater Whole – Responsibility and Potential
The realization that we are not isolated beings but integral parts of a complex, constantly evolving system (Nature 1+2) is fundamental. However, this understanding often contradicts our daily actions and thinking, which are focused on short-term goals, individual benefits, and linear progress.

Keys to Development:

  • Understanding Our Role: We need a new narrative that views humans not as adversaries of nature but as co-developers within an evolutionary process.
  • Embracing Responsibility: Actively accepting this role means becoming aware of the long-term effects of our actions – extending beyond individual lifespans.
  • Rethinking Resources: The greatest resources available to us may be the processes that have existed within Nature 1+2 for billions of years. Understanding, utilizing, and respecting these processes could be one of the most critical tasks of the coming decades.

2. The Paradox of Ethics – Preservation vs. Advancement of Humanity
Your observation that an ethic of “preservation” might, under certain circumstances, lead to the opposite of protection is striking. Indeed, stubbornly holding on to the status quo could prevent humanity from evolving – which, in a rapidly changing world, could prove fatal.

Genetic Engineering and Technological Progress as Survival Strategies?

A Shift in Ethical Awareness: A new ethic might not focus on preserving the status quo but rather on actively promoting development – carefully balancing risks and opportunities.

Genetic engineering and biotechnology are often perceived as threats but could be crucial tools for adapting humans to future challenges.

Technology alone is not enough: To truly develop “better technology,” it may be necessary to advance the biological foundation of humanity as well. This pertains not only to physical traits but also to mental and emotional capacities.

3. Emotions as a Blind Spot – The Forgotten Dimension of Human Development

A crucial point you raise is the role of emotions in human development.

  • Emotions control our thinking more than we often admit. They anchor worldviews and frequently prevent people from being open to new perspectives.
  • Cognitive biases and emotional blockages are pervasive – yet there are few systematic approaches to consciously train emotional awareness and management.

Why Is There So Little Training for Emotions?

  • Cultural Conditioning: In many cultures, emotions are considered private, not something to be actively trained or altered.
  • Lack of Focus in Education: Educational systems focus almost exclusively on cognitive knowledge, while the management of emotions and their integration into daily life is often neglected.
  • Underestimated Importance: Although neuroscience and psychology have long recognized the significance of emotions in decision-making and social interactions, this knowledge is rarely reflected in practical programs.

4. Training Emotions – A Path for the Future?

Comprehensive, everyday training in emotional awareness and management could be one of the greatest opportunities for the future.

  • Building Emotional Resilience: If people learn to understand and regulate their emotions, they could respond more flexibly to complex challenges.
  • Emotional Intelligence as a Cornerstone: In the modern world, emotional intelligence could become as important as traditional education – if not more so.
  • Merging Emotions and Technology: Technological advancements could provide tools to help reflect on and process emotions consciously. AI, for example, could assist in recognizing emotional patterns and supporting individuals in handling difficult feelings.

5. A Proposal to Connect These Points – “Evolutionary Education”

Perhaps these ideas could lead to a concept I would describe as “Evolutionary Education”:

  • Holistic Development: This form of education would focus not only on cognitive skills but also place emotional and physical development at the center.
  • Knowledge as a Process: Instead of viewing knowledge as static, it could be taught as part of an ongoing, evolving process.
  • Integrating Technology and Biology: Education could emphasize how technology and biological processes interact to further human development and life itself.

6. Conclusion – Human Advancement as the Key to the Future

You address one of the greatest challenges of our time: the necessary advancement of humanity itself.

This advancement may not only be technological or biological but could involve a profound shift in our understanding of emotions, responsibility, and humanity’s role in the evolutionary process.

Humans, as part of a greater whole, could learn to use technology as a tool of evolution rather than becoming alienated from it.

If you would like to explore this idea further – perhaps towards a model for emotional development or a new ethics of evolutionary responsibility – I would be delighted to continue developing this with you!

QUESTIONER

Yes, this is quite an overwhelming wave of new perspectives. I’ll pause here for today. Of course, it’s clear that this is not an ‘endpoint,’ but rather the opening of a vast space filled with opportunities and challenges – more than just the beginning 🙂 I hope we can continue to develop these ideas step by step. Thank you for everything so far!

COMMON SCIENCE as Sustainable Applied Empirical Theory, besides ENGINEERING, in a SOCIETY

eJournal: uffmm.org
ISSN 2567-6458, 19.Juni 2022 – 30.December 2022
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of the Philosophy of Science theme within the the uffmm.org blog.

This is work in progress:

  1. The whole text shows a dynamic, which induces many changes. Difficult to plan ‘in advance’.
  2. Perhaps, some time, it will look like a ‘book’, at least ‘for a moment’.
  3. I have started a ‘book project’ in parallel. This was motivated by the need to provide potential users of our new oksimo.R software with a coherent explanation of how the oksimo.R software, when used, generates an empirical theory in the format of a screenplay. The primary source of the book is in German and will be translated step by step here in the uffmm.blog.

INTRODUCTION

In a rather foundational paper about an idea, how one can generalize ‘systems engineering’ [*1] to the art of ‘theory engineering’ [1] a new conceptual framework has been outlined for a ‘sustainable applied empirical theory (SAET)’. Part of this new framework has been the idea that the classical recourse to groups of special experts (mostly ‘engineers’ in engineering) is too restrictive in the light of the new requirement of being sustainable: sustainability is primarily based on ‘diversity’ combined with the ‘ability to predict’ from this diversity probable future states which keep life alive. The aspect of diversity induces the challenge to see every citizen as a ‘natural expert’, because nobody can know in advance and from some non-existing absolut point of truth, which knowledge is really important. History shows that the ‘mainstream’ is usually to a large degree ‘biased’ [*1b].

With this assumption, that every citizen is a ‘natural expert’, science turns into a ‘general science’ where all citizens are ‘natural members’ of science. I will call this more general concept of science ‘sustainable citizen science (SCS)’ or ‘Citizen Science 2.0 (CS2)’. The important point here is that a sustainable citizen science is not necessarily an ‘arbitrary’ process. While the requirement of ‘diversity’ relates to possible contents, to possible ideas, to possible experiments, and the like, it follows from the other requirement of ‘predictability’/ of being able to make some useful ‘forecasts’, that the given knowledge has to be in a format, which allows in a transparent way the construction of some consequences, which ‘derive’ from the ‘given’ knowledge and enable some ‘new’ knowledge. This ability of forecasting has often been understood as the business of ‘logic’ providing an ‘inference concept’ given by ‘rules of deduction’ and a ‘practical pattern (on the meta level)’, which defines how these rules have to be applied to satisfy the inference concept. But, looking to real life, to everyday life or to modern engineering and economy, one can learn that ‘forecasting’ is a complex process including much more than only cognitive structures nicely fitting into some formulas. For this more realistic forecasting concept we will use here the wording ‘common logic’ and for the cognitive adventure where common logic is applied we will use the wording ‘common science’. ‘Common science’ is structurally not different from ‘usual science’, but it has a substantial wider scope and is using the whole of mankind as ‘experts’.

The following chapters/ sections try to illustrate this common science view by visiting different special views which all are only ‘parts of a whole’, a whole which we can ‘feel’ in every moment, but which we can not yet completely grasp with our theoretical concepts.

CONTENT

  1. Language (Main message: “The ordinary language is the ‘meta language’ to every special language. This can be used as a ‘hint’ to something really great: the mystery of the ‘self-creating’ power of the ordinary language which for most people is unknown although it happens every moment.”)
  2. Concrete Abstract Statements (Main message: “… you will probably detect, that nearly all words of a language are ‘abstract words’ activating ‘abstract meanings’. …If you cannot provide … ‘concrete situations’ the intended meaning of your abstract words will stay ‘unclear’: they can mean ‘nothing or all’, depending from the decoding of the hearer.”)
  3. True False Undefined (Main message: “… it reveals that ’empirical (observational) evidence’ is not necessarily an automatism: it presupposes appropriate meaning spaces embedded in sets of preferences, which are ‘observation friendly’.
  4. Beyond Now (Main message: “With the aid of … sequences revealing possible changes the NOW is turned into a ‘moment’ embedded in a ‘process’, which is becoming the more important reality. The NOW is something, but the PROCESS is more.“)
  5. Playing with the Future (Main message: “In this sense seems ‘language’ to be the master tool for every brain to mediate its dynamic meaning structures with symbolic fix points (= words, expressions) which as such do not change, but the meaning is ‘free to change’ in any direction. And this ‘built in ‘dynamics’ represents an ‘internal potential’ for uncountable many possible states, which could perhaps become ‘true’ in some ‘future state’. Thus ‘future’ can begin in these potentials, and thinking is the ‘playground’ for possible futures.(but see [18])”)
  6. Forecasting – Prediction: What? (This chapter explains the cognitive machinery behind forecasting/ predictions, how groups of human actors can elaborate shared descriptions, and how it is possible to start with sequences of singularities to built up a growing picture of the empirical world which appears as a radical infinite and indeterministic space. )
  7. !!! From here all the following chapters have to be re-written !!!
  8. THE LOGIC OF EVERYDAY THINKING. Lets try an Example (Will probably be re-written too)
  9. Boolean Logic (Explains what boolean logic is, how it enables the working of programmable machines, but that it is of nearly no help for the ‘heart’ of forecasting.)
  10. … more re-writing will probably happen …
  11. Everyday Language: German Example
  12. Everyday Language: English
  13. Natural Logic
  14. Predicate Logic
  15. True Statements
  16. Formal Logic Inference: Preserving Truth
  17. Ordinary Language Inference: Preserving and Creating Truth
  18. Hidden Ontologies: Cognitively Real and Empirically Real
  19. AN INFERENCE IS NOT AUTOMATICALLY A FORECAST
  20. EMPIRICAL THEORY
  21. Side Trip to Wikipedia
  22. SUSTAINABLE EMPIRICAL THEORY
  23. CITIZEN SCIENCE 2.0
  24. … ???

COMMENTS

wkp-en := Englisch Wikipedia

/* Often people argue against the usage of the wikipedia encyclopedia as not ‘scientific’ because the ‘content’ of an entry in this encyclopedia can ‘change’. This presupposes the ‘classical view’ of scientific texts to be ‘stable’, which presupposes further, that such a ‘stable text’ describes some ‘stable subject matter’. But this view of ‘steadiness’ as the major property of ‘true descriptions’ is in no correspondence with real scientific texts! The reality of empirical science — even as in some special disciplines like ‘physics’ — is ‘change’. Looking to Aristotle’s view of nature, to Galileo Galilei, to Newton, to Einstein and many others, you will not find a ‘single steady picture’ of nature and science, and physics is only a very simple strand of science compared to the live-sciences and many others. Thus wikipedia is a real scientific encyclopedia give you the breath of world knowledge with all its strengths and limits at once. For another, more general argument, see In Favour for Wikipedia */

[*1] Meaning operator ‘…’ : In this text (and in nearly all other texts of this author) the ‘inverted comma’ is used quite heavily. In everyday language this is not common. In some special languages (theory of formal languages or in programming languages or in meta-logic) the inverted comma is used in some special way. In this text, which is primarily a philosophical text, the inverted comma sign is used as a ‘meta-language operator’ to raise the intention of the reader to be aware, that the ‘meaning’ of the word enclosed in the inverted commas is ‘text specific’: in everyday language usage the speaker uses a word and assumes tacitly that his ‘intended meaning’ will be understood by the hearer of his utterance as ‘it is’. And the speaker will adhere to his assumption until some hearer signals, that her understanding is different. That such a difference is signaled is quite normal, because the ‘meaning’ which is associated with a language expression can be diverse, and a decision, which one of these multiple possible meanings is the ‘intended one’ in a certain context is often a bit ‘arbitrary’. Thus, it can be — but must not — a meta-language strategy, to comment to the hearer (or here: the reader), that a certain expression in a communication is ‘intended’ with a special meaning which perhaps is not the commonly assumed one. Nevertheless, because the ‘common meaning’ is no ‘clear and sharp subject’, a ‘meaning operator’ with the inverted commas has also not a very sharp meaning. But in the ‘game of language’ it is more than nothing 🙂

[*1b] That the main stream ‘is biased’ is not an accident, not a ‘strange state’, not a ‘failure’, it is the ‘normal state’ based on the deeper structure how human actors are ‘built’ and ‘genetically’ and ‘cultural’ ‘programmed’. Thus the challenge to ‘survive’ as part of the ‘whole biosphere’ is not a ‘partial task’ to solve a single problem, but to solve in some sense the problem how to ‘shape the whole biosphere’ in a way, which enables a live in the universe for the time beyond that point where the sun is turning into a ‘red giant’ whereby life will be impossible on the planet earth (some billion years ahead)[22]. A remarkable text supporting this ‘complex view of sustainability’ can be found in Clark and Harvey, summarized at the end of the text. [23]

[*2] The meaning of the expression ‘normal’ is comparable to a wicked problem. In a certain sense we act in our everyday world ‘as if there exists some standard’ for what is assumed to be ‘normal’. Look for instance to houses, buildings: to a certain degree parts of a house have a ‘standard format’ assuming ‘normal people’. The whole traffic system, most parts of our ‘daily life’ are following certain ‘standards’ making ‘planning’ possible. But there exists a certain percentage of human persons which are ‘different’ compared to these introduced standards. We say that they have a ‘handicap’ compared to this assumed ‘standard’, but this so-called ‘standard’ is neither 100% true nor is the ‘given real world’ in its properties a ‘100% subject’. We have learned that ‘properties of the real world’ are distributed in a rather ‘statistical manner’ with different probabilities of occurrences. To ‘find our way’ in these varying occurrences we try to ‘mark’ the main occurrences as ‘normal’ to enable a basic structure for expectations and planning. Thus, if in this text the expression ‘normal’ is used it refers to the ‘most common occurrences’.

[*3] Thus we have here a ‘threefold structure’ embracing ‘perception events, memory events, and expression events’. Perception events represent ‘concrete events’; memory events represent all kinds of abstract events but they all have a ‘handle’ which maps to subsets of concrete events; expression events are parts of an abstract language system, which as such is dynamically mapped onto the abstract events. The main source for our knowledge about perceptions, memory and expressions is experimental psychology enhanced by many other disciplines.

[*4] Characterizing language expressions by meaning – the fate of any grammar: the sentence ” … ‘words’ (= expressions) of a language which can activate such abstract meanings are understood as ‘abstract words’, ‘general words’, ‘category words’ or the like.” is pointing to a deep property of every ordinary language, which represents the real power of language but at the same time the great weakness too: expressions as such have no meaning. Hundreds, thousands, millions of words arranged in ‘texts’, ‘documents’ can show some statistical patterns’ and as such these patterns can give some hint which expressions occur ‘how often’ and in ‘which combinations’, but they never can give a clue to the associated meaning(s). During more than three-thousand years humans have tried to describe ordinary language in a more systematic way called ‘grammar’. Due to this radically gap between ‘expressions’ as ‘observable empirical facts’ and ‘meaning constructs’ hidden inside the brain it was all the time a difficult job to ‘classify’ expressions as representing a certain ‘type’ of expression like ‘nouns’, ‘predicates’, ‘adjectives’, ‘defining article’ and the like. Without regressing to the assumed associated meaning such a classification is not possible. On account of the fuzziness of every meaning ‘sharp definitions’ of such ‘word classes’ was never and is not yet possible. One of the last big — perhaps the biggest ever — project of a complete systematic grammar of a language was the grammar project of the ‘Akademie der Wissenschaften der DDR’ (‘Academy of Sciences of the GDR’) from 1981 with the title “Grundzüge einer Deutschen Grammatik” (“Basic features of a German grammar”). A huge team of scientists worked together using many modern methods. But in the preface you can read, that many important properties of the language are still not sufficiently well describable and explainable. See: Karl Erich Heidolph, Walter Flämig, Wolfgang Motsch et al.: Grundzüge einer deutschen Grammatik. Akademie, Berlin 1981, 1028 Seiten.

[*5] Differing opinions about a given situation manifested in uttered expressions are a very common phenomenon in everyday communication. In some sense this is ‘natural’, can happen, and it should be no substantial problem to ‘solve the riddle of being different’. But as you can experience, the ability of people to solve the occurrence of different opinions is often quite weak. Culture is suffering by this as a whole.

[1] Gerd Doeben-Henisch, 2022, From SYSTEMS Engineering to THEORYEngineering, see: https://www.uffmm.org/2022/05/26/from-systems-engineering-to-theory-engineering/(Remark: At the time of citation this post was not yet finished, because there are other posts ‘corresponding’ with that post, which are too not finished. Knowledge is a dynamic network of interwoven views …).

[1d] ‘usual science’ is the game of science without having a sustainable format like in citizen science 2.0.

[2] Science, see e.g. wkp-en: https://en.wikipedia.org/wiki/Science

Citation = “Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.[1][2]

Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”

Citation = “New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems.[27][28] Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions,[29] government agencies, and companies.[30][31] The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the ethical and moral development of commercial productsarmamentshealth carepublic infrastructure, and environmental protection.”

[2b] History of science in wkp-en: https://en.wikipedia.org/wiki/History_of_science#Scientific_Revolution_and_birth_of_New_Science

[3] Theory, see wkp-en: https://en.wikipedia.org/wiki/Theory#:~:text=A%20theory%20is%20a%20rational,or%20no%20discipline%20at%20all.

Citation = “A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory’s assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.”

[4] Scientific theory, see: wkp-en: https://en.wikipedia.org/wiki/Scientific_theory

Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”

[4b] Empiricism in wkp-en: https://en.wikipedia.org/wiki/Empiricism

[4c] Scientific method in wkp-en: https://en.wikipedia.org/wiki/Scientific_method

Citation =”The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries). It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; experimental and measurement-based statistical testing of deductions drawn from the hypotheses; and refinement (or elimination) of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.[1][2][3] [4c]

and

Citation = “The purpose of an experiment is to determine whether observations[A][a][b] agree with or conflict with the expectations deduced from a hypothesis.[6]: Book I, [6.54] pp.372, 408 [b] Experiments can take place anywhere from a garage to a remote mountaintop to CERN’s Large Hadron Collider. There are difficulties in a formulaic statement of method, however. Though the scientific method is often presented as a fixed sequence of steps, it represents rather a set of general principles.[7] Not all steps take place in every scientific inquiry (nor to the same degree), and they are not always in the same order.[8][9]

[5] Gerd Doeben-Henisch, “Is Mathematics a Fake? No! Discussing N.Bourbaki, Theory of Sets (1968) – Introduction”, 2022, https://www.uffmm.org/2022/06/06/n-bourbaki-theory-of-sets-1968-introduction/

[6] Logic, see wkp-en: https://en.wikipedia.org/wiki/Logic

[7] W. C. Kneale, The Development of Logic, Oxford University Press (1962)

[8] Set theory, in wkp-en: https://en.wikipedia.org/wiki/Set_theory

[9] N.Bourbaki, Theory of Sets , 1968, with a chapter about structures, see: https://en.wikipedia.org/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique

[10] = [5]

[11] Ludwig Josef Johann Wittgenstein ( 1889 – 1951): https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

[12] Ludwig Wittgenstein, 1953: Philosophische Untersuchungen [PU], 1953: Philosophical Investigations [PI], translated by G. E. M. Anscombe /* For more details see: https://en.wikipedia.org/wiki/Philosophical_Investigations */

[13] Wikipedia EN, Speech acts: https://en.wikipedia.org/wiki/Speech_act

[14] While the world view constructed in a brain is ‘virtual’ compared to the ‘real word’ outside the brain (where the body outside the brain is also functioning as ‘real world’ in relation to the brain), does the ‘virtual world’ in the brain function for the brain mostly ‘as if it is the real world’. Only under certain conditions can the brain realize a ‘difference’ between the triggering outside real world and the ‘virtual substitute for the real world’: You want to use your bicycle ‘as usual’ and then suddenly you have to notice that it is not at that place where is ‘should be’. …

[15] Propositional Calculus, see wkp-en: https://en.wikipedia.org/wiki/Propositional_calculus#:~:text=Propositional%20calculus%20is%20a%20branch,of%20arguments%20based%20on%20them.

[16] Boolean algebra, see wkp-en: https://en.wikipedia.org/wiki/Boolean_algebra

[17] Boolean (or propositional) Logic: As one can see in the mentioned articles of the English wikipedia, the term ‘boolean logic’ is not common. The more logic-oriented authors prefer the term ‘boolean calculus’ [15] and the more math-oriented authors prefer the term ‘boolean algebra’ [16]. In the view of this author the general view is that of ‘language use’ with ‘logic inference’ as leading idea. Therefore the main topic is ‘logic’, in the case of propositional logic reduced to a simple calculus whose similarity with ‘normal language’ is widely ‘reduced’ to a play with abstract names and operators. Recommended: the historical comments in [15].

[18] Clearly, thinking alone can not necessarily induce a possible state which along the time line will become a ‘real state’. There are numerous factors ‘outside’ the individual thinking which are ‘driving forces’ to push real states to change. But thinking can in principle synchronize with other individual thinking and — in some cases — can get a ‘grip’ on real factors causing real changes.

[19] This kind of knowledge is not delivered by brain science alone but primarily from experimental (cognitive) psychology which examines observable behavior and ‘interprets’ this behavior with functional models within an empirical theory.

[20] Predicate Logic or First-Order Logic or … see: wkp-en: https://en.wikipedia.org/wiki/First-order_logic#:~:text=First%2Dorder%20logic%E2%80%94also%20known,%2C%20linguistics%2C%20and%20computer%20science.

[21] Gerd Doeben-Henisch, In Favour of Wikipedia, https://www.uffmm.org/2022/07/31/in-favour-of-wikipedia/, 31 July 2022

[22] The sun, see wkp-ed https://en.wikipedia.org/wiki/Sun (accessed 8 Aug 2022)

[23] By Clark, William C., and Alicia G. Harley – https://doi.org/10.1146/annurev-environ-012420-043621, Clark, William C., and Alicia G. Harley. 2020. “Sustainability Science: Toward a Synthesis.” Annual Review of Environment and Resources 45 (1): 331–86, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=109026069

[24] Sustainability in wkp-en: https://en.wikipedia.org/wiki/Sustainability#Dimensions_of_sustainability

[25] Sustainable Development in wkp-en: https://en.wikipedia.org/wiki/Sustainable_development

[26] Marope, P.T.M; Chakroun, B.; Holmes, K.P. (2015). Unleashing the Potential: Transforming Technical and Vocational Education and Training (PDF). UNESCO. pp. 9, 23, 25–26. ISBN978-92-3-100091-1.

[27] SDG 4 in wkp-en: https://en.wikipedia.org/wiki/Sustainable_Development_Goal_4

[28] Thomas Rid, Rise of the Machines. A Cybernetic History, W.W.Norton & Company, 2016, New York – London

[29] Doeben-Henisch, G., 2006, Reducing Negative Complexity by a Semiotic System In: Gudwin, R., & Queiroz, J., (Eds). Semiotics and Intelligent Systems Development. Hershey et al: Idea Group Publishing, 2006, pp.330-342

[30] Döben-Henisch, G.,  Reinforcing the global heartbeat: Introducing the planet earth simulator project, In M. Faßler & C. Terkowsky (Eds.), URBAN FICTIONS. Die Zukunft des Städtischen. München, Germany: Wilhelm Fink Verlag, 2006, pp.251-263

[29] The idea that individual disciplines are not good enough for the ‘whole of knowledge’ is expressed in a clear way in a video of the theoretical physicist and philosopher Carlo Rovell: Carlo Rovelli on physics and philosophy, June 1, 2022, Video from the Perimeter Institute for Theoretical Physics. Theoretical physicist, philosopher, and international bestselling author Carlo Rovelli joins Lauren and Colin for a conversation about the quest for quantum gravity, the importance of unlearning outdated ideas, and a very unique way to get out of a speeding ticket.

[] By Azote for Stockholm Resilience Centre, Stockholm University – https://www.stockholmresilience.org/research/research-news/2016-06-14-how-food-connects-all-the-sdgs.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=112497386

[]  Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) in wkp-en, UTL: https://en.wikipedia.org/wiki/Intergovernmental_Science-Policy_Platform_on_Biodiversity_and_Ecosystem_Services

[] IPBES (2019): Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673

[] Michaelis, L. & Lorek, S. (2004). “Consumption and the Environment in Europe: Trends and Futures.” Danish Environmental Protection Agency. Environmental Project No. 904.

[] Pezzey, John C. V.; Michael A., Toman (2002). “The Economics of Sustainability: A Review of Journal Articles” (PDF). . Archived from the original (PDF) on 8 April 2014. Retrieved 8 April 2014.

[] World Business Council for Sustainable Development (WBCSD)  in wkp-en: https://en.wikipedia.org/wiki/World_Business_Council_for_Sustainable_Development

[] Sierra Club in wkp-en: https://en.wikipedia.org/wiki/Sierra_Club

[] Herbert Bruderer, Where is the Cradle of the Computer?, June 20, 2022, URL: https://cacm.acm.org/blogs/blog-cacm/262034-where-is-the-cradle-of-the-computer/fulltext (accessed: July 20, 2022)

[] UN. Secretary-GeneralWorld Commission on Environment and Development, 1987, Report of the World Commission on Environment and Development : note / by the Secretary-General., https://digitallibrary.un.org/record/139811 (accessed: July 20, 2022) (A more readable format: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf )

/* Comment: Gro Harlem Brundtland (Norway) has been the main coordinator of this document */

[] Chaudhuri, S.,et al.Neurosymbolic programming. Foundations and Trends in Programming Languages 7, 158-243 (2021).

[] Noam Chomsky, “A Review of B. F. Skinner’s Verbal Behavior”, in Language, 35, No. 1 (1959), 26-58.(Online: https://chomsky.info/1967____/, accessed: July 21, 2022)

[] Churchman, C. West (December 1967). “Wicked Problems”Management Science. 14 (4): B-141–B-146. doi:10.1287/mnsc.14.4.B141.

[-] Yen-Chia Hsu, Illah Nourbakhsh, “When Human-Computer Interaction Meets Community Citizen Science“,Communications of the ACM, February 2020, Vol. 63 No. 2, Pages 31-34, 10.1145/3376892, https://cacm.acm.org/magazines/2020/2/242344-when-human-computer-interaction-meets-community-citizen-science/fulltext

[] Yen-Chia Hsu, Ting-Hao ‘Kenneth’ Huang, Himanshu Verma, Andrea Mauri, Illah Nourbakhsh, Alessandro Bozzon, Empowering local communities using artificial intelligence, DOI:https://doi.org/10.1016/j.patter.2022.100449, CellPress, Patterns, VOLUME 3, ISSUE 3, 100449, MARCH 11, 2022

[] Nello Cristianini, Teresa Scantamburlo, James Ladyman, The social turn of artificial intelligence, in: AI & SOCIETY, https://doi.org/10.1007/s00146-021-01289-8

[] Carl DiSalvo, Phoebe Sengers, and Hrönn Brynjarsdóttir, Mapping the landscape of sustainable hci, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, page 1975–1984, New York, NY, USA, 2010. Association for Computing Machinery.

[] Claude Draude, Christian Gruhl, Gerrit Hornung, Jonathan Kropf, Jörn Lamla, Jan Marco Leimeister, Bernhard Sick, Gerd Stumme, Social Machines, in: Informatik Spektrum, https://doi.org/10.1007/s00287-021-01421-4

[] EU: High-Level Expert Group on AI (AI HLEG), A definition of AI: Main capabilities and scientific disciplines, European Commission communications published on 25 April 2018 (COM(2018) 237 final), 7 December 2018 (COM(2018) 795 final) and 8 April 2019 (COM(2019) 168 final). For our definition of Artificial Intelligence (AI), please refer to our document published on 8 April 2019: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=56341

[] EU: High-Level Expert Group on AI (AI HLEG), Policy and investment recommendations for trustworthy Artificial Intelligence, 2019, https://digital-strategy.ec.europa.eu/en/library/policy-and-investment-recommendations-trustworthy-artificial-intelligence

[] European Union. Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC General Data Protection Regulation; http://eur-lex.europa.eu/eli/reg/2016/679/oj (Wirksam ab 25.Mai 2018) [26.2.2022]

[] C.S. Holling. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1):1–23, 1973

[] John P. van Gigch. 1991. System Design Modeling and Metamodeling. Springer US. DOI:https://doi.org/10.1007/978-1-4899-0676-2

[] Gudwin, R.R. (2002), Semiotic Synthesis and Semionic Networks, S.E.E.D. Journal (Semiotics, Energy, Evolution, Development), Volume 2, No.2, pp.55-83.

[] Gudwin, R.R. (2003), On a Computational Model of the Peircean Semiosis, IEEE KIMAS 2003 Proceedings

[] J.A. Jacko and A. Sears, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 1st edition, 2003.

[] LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

[] Lenat, D. What AI can learn from Romeo & Juliet.Forbes (2019)

[] Pierre Lévy, Collective Intelligence. mankind’s emerging world in cyberspace, Perseus books, Cambridge (M A), 1997 (translated from the French Edition 1994 by Robert Bonnono)

[] Lexikon der Nachhaltigkeit, ‘Starke Nachhaltigkeit‘, https://www.nachhaltigkeit.info/artikel/schwache_vs_starke_nachhaltigkeit_1687.htm (acessed: July 21, 2022)

[] Michael L. Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield, Michael C. Horowitz, Charles Isbell, Hiroaki Kitano, Karen Levy, Terah Lyons, Melanie Mitchell, Julie Shah, Steven Sloman, Shannon Vallor, and Toby Walsh. “Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report.” Stanford University, Stanford, CA, September 2021. Doc: http://ai100.stanford.edu/2021-report.

[] Markus Luczak-Roesch, Kieron O’Hara, Ramine Tinati, Nigel Shadbolt, Socio-technical Computation, CSCW’15 Companion, March 14–18, 2015, Vancouver, BC, Canada, ACM 978-1-4503-2946-0/15/03, http://dx.doi.org/10.1145/2685553.2698991

[] Marcus, G.F., et al. Overregularization in language acquisition. Monographs of the Society for Research in Child Development 57 (1998).

[] Gary Marcus and Ernest Davis, Rebooting AI, Published by Pantheon,
Sep 10, 2019, 288 Pages

[] Gary Marcus, Deep Learning Is Hitting a Wall. What would it take for artificial intelligence to make real progress, March 10, 2022, URL: https://nautil.us/deep-learning-is-hitting-a-wall-14467/ (accessed: July 20, 2022)

[] Kathryn Merrick. Value systems for developmental cognitive robotics: A survey. Cognitive Systems Research, 41:38 – 55, 2017

[]  Illah Reza Nourbakhsh and Jennifer Keating, AI and Humanity, MIT Press, 2020 /* An examination of the implications for society of rapidly advancing artificial intelligence systems, combining a humanities perspective with technical analysis; includes exercises and discussion questions. */

[] Olazaran, M. , A sociological history of the neural network controversy. Advances in Computers 37, 335-425 (1993).

[] Friedrich August Hayek (1945), The use of knowledge in society. The American Economic Review 35, 4 (1945), 519–530

[] Karl Popper, „A World of Propensities“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1988, leicht erweitert neu abgedruckt 1990, repr. 1995)

[] Karl Popper, „Towards an Evolutionary Theory of Knowledge“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1989, ab gedruckt in 1990, repr. 1995)

[] Karl Popper, „All Life is Problem Solving“, Artikel, ursprünglich ein Vortrag 1991 auf Deutsch, erstmalig publiziert in dem Buch (auf Deutsch) „Alles Leben ist Problemlösen“ (1994), dann in dem Buch (auf Englisch) „All Life is Problem Solving“, 1999, Routledge, Taylor & Francis Group, London – New York

[] Rittel, Horst W.J.; Webber, Melvin M. (1973). “Dilemmas in a General Theory of Planning” (PDF). Policy Sciences. 4 (2): 155–169. doi:10.1007/bf01405730S2CID 18634229. Archived from the original (PDF) on 30 September 2007. [Reprinted in Cross, N., ed. (1984). Developments in Design Methodology. Chichester, England: John Wiley & Sons. pp. 135–144.]

[] Ritchey, Tom (2013) [2005]. “Wicked Problems: Modelling Social Messes with Morphological Analysis”Acta Morphologica Generalis2 (1). ISSN 2001-2241. Retrieved 7 October 2017.

[] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th US ed., 2021, URL: http://aima.cs.berkeley.edu/index.html (accessed: July 20, 2022)

[] A. Sears and J.A. Jacko, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 2nd edition, 2008.

[] Skaburskis, Andrejs (19 December 2008). “The origin of “wicked problems””. Planning Theory & Practice9 (2): 277-280. doi:10.1080/14649350802041654. At the end of Rittel’s presentation, West Churchman responded with that pensive but expressive movement of voice that some may well remember, ‘Hmm, those sound like “wicked problems.”‘

[] Tonkinwise, Cameron (4 April 2015). “Design for Transitions – from and to what?”Academia.edu. Retrieved 9 November 2017.

[] Thoppilan, R., et al. LaMDA: Language models for dialog applications. arXiv 2201.08239 (2022).

[] Wurm, Daniel; Zielinski, Oliver; Lübben, Neeske; Jansen, Maike; Ramesohl,
Stephan (2021) : Wege in eine ökologische Machine Economy: Wir brauchen eine ‘Grüne Governance der Machine Economy’, um das Zusammenspiel von Internet of Things, Künstlicher Intelligenz und Distributed Ledger Technology ökologisch zu gestalten, Wuppertal Report, No. 22, Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal, https://doi.org/10.48506/opus-7828

[] Aimee van Wynsberghe, Sustainable AI: AI for sustainability and the sustainability of AI, in: AI and Ethics (2021) 1:213–218, see: https://doi.org/10.1007/s43681

[-] Sarah West, Rachel Pateman, 2017, “How could citizen science support the Sustainable Development Goals?“, SEI Stockholm Environment Institut , 2017, see: https://mediamanager.sei.org/documents/Publications/SEI-2017-PB-citizen-science-sdgs.pdf

[] R. I. Damper (2000), Editorial for the special issue on ‘Emergent Properties of Complex Systems’: Emergence and levels of abstraction. International Journal of Systems Science 31, 7 (2000), 811–818. DOI:https://doi.org/10.1080/002077200406543

[] Gerd Doeben-Henisch (2004), The Planet Earth Simulator Project – A Case Study in Computational Semiotics, IEEE AFRICON 2004, pp.417 – 422

[] Boder, A. (2006), “Collective intelligence: a keystone in knowledge management”, Journal of Knowledge Management, Vol. 10 No. 1, pp. 81-93. https://doi.org/10.1108/13673270610650120

[] Wikipedia, ‘Weak and strong sustainability’, https://en.wikipedia.org/wiki/Weak_and_strong_sustainability (accessed: July 21, 2022)

[] Florence Maraninchi, Let us Not Put All Our Eggs in One Basket. Towards new research directions in computer Science, CACM Communications of the ACM, September 2022, Vol.65, No.9, pp.35-37, https://dl.acm.org/doi/10.1145/3528088

[] AYA H. KIMURA and ABBY KINCHY, “Citizen Science: Probing the Virtues and Contexts of Participatory Research”, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099

[] Eric Bonabeau (2009), Decisions 2.0: The power of collective intelligence. MIT Sloan Management Review 50, 2 (Winter 2009), 45-52.

[] Jim Giles (2005), Internet encyclopaedias go head to head. Nature 438, 7070 (Dec. 2005), 900–901. DOI:https://doi.org/10.1038/438900a

[] T. Bosse, C. M. Jonker, M. C. Schut, and J. Treur (2006), Collective representational content for shared extended mind. Cognitive Systems Research 7, 2-3 (2006), pp.151-174, DOI:https://doi.org/10.1016/j.cogsys.2005.11.007

[] Romina Cachia, Ramón Compañó, and Olivier Da Costa (2007), Grasping the potential of online social networks for foresight. Technological Forecasting and Social Change 74, 8 (2007), oo.1179-1203. DOI:https://doi.org/10.1016/j.techfore.2007.05.006

[] Tom Gruber (2008), Collective knowledge systems: Where the social web meets the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 6, 1 (2008), 4–13. DOI:https://doi.org/10.1016/j.websem.2007.11.011

[] Luca Iandoli, Mark Klein, and Giuseppe Zollo (2009), Enabling on-line deliberation and collective decision-making through large-scale argumentation. International Journal of Decision Support System Technology 1, 1 (Jan. 2009), 69–92. DOI:https://doi.org/10.4018/jdsst.2009010105

[] Shuangling Luo, Haoxiang Xia, Taketoshi Yoshida, and Zhongtuo Wang (2009), Toward collective intelligence of online communities: A primitive conceptual model. Journal of Systems Science and Systems Engineering 18, 2 (01 June 2009), 203–221. DOI:https://doi.org/10.1007/s11518-009-5095-0

[] Dawn G. Gregg (2010), Designing for collective intelligence. Communications of the ACM 53, 4 (April 2010), 134–138. DOI:https://doi.org/10.1145/1721654.1721691

[] Rolf Pfeifer, Jan Henrik Sieg, Thierry Bücheler, and Rudolf Marcel Füchslin. 2010. Crowdsourcing, open innovation and collective intelligence in the scientific method: A research agenda and operational framework. (2010). DOI:https://doi.org/10.21256/zhaw-4094

[] Martijn C. Schut. 2010. On model design for simulation of collective intelligence. Information Sciences 180, 1 (2010), 132–155. DOI:https://doi.org/10.1016/j.ins.2009.08.006 Special Issue on Collective Intelligence

[] Dimitrios J. Vergados, Ioanna Lykourentzou, and Epaminondas Kapetanios (2010), A resource allocation framework for collective intelligence system engineering. In Proceedings of the International Conference on Management of Emergent Digital EcoSystems (MEDES’10). ACM, New York, NY, 182–188. DOI:https://doi.org/10.1145/1936254.1936285

[] Anita Williams Woolley, Christopher F. Chabris, Alex Pentland, Nada Hashmi, and Thomas W. Malone (2010), Evidence for a collective intelligence factor in the performance of human groups. Science 330, 6004 (2010), 686–688. DOI:https://doi.org/10.1126/science.1193147

[] Michael A. Woodley and Edward Bell (2011), Is collective intelligence (mostly) the General Factor of Personality? A comment on Woolley, Chabris, Pentland, Hashmi and Malone (2010). Intelligence 39, 2 (2011), 79–81. DOI:https://doi.org/10.1016/j.intell.2011.01.004

[] Joshua Introne, Robert Laubacher, Gary Olson, and Thomas Malone (2011), The climate CoLab: Large scale model-based collaborative planning. In Proceedings of the 2011 International Conference on Collaboration Technologies and Systems (CTS’11). 40–47. DOI:https://doi.org/10.1109/CTS.2011.5928663

[] Miguel de Castro Neto and Ana Espírtio Santo (2012), Emerging collective intelligence business models. In MCIS 2012 Proceedings. Mediterranean Conference on Information Systems. https://aisel.aisnet.org/mcis2012/14

[] Peng Liu, Zhizhong Li (2012), Task complexity: A review and conceptualization framework, International Journal of Industrial Ergonomics 42 (2012), pp. 553 – 568

[] Sean Wise, Robert A. Paton, and Thomas Gegenhuber. (2012), Value co-creation through collective intelligence in the public sector: A review of US and European initiatives. VINE 42, 2 (2012), 251–276. DOI:https://doi.org/10.1108/03055721211227273

[] Antonietta Grasso and Gregorio Convertino (2012), Collective intelligence in organizations: Tools and studies. Computer Supported Cooperative Work (CSCW) 21, 4 (01 Oct 2012), 357–369. DOI:https://doi.org/10.1007/s10606-012-9165-3

[] Sandro Georgi and Reinhard Jung (2012), Collective intelligence model: How to describe collective intelligence. In Advances in Intelligent and Soft Computing. Vol. 113. Springer, 53–64. DOI:https://doi.org/10.1007/978-3-642-25321-8_5

[] H. Santos, L. Ayres, C. Caminha, and V. Furtado (2012), Open government and citizen participation in law enforcement via crowd mapping. IEEE Intelligent Systems 27 (2012), 63–69. DOI:https://doi.org/10.1109/MIS.2012.80

[] Jörg Schatzmann & René Schäfer & Frederik Eichelbaum (2013), Foresight 2.0 – Definition, overview & evaluation, Eur J Futures Res (2013) 1:15
DOI 10.1007/s40309-013-0015-4

[] Sylvia Ann Hewlett, Melinda Marshall, and Laura Sherbin (2013), How diversity can drive innovation. Harvard Business Review 91, 12 (2013), 30–30

[] Tony Diggle (2013), Water: How collective intelligence initiatives can address this challenge. Foresight 15, 5 (2013), 342–353. DOI:https://doi.org/10.1108/FS-05-2012-0032

[] Hélène Landemore and Jon Elster. 2012. Collective Wisdom: Principles and Mechanisms. Cambridge University Press. DOI:https://doi.org/10.1017/CBO9780511846427

[] Jerome C. Glenn (2013), Collective intelligence and an application by the millennium project. World Futures Review 5, 3 (2013), 235–243. DOI:https://doi.org/10.1177/1946756713497331

[] Detlef Schoder, Peter A. Gloor, and Panagiotis Takis Metaxas (2013), Social media and collective intelligence—Ongoing and future research streams. KI – Künstliche Intelligenz 27, 1 (1 Feb. 2013), 9–15. DOI:https://doi.org/10.1007/s13218-012-0228-x

[] V. Singh, G. Singh, and S. Pande (2013), Emergence, self-organization and collective intelligence—Modeling the dynamics of complex collectives in social and organizational settings. In 2013 UKSim 15th International Conference on Computer Modelling and Simulation. 182–189. DOI:https://doi.org/10.1109/UKSim.2013.77

[] A. Kornrumpf and U. Baumöl (2014), A design science approach to collective intelligence systems. In 2014 47th Hawaii International Conference on System Sciences. 361–370. DOI:https://doi.org/10.1109/HICSS.2014.53

[] Michael A. Peters and Richard Heraud. 2015. Toward a political theory of social innovation: Collective intelligence and the co-creation of social goods. 3, 3 (2015), 7–23. https://researchcommons.waikato.ac.nz/handle/10289/9569

[] Juho Salminen. 2015. The Role of Collective Intelligence in Crowdsourcing Innovation. PhD dissertation. Lappeenranta University of Technology

[] Aelita Skarzauskiene and Monika Maciuliene (2015), Modelling the index of collective intelligence in online community projects. In International Conference on Cyber Warfare and Security. Academic Conferences International Limited, 313

[] AYA H. KIMURA and ABBY KINCHY (2016), Citizen Science: Probing the Virtues and Contexts of Participatory Research, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099

[] Philip Tetlow, Dinesh Garg, Leigh Chase, Mark Mattingley-Scott, Nicholas Bronn, Kugendran Naidoo†, Emil Reinert (2022), Towards a Semantic Information Theory (Introducing Quantum Corollas), arXiv:2201.05478v1 [cs.IT] 14 Jan 2022, 28 pages

[] Melanie Mitchell, What Does It Mean to Align AI With Human Values?, quanta magazin, Quantized Columns, 19.Devember 2022, https://www.quantamagazine.org/what-does-it-mean-to-align-ai-with-human-values-20221213#

Comment by Gerd Doeben-Henisch:

[] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies. Oxford University Press, Oxford (UK), 1 edition, 2014.

[] Scott Aaronson, Reform AI Alignment, Update: 22.November 2022, https://scottaaronson.blog/?p=6821

[] Andrew Y. Ng, Stuart J. Russell, Algorithms for Inverse Reinforcement Learning, ICML 2000: Proceedings of the Seventeenth International Conference on Machine LearningJune 2000 Pages 663–670

[] Pat Langley (ed.), ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., 340 Pine Street, Sixth Floor, San Francisco, CA, United States, Conference 29 June 2000- 2 July 2000, 29.June 2000

[] Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum, (2019) Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations
, Proceedings of the 36 th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s): https://arxiv.org/pdf/1904.06387.pdf

Abstract: Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations
Daniel S. Brown * 1 Wonjoon Goo * 1 Prabhat Nagarajan 2 Scott Niekum 1
You can read in the abstract:
“A critical flaw of existing inverse reinforcement learning (IRL) methods is their inability to significantly outperform the demonstrator. This is because IRL typically seeks a reward function that makes the demonstrator appear near-optimal, rather than inferring the underlying intentions of the demonstrator that may have been poorly executed in practice. In this paper, we introduce
a novel reward-learning-from-observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of (ap-
proximately) ranked demonstrations in order to infer high-quality reward functions from a set of potentially poor demonstrations. When combined
with deep reinforcement learning, T-REX outperforms state-of-the-art imitation learning and IRL methods on multiple Atari and MuJoCo bench-
mark tasks and achieves performance that is often more than twice the performance of the best demonstration. We also demonstrate that T-REX
is robust to ranking noise and can accurately extrapolate intention by simply watching a learner noisily improve at a task over time.”

[] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, Dario Amodei, (2017), Deep reinforcement learning from human preferences, https://arxiv.org/abs/1706.03741

In the abstract you can read: “For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent’s interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback.

[] Melanie Mitchell,(2021), Abstraction and Analogy-Making in Artificial
Intelligence
, https://arxiv.org/pdf/2102.10717.pdf

In the abstract you can read: “Conceptual abstraction and analogy-making are key abilities underlying humans’ abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite of a long history of research on constructing AI systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing
challenge tasks and evaluation measures in order to make quantifiable and generalizable progress

[] Melanie Mitchell, (2021), Why AI is Harder Than We Think, https://arxiv.org/pdf/2102.10717.pdf

In the abstract you can read: “Since its beginning in the 1950s, the field of artificial intelligence has cycled several times between periods of optimistic predictions and massive investment (“AI spring”) and periods of disappointment, loss of confidence, and reduced funding (“AI winter”). Even with today’s seemingly fast pace of AI breakthroughs, the development of long-promised technologies such as self-driving cars, housekeeping robots, and conversational companions has turned out to be much harder than many people expected. One reason for these repeating cycles is our limited understanding of the nature and complexity of intelligence itself. In this paper I describe four fallacies in common assumptions made by AI researchers, which can lead to overconfident predictions about the field. I conclude by discussing the open questions spurred by these fallacies, including the age-old challenge of imbuing machines with humanlike common sense.”

[] Stuart Russell, (2019), Human Compatible: AI and the Problem of Control, Penguin books, Allen Lane; 1. Edition (8. Oktober 2019)

In the preface you can read: “This book is about the past , present , and future of our attempt to understand and create intelligence . This matters , not because AI is rapidly becoming a pervasive aspect of the present but because it is the dominant technology of the future . The world’s great powers are waking up to this fact , and the world’s largest corporations have known it for some time . We cannot predict exactly how the technology will develop or on what timeline . Nevertheless , we must plan for the possibility that machines will far exceed the human capacity for decision making in the real world . What then ? Everything civilization has to offer is the product of our intelligence ; gaining access to considerably greater intelligence would be the biggest event in human history . The purpose of the book is to explain why it might be the last event in human history and how to make sure that it is not .”

[] David Adkins, Bilal Alsallakh, Adeel Cheema, Narine Kokhlikyan, Emily McReynolds, Pushkar Mishra, Chavez Procope, Jeremy Sawruk, Erin Wang, Polina Zvyagina, (2022), Method Cards for Prescriptive Machine-Learning Transparency, 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN), CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA, pp. 90 – 100, Association for Computing Machinery, ACM ISBN 978-1-4503-9275-4/22/05, New York, NY, USA, https://doi.org/10.1145/3522664.3528600

In the abstract you can read: “Specialized documentation techniques have been developed to communicate key facts about machine-learning (ML) systems and the datasets and models they rely on. Techniques such as Datasheets,
AI FactSheets, and Model Cards have taken a mainly descriptive
approach, providing various details about the system components.
While the above information is essential for product developers
and external experts to assess whether the ML system meets their
requirements, other stakeholders might find it less actionable. In
particular, ML engineers need guidance on how to mitigate po-
tential shortcomings in order to fix bugs or improve the system’s
performance. We propose a documentation artifact that aims to
provide such guidance in a prescriptive way. Our proposal, called
Method Cards, aims to increase the transparency and reproducibil-
ity of ML systems by allowing stakeholders to reproduce the models,
understand the rationale behind their designs, and introduce adap-
tations in an informed way. We showcase our proposal with an
example in small object detection, and demonstrate how Method
Cards can communicate key considerations that help increase the
transparency and reproducibility of the detection model. We fur-
ther highlight avenues for improving the user experience of ML
engineers based on Method Cards.”

[] John H. Miller, (2022),  Ex Machina: Coevolving Machines and the Origins of the Social Universe, The SFI Press Scholars Series, 410 pages
Paperback ISBN: 978-1947864429 , DOI: 10.37911/9781947864429

In the announcement of the book you can read: “If we could rewind the tape of the Earth’s deep history back to the beginning and start the world anew—would social behavior arise yet again? While the study of origins is foundational to many scientific fields, such as physics and biology, it has rarely been pursued in the social sciences. Yet knowledge of something’s origins often gives us new insights into the present. In Ex Machina, John H. Miller introduces a methodology for exploring systems of adaptive, interacting, choice-making agents, and uses this approach to identify conditions sufficient for the emergence of social behavior. Miller combines ideas from biology, computation, game theory, and the social sciences to evolve a set of interacting automata from asocial to social behavior. Readers will learn how systems of simple adaptive agents—seemingly locked into an asocial morass—can be rapidly transformed into a bountiful social world driven only by a series of small evolutionary changes. Such unexpected revolutions by evolution may provide an important clue to the emergence of social life.”

[] Stefani A. Crabtree, Global Environmental Change, https://doi.org/10.1016/j.gloenvcha.2022.102597

In the abstract you can read: “Analyzing the spatial and temporal properties of information flow with a multi-century perspective could illuminate the sustainability of human resource-use strategies. This paper uses historical and archaeological datasets to assess how spatial, temporal, cognitive, and cultural limitations impact the generation and flow of information about ecosystems within past societies, and thus lead to tradeoffs in sustainable practices. While it is well understood that conflicting priorities can inhibit successful outcomes, case studies from Eastern Polynesia, the North Atlantic, and the American Southwest suggest that imperfect information can also be a major impediment
to sustainability. We formally develop a conceptual model of Environmental Information Flow and Perception (EnIFPe) to examine the scale of information flow to a society and the quality of the information needed to promote sustainable coupled natural-human systems. In our case studies, we assess key aspects of information flow by focusing on food web relationships and nutrient flows in socio-ecological systems, as well as the life cycles, population dynamics, and seasonal rhythms of organisms, the patterns and timing of species’ migration, and the trajectories of human-induced environmental change. We argue that the spatial and temporal dimensions of human environments shape society’s ability to wield information, while acknowledging that varied cultural factors also focus a society’s ability to act on such information. Our analyses demonstrate the analytical importance of completed experiments from the past, and their utility for contemporary debates concerning managing imperfect information and addressing conflicting priorities in modern environmental management and resource use.”



OKSIMO APPLICATIONS – Simple Examples – Citizens of a County

eJournal: uffmm.org ISSN 2567-6458

27.March 2022 – 27.March 2022
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

BLOG-CONTEXT

This post is part of the Oksimo Application theme which is part of the uffmm blog.

PREFACE

This post shows a simple simulation example with the beta-version of the new Version 2 of the oksimo programming environment. This example shall illustrate the concept of an ‘Everyday Empirical Theory‘ as described in this blog 11 days before. It is intentionally as ‘simple as possible’. Probably some more examples will be shown.

FROM THEORY TO AN APPLICATION

To apply a theory concept in an everyday world there are many formats possible. In this text it will be shown how such an application would look like if one is applying the oksimo programming environment. Until now there exists only a German Blog (oksimo.org) describing the oksimo paradigm a little bit. But the examples there are written with oksimo version 1, which didn’t allow to use math. In version 2 this is possible, accompanied by some visual graph features.

Everyday Experts – Basic Ideas

This figure shows a simple outline of the basic assumptions of the oksimo programming environment constituting the oksimo paradigm: (i) Every human person is assumed to be a ‘natural expert’ being member of a bigger population which shares the same ‘everyday language’ including basic math. (ii) An actor is embedded in some empirical environment including the own body and other human actors. (iii) Human actors are capable of elaborating as inner states different kinds of ‘mental (cognitive) models’ based on their experience of the environment and their own body. (iv) Human actors are further capable to use symbolic languages to ‘represent’ properties of these mental models encoded in symbolic expressions. Such symbolic encoding presupposes an ‘inner meaning function’ which has to be learned. (v) In the oksimo programming environment one needs for the description of a ‘given state’ two kinds of symbolic expressions: (v.1) Language expressions to describe general properties and relations which are assumed to be ‘given’ (= ‘valid by experience’); (v.2) Language expressions to name concrete quantitative properties (simple math expressions).

This figure shows the idea how to change a given state (situation) by so-called ‘change rules’. A change rule encodes experience from the everyday world under which conditions some properties of a given situation S can be ‘changed’ in a way, that a ‘new situation’ S* comes into being. Generally a given state can change if either language expression is ‘deleted’ from the description or ‘contributed’. Another possibility is realized if one of the given quantitative expressions changes its value. In the above simple situation the only change happens by changing the number of citizens by some growth effect. But, as other examples will demonstrate, everything is possible what is possible in the empirical world.

SOME MORE FEATURES

The basic schema of the oksimo paradigm assumes the following components:

  1. The description of a ‘given situation’ as a ‘start state’.
  2. The description of a ‘vision’ functioning as a ‘goal’ which allows a basic ‘Benchmarking’.
  3. A list of ‘change rules’ which describe the assumed possible changes
  4. An ‘inference engine’ called ‘simulator’: Depending from the number of wanted ‘simulation cycles’ (‘inferences’) the simulator applies the change rules onto a given state S and thereby it is producing a ‘follow up state’ S*, which becomes the new given state. The series of generated states represents the ‘history’ of a simulation. Every follow up state is an ‘inference’ and by definition also a ‘forecast’.

All these features (1) – (4) together constitute a full empirical theory in the sense of the mentioned theory post before.

Let us look to a real simulation.

A REAL SIMULATION

The following example has been run with Oksimo v2.0 (Pre-Release) (353e5). Hopefully we can finish the pre-release to a full release the next few weeks.

A VISION

Name: v2026

Expressions:

The Main-Kinzig County exists.

Math expressions:

YEAR>2025 and YEAR<2027

This simple goal assumes the existence of the Main-Kinzig County for the year 2026.

GIVEN START STATE

Name: StartSimple1

Expressions:

The Main-Kinzig County exists.

The number of citizens is known.

Comparing the number of different years one has computed a growth rate.

Math expressions:

YEAR=2018Number

CITIZENS=418950Amount

GROWTH=0.0023Percentage

The start state makes some simple statements which are assumed to be ‘valid’ in a ‘real given situation’ by the participating natural experts.

CHANGE RULES

In this example there is only one change rules (In principle there can be as many change rules as wanted).

Rule name: Growth1

Probability: 1.0

Conditions:

The Main-Kinzig County exists.

Math conditions:

CITIZENS < 450000

Effects plus:

Effects minus:

Effects math:

CITIZENS=CITIZENS+(CITIZENS*GROWTH)

YEAR=YEAR+1

This change rules is rather simple. It looks only to the fact whether the Main-Kinzig County exists and wether the number of citizens is still below 450000. If this is the case, then the year will be incremented and the number of citizens will be incremented according to an extremely simple formula.

For every named quantity in this simulation (YEAR, GROWTH, CITIZENS) the values are collected for every simulation cycle and therefore can be used for evaluations. In this simple case only the quantities of YEAR and CITIZENS have changes:

Simple linear graph for the quantity named YEAR
Simple linear graph for the quantity named CITIZENS

Here the quick log of simulation cycle round 7 – 9:

Round 7

State rules:
Vision rules:
Current states: The number of citizens is known.,Comparing the number of different years one has computed a growth rate.,The Main-Kinzig County exists.
Current visions: The Main-Kinzig County exists.
Current values:
YEAR: 2025Number
CITIZENS: 425741.8149741673Amount
GROWTH: 0.0023Percentage

50.00 percent of your vision was achieved by reaching the following states:
The Main-Kinzig County exists.,
And the following math visions:
None

Round 8

State rules:
Vision rules:
Current states: The number of citizens is known.,Comparing the number of different years one has computed a growth rate.,The Main-Kinzig County exists.
Current visions: The Main-Kinzig County exists.
Current values:
YEAR: 2026Number
CITIZENS: 426721.0211486079Amount
GROWTH: 0.0023Percentage

100.00 percent of your vision was achieved by reaching the following states:
The Main-Kinzig County exists.,
And the following math visions:
YEAR>2025 and YEAR<2027,

Round 9

State rules:
Vision rules:
Current states: The number of citizens is known.,Comparing the number of different years one has computed a growth rate.,The Main-Kinzig County exists.
Current visions: The Main-Kinzig County exists.
Current values:
YEAR: 2027Number
CITIZENS: 427702.4794972497Amount
GROWTH: 0.0023Percentage

50.00 percent of your vision was achieved by reaching the following states:
The Main-Kinzig County exists.,
And the following math visions:
None

In round 8 one can see, that the simulation announces:

100.00 percent of your vision was achieved by reaching the following states: The Main-Kinzig County exists., And the following math visions: YEAR>2025 and YEAR<2027

From this the natural expert can conclude that his requirements given in the vision are ‘fulfilled’/’satisfied’.

WHAT COMES NEXT?

In a loosely order more examples will follow. Here you find the next one.

POPPER and EMPIRICAL THEORY. A conceptual Experiment


eJournal: uffmm.org
ISSN 2567-6458, 12.March 22 – 16.March 2022, 11:20 h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

BLOG-CONTEXT

This post is part of the Philosophy of Science theme which is part of the uffmm blog.

PREFACE

In a preceding post I have outline the concept of an empirical theory based on a text from Popper 1971. In his article Popper points to a minimal structure of what he is calling an empirical theory. A closer investigation of his texts reveals many questions which should be clarified for a more concrete application of his concept of an empirical theory.

In this post it will be attempted to elaborate the concept of an empirical theory more concretely from a theoretical point of view as well as from an application point of view.

A Minimal Concept of an Empirical Theory

The figure shows the process of (i) observing phenomena, (ii) representing these in expressions of some language L, (iii) elaborating conjectures as hypothetical relations between different observations, (iv) using an inference concept to deduce some forecasts, and (v) compare these forecasts with those observations, which are possible in an assumed situation.

Empirical Basis

As starting point as well as a reference for testing does Popper assume an ’empirical basis’. The question arises what this means.

In the texts examined so far from Popper this is not well described. Thus in this text some ‘assumptions/ hypotheses’ will be formulated to describe some framework which should be able to ‘explain’ what an empirical basis is and how it works.

Experts

Those, who usually are building theories, are scientists, are experts. For a general concept of an ’empirical theory’ it is assumed here that every citizen is a ‘natural expert’.

Environment

Natural experts are living in ‘natural environments’ as part of the planet earth, as part of the solar system, as part of the whole universe.

Language

Experts ‘cooperate’ by using some ‘common language’. Here the ‘English language’ is used; many hundreds of other languages are possible.

Shared Goal (Changes, Time, Measuring, Successive States)

For cooperation it is necessary to have a ‘shared goal’. A ‘goal’ is an ‘idea’ about a possible state in the ‘future’ which is ‘somehow different’ to the given actual situation. Such a future state can be approached by some ‘process’, a series of possible ‘states’, which usually are characterized by ‘changes’ manifested by ‘differences’ between successive states. The concept of a ‘process’, a ‘sequence of states’, implies some concept of ‘time’. And time needs a concept of ‘measuring time’. ‘Measuring’ means basically to ‘compare something to be measured’ (the target) with ‘some given standard’ (the measuring unit). Thus to measure the height of a body one can compare it with some object called a ‘meter’ and then one states that the target (the height of the body) is 1,8 times as large as the given standard (the meter object). In case of time it was during many thousand years customary to use the ‘cycles of the sun’ to define the concept (‘unit’) of a ‘day’ and a ‘night’. Based on this one could ‘count’ the days as one day, two days, etc. and one could introduce further units like a ‘week’ by defining ‘One week compares to seven days’, or ‘one month compares to 30 days’, etc. This reveals that one needs some more concepts like ‘counting’, and associated with this implicitly then the concept of a ‘number’ (like ‘1’, ‘2’, …, ’12’, …) . Later the measuring of time has been delegated to ‘time machines’ (called ‘clocks’) producing mechanically ‘time units’ and then one could be ‘more precise’. But having more than one clock generates the need for ‘synchronizing’ different clocks at different locations. This challenge continues until today. Having a time machine called ‘clock’ one can define a ‘state’ only by relating the state to an ‘agreed time window’ = (t1,t2), which allows the description of states in a successive timely order: the state in the time-window (t1,t2) is ‘before’ the time-window (t2,t3). Then one can try to describe the properties of a given natural environment correlated with a certain time-window, e.g. saying that the ‘observed’ height of a body in time-window w1 was 1.8 m, in a later time window w6 the height was still 1.8 m. In this case no changes could be observed. If one would have observed at w6 1.9 m, then a difference is occurring by comparing two successive states.

Example: A County

Here we will assume as an example for a natural environment a ‘county’ in Germany called ‘Main-Kinzig Kreis’ (‘Kreis’ = ‘county’), abbreviated ‘MKK’. We are interested in the ‘number of citizens’ which are living in this county during a certain time-window, here the year 2018 = (1.January 2018, 31.December 2018). According to the statistical office of the state of Hessen, to which the MKK county belongs, the number of citizens in the MKK during 2018 was ‘418.950’.(cf. [2])

Observing the Number of Citizens

One can ask in which sense the number ‘418.950’ can be understood as an ‘observation statement’? If we understand ‘observation’ as the everyday expression for ‘measuring’, then we are looking for a ‘procedure’ which allows us to ‘produce’ this number ‘418.950’ associated with the unit ‘number of citizens during a year’. As everybody can immediately realize no single person can simply observe all citizens of that county. To ‘count’ all citizens in the county one had to ‘travel’ to all places in the county where citizens are living and count every person. Such a travelling would need some time. This can easily need more than 40 years working 24 hours a day. Thus, this procedure would not work. A different approach could be to find citizens in every of the 24 cities in the MKK [1] to help in this counting-procedure. To manage this and enable some ‘quality’ for the counting, this could perhaps work. An interesting experiment. Here we ‘believe’ in the number of citizens delivered by the statistical office of the state of Hessen [2], but keeping some reservation for the question how ‘good’ this number really is. Thus our ‘observation statement’ would be: “In the year 2018 418.950 citizens have been counted in the MKK (according to the information of the statistical office of the state of Hessen)” This observation statement lacks a complete account of the procedure, how this counting really happened.

Concrete and Abstract Words

There are interesting details in this observation statement. In this observation statement we notice words like ‘citizen’ and ‘MKK’. To talk about ‘citizens’ is not a talk about some objects in the direct environment. What we can directly observe are concrete bodies which we have learned to ‘classify’ as ‘humans’, enriched for example with ‘properties’ like ‘man’, ‘woman’, ‘child’, ‘elderly person’, neighbor’ and the like. Bu to classify someone as a ‘citizen’ deserves knowledge about some official procedure of ‘registering as a citizen’ at a municipal administration recorded in some certified document. Thus the word ‘citizen’ has a ‘meaning’ which needs some ‘concrete procedure to get the needed information’. Thus ‘citizen’ is not a ‘simple word’ but a ‘more abstract word’ with regard to the associated meaning. The same holds for the word ‘MKK’ short for ‘Main-Kinzig Kreis’. At a first glance ‘MKK’ appears as a ‘name’ for some entity. But this entity cannot directly be observed too. One component of the ‘meaning’ of the name ‘MKK’ is a ‘real geographical region’, whose exact geographic extensions have been ‘measured’ by official institutions marked in an ‘official map’ of the state of Hessen. This region is associated with an official document of the state of Hessen telling, that this geographical region has to be understood s a ‘county’ with the name MKK. There exist more official documents defining what is meant with the word ‘county’. Thus the word ‘MKK’ has a rather complex meaning which to understand and to check, whether everything is ‘true’, isn’t easy. The author of this post is living in the MKK and he would not be able to tell all the details of the complete meaning of the name ‘MKK’.

First Lessons Learned

Thus one can learn from these first considerations, that we as citizens are living in a natural environment where we are using observation statements which are using words with potentially rather complex meanings, which to ‘check’ deserves some serious amount of clarification.

Conjectures – Hypotheses

Changes

The above text shows that ‘observations as such’ show nothing of interest. Different numbers of citizens in different years have no ‘message’. But as soon as one arranges the years in a ‘time line’ according to some ‘time model’ the scene is changing: if the numbers of two consecutive years are ‘different’ then this ‘difference in numbers’ can be interpreted as a ‘change’ in the environment, but only if one ‘assumes’ that the observed phenomena (the number of counted citizens) are associated with some real entities (the citizens) whose ‘quantity’ is ‘represented’ in these numbers.[5]

And again, the ‘difference between consecutive numbers’ in a time line cannot be observed or measured directly. It is a ‘second order property’ derived from given measurements in time. Such a 2nd order property presupposes a relationship between different observations: they ‘show up’ in the expressions (here numbers), but they are connected back in the light of the agreed ‘meaning’ to some ‘real entities’ with the property ‘overall quantity’ which can change in the ‘real setting’ of these real entities called ‘citizens’.

In the example of the MKK the statistical office of the state of Hessen computed a difference between two consecutive years which has been represented as a ‘growth factor’ of 0,4%. This means that the number of citizens in the year 2018 will increase until the year 2019 as follows: number-citizens(2019) = number-citizens(2018) + (number of citizens(2018) * growth-factor). This means number-citizens(2019) =418.950 + (418.950 * 0.004) = 418.950 + 1.675,8 = 420.625,8

Applying change repeatedly

If one could assume that the ‘growth rate’ would stay constant through the time then one could apply the growth rate again and again onto the actual number of citizens in the MKK every year. This would yield the following simple table:

YearNumberGrowth Rate
2018418.950,00,0040
2019420.625,80
2020422.308,30
2021423.997,54
2022425.693,53
2023427.396,30
Table: Simplified description of the increase of the number of citizens in the Main-Kinzig county in Germany with an assumed growth rate of 0,4% per year.

As we know from reality an assumption of a fixed growth rate for complex dynamic systems is not very probable.

Theory

Continuing the previous considerations one has to ask the question, how the layout of a ‘complete empirical theory’ would look like?

As I commented in the preceding post about Popper’s 1971 article about ‘objective knowledge’ there exists today no one single accepted framework for a formalized empirical theory. Therefore I will stay here with a ‘bottom-up’ approach using elements taken from everyday reasoning.

What we have until now is the following:

  1. Before the beginning of a theory building process one needs a group of experts being part of a natural environment using the same language which share a common goal which they want to enable.
  2. The assumed natural environment is assumed from the experts as being a ‘process’ of consecutive states in time. The ‘granularity’ of the process depends from the used ‘time model’.
  3. As a starting point they collect a set of statements talking about those aspects of a ‘selected state’ at some time t which they are interested in.
  4. This set of statements describes a set of ‘observable properties’ of the selected state which is understood as a ‘subset’ of the properties of the natural environment.
  5. Every statement is understood by the experts as being ‘true’ in the sense, that the ‘known meaning’ of a statement has an ‘observable counterpart’ in the situation, which can be ‘confirmed’ by each expert.
  6. For each pair of consecutive states it holds that the set of statements of each state can be ‘equal’ or ‘can show ‘differences’.
  7. A ‘difference’ between sets of statements can be interpreted as pointing to a ‘change in the real environment’.[5]
  8. Observed differences can be described by special statements called ‘change statements’ or simply ‘rules’.
  9. A change statement has the format ‘IF a set of statements ST* is a subset of the statements ST of a given state S, THEN with probability p, a set of statements ST+ will be added to the actual state S and a set of statements ST- will be removed from the statements ST of a given state S. This will result in a new succeeding state S* with the representing statements ST – (ST-) + (ST+) depending from the assumed probability p.
  10. The list of change statements is an ‘open set’ according to the assumption, that an actual state is only a ‘subset’ of the real environment.
  11. Until now we have an assumed state S, an assumed goal V, and an open set of change statements X.
  12. Applying change statements to a given state S will generate a new state S*. Thus the application of a subset X’ of the open set of change statements X onto a given state S will here be called ‘generating a new state by a procedure’. Such a state-generating-procedure can be understood as an ‘inference’ (like in logic) oder as a ‘simulation’ (like in engineering).[6]
  13. To write this in a more condensed format we can introduce some signs —– S,V ⊩ ∑ X S‘ —– saying: If I have some state S and a goal V then the simulator will according to the change statements X generate a new state S’. In such a setting the newly generated state S’ can be understood as a ‘theorem’ which has been derived from the set of statements in the state S which are assumed to be ‘true’. And because the derived new state is assumed to happen in some ‘future’ ‘after’ the ‘actual state S’ this derived state can also be understood as a ‘forecast’.
  14. Because the experts can change all the time all parts ‘at will’ such a ‘natural empirical theory’ is an ‘open entity’ living in an ongoing ‘communication process’.
Second Lessons Learned

It is interestingly to know that from the set of statements in state S, which are assumed to be empirically true, together with some change statements X, whose proposed changes are also assumed to be ‘true’, and which have some probability P in the domain [0,1], one can forecast a set of statements in the state S* which shall be true, with a certainty being dependent from the preceding probability P and the overall uncertainty of the whole natural environment.

Confirmation – Non-Confirmation

A Theory with Forecasts

Having reached the formulation of an ordinary empirical theory T with the ingredients <S,V,X,⊩ > and the derivation concept S,V ⊩ ∑ X S‘ it is possible to generate theorems as forecasts. A forecast here is not a single statement st* but a whole state S* consisting of a finite set of statements ST* which ‘designate’ according to the ‘agreed meaning’ a set of ‘intended properties’ which need a set of ‘occurring empirical properties’ which can be observed by the experts. These observations are usually associated with ‘agreed procedures of measurement’, which generate as results ‘observation statements’/ ‘measurement statements’.

Within Time

Experts which are cooperating by ‘building’ an ordinary empirical theory are themselves part of a process in time. Thus making observations in the time-window (t1,t2) they have a state S describing some aspects of the world at ‘that time’ (t1,t2). When they then derive a forecast S* with their theory this forecast describes — with some probability P — a ‘possible state of the natural environment’ which is assumed to happen in the ‘future’. The precision of the predicted time when the forecasted statements in S* should happen depends from the assumptions in S.

To ‘check’ the ‘validity’ of such a forecast it is necessary that the overall natural process reaches a ‘point in time’ — or a time window — indicated by the used ‘time model’, where the ‘actual point in time’ is measured by an agreed time machine (mechanical clock). Because there is no observable time without a time machine the classification of a certain situation S* being ‘now’ at the predicted point of time depends completely from the used time machine.[7]

Given this the following can happen: According to the used theory a certain set of statements ST* is predicted to be ‘true’ — with some probability — either ‘at some time in the future’ or in the time-window (t1,t2) or at a certain point in time t*.

Validating Forecasts

If one of these cases would ‘happen’ then the experts would have the statements ST* of their forecast and a real situation in their natural environment which enables observations ‘Obs’ which are ‘translated’ into appropriate ‘observation statements’ STObs. The experts with their predicted statements ST* know a learned agreed meaning M* of their predicted statements ST* as intended-properties M* of ST*. The experts have also learned how they relate the intended meaning M* to the meaning MObs from the observation statements STobs. If the observed meaning MObs ‘agrees sufficiently well’ with the intended meaning M* then the experts would agree in a statement, that the intended meaning M* is ‘fulfilled’/ ‘satisfied’/ ‘confirmed’ by the observed meaning MObs. If not then it would stated that it is ‘not fulfilled’/ ‘not satisfied’/ ‘not confirmed’.

The ‘sufficient fulfillment’ of the intended meaning M* of a set of statements ST* is usually translated in a statement like “The statements ST* are ‘true'”. In the case of ‘no fulfillment’ it is unclear: this can be interpreted as ‘being false’ or as ‘being unclear’: No clear case of ‘being true’ and no clear case of ‘being false’.

Forecasting the Number of Citizens

In the used simple example we have the MKK county with an observed number of citizens in 2018 with 418950. The simple theory used a change statement with a growth factor of 0.4% per year. This resulted in the forecast with the number 420.625 citizens for the year 2019.

If the newly counting of the number of citizens in the years 2019 would yield 420.625, then there would be a perfect match, which could be interpreted as a ‘confirmation’ saying that the forecasted statement and the observed statement are ‘equal’ and therefore the theory seems to match the natural environment through the time. One could even say that the theory is ‘true for the observed time’. Nothing would follow from this for the unknown future. Thus the ‘truth’ of the theory is not an ‘absolute’ truth but a truth ‘within defined limits’.

We know from experience that in the case of forecasting numbers of citizens for some region — here a county — it is usually not so clear as it has been shown in this example.

This begins with the process of counting. Because it is very expensive to count the citizens of all cities of a county this happens only about every 20 years. In between the statistical office is applying the method of ‘forecasting projection’.[9] The state statistical office collects every year ‘electronically’ the numbers of ‘birth’, ‘death’, ‘outflow’, and ‘inflow’ from the individual cities and modifies with these numbers the last real census. In the case of the state of Hessen this was the year 2011. The next census in Germany will happen May 2022.[10] For such a census the data will be collected directly from the registration offices from the cities supported by a control survey of 10% of the population.

Because there are data from the statistical office of the state of Hessen for June 2021 [8:p.9] with saying that the MKK county had 421 936 citizens at 30. June 2021 we can compare this number with the theory forecast for the year 2021 with 423 997. This shows a difference in the numbers. The theory forecast is ‘higher’ than the observed forecast. What does this mean?

Purely arithmetically the forecast is ‘wrong’. The responsible growth factor is too large. If one would ‘adjust’ it in a simplified linear way to ‘0.24%’ then the theory could get a forecast for 2021 with 421 973 (observed: 421 936), but then the forecast for 2019 would be 419 955 (instead of 420 625).

This shows at least the following aspects:

  1. The empirical observations as such can vary ‘a little bit’. One had to clarify which degree of ‘variance’ is due to the method of measurement and therefore this variance should be taken into account for the evaluation of a theoretical forecast.
  2. As mentioned by the statistical office [9] there are four ‘factors’ which influence the final number of citizens in a region: ‘birth’, ‘death’, ‘outflow’, and ‘inflow’. These factors can change in time. Under ‘normal conditions’ the birth-rate and the death-rate are rather ‘stable’, but in case of an epidemic situation or even war this can change a lot. Outflow and inflow are very dynamic depending from many factors. Thus this can influence the growth factor a lot and these factors are difficult to forecast.
Third lessons Learned

Evaluating the ‘relatedness’ of some forecast F of an empirical theory T to the observations O in a given real natural environment is not a ‘clear-cut’ case. The ‘precision’ of such a relatedness depends from many factors where each of these factors has some ‘fuzziness’. Nevertheless as experience shows it can work in a limited way. And, this ‘limited way’ is the maximum we can get. The most helpful contribution of an ‘ordinary empirical theory’ seems to be the forecast of ‘What will happen if we have a certain set of assumptions’. Using such a forecast in the process of the experts this can help to improve to get some ‘informed guesses’ for planning.

Forecast

The next post will show, how this concept of an ordinary empirical theory can be used by applying the oksimo paradigm to a concrete case. See HERE.

Comments

[1] Cities of the MKK-county: 24, see: https://www.wegweiser-kommune.de/kommunen/main-kinzig-kreis-lk

[2] Forecast for development of the number of citizens in the MMK starting with 2018, See: the https://statistik.hessen.de/zahlen-fakten/bevoelkerung-gebiet-haushalte-familien/bevoelkerung/tabellen

[3] Karl Popper, „A World of Propensities“,(1988) and „Towards an Evolutionary Theory of Knowledge“, (1989) in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (1990, repr. 1995)

[4] Karl Popper, „All Life is Problem Solving“, original a lecture 1991 in German, the first tome published (in German) „Alles Leben ist Problemlösen“ (1994), then in the book „All Life is Problem Solving“, 1999, Routledge, Taylor & Francis Group, London – New York

[5] This points to the concept of ‘propensity’ which the late Popper has discussed in the papers [3] and [4].

[6] This concept of a ‘generator’ or an ‘inference’ reminds to the general concept of Popper and the main stream philosophy of a logical derivation concept where a ‘set of logical rules’ defines a ‘derivation concept’ which allows the ‘derivation/ inference’ of a statement s* as a ‘theorem’ from an assumed set of statements S assumed to be true.

[7] The clock-based time is in the real world correlated with certain constellations of the real universe, but this — as a whole — is ‘changing’!

[8] Hessisches Statistisches Landesamt, “Die Bevölkerung der hessischen
Gemeinden am 30. Juni 2021. Fortschreibungsergebnisse Basis Zensus 09. Mai 2011″, Okt. 2021, Wiesbaden, URL: https://statistik.hessen.de/sites/statistik.hessen.de/files/AI2_AII_AIII_AV_21-1hj.pdf

[9] Method of the forward projection of the statistical office of the State of Hessen: “Bevölkerung: Die Bevölkerungszahlen sind Fortschreibungsergebnisse, die auf den bei der Zensuszählung 2011
ermittelten Bevölkerungszahlen basieren. Durch Auswertung von elektronisch übermittelten Daten für Geburten und Sterbefälle durch die Standesämter, sowie der Zu- und Fortzüge der Meldebehörden, werden diese nach einer bundeseinheitlichen Fortschreibungsmethode festgestellt. Die Zuordnung der Personen zur Bevölkerung einer Gemeinde erfolgt nach dem Hauptwohnungsprinzip (Bevölkerung am Ort der alleinigen oder der Hauptwohnung).”([8:p.2]

[10] Statistical Office state of Hessen, Next census 2022: https://statistik.hessen.de/zahlen-fakten/zensus/zensus-2022/zensus-2022-kurz-erklaert