Category Archives: empirical neuroscience

WHAT IS LIFE? Homo Sapiens Event – First Outlines

Author: Gerd Doeben-Henisch

Changelog: March 2, 2025 – March 2, 2025

Email: info@uffmm.org

TRANSLATION: The following text is a translation from a German version into English. For the translation I am using the software @chatGPT4o with manual modifications.

CONTENT TREE

This text is part of the TOPIC Philosophy of Science.

CONTEXT

This is not another interim reflection but a continuation in the main thread of the text project ‘What is Life?’

MAIN THREADS: What is Life?

  1.  Jan 17, 2025 : “WHAT IS LIFE? WHAT ROLE DO WE PLAY? IST THERE A FUTURE?”
  2.  Jan 18, 2025 : “WHAT IS LIFE? … DEMOCRACY – CITIZENS”
  3. Jan 21, 2025 : WHAT IS LIFE? … PHILOSOPHY OF LIFE
  4. Feb 10, 2025 : WHAT IS LIFE? … If life is ‘More,’ ‘much more’ …

INSERTIONS SO FAR:

  1. Feb 15, 2025 : INSERTION: A Brief History of the Concept of Intelligence and Its Future
  2. Feb 18, 2025 : INSERTION: BIOLOGICAL INTELLIGENCE NEEDS LEARNING. Structural Analysis 
  3. Feb 20, 2025 : INSERTION : INTELLIGENCE – LEARNING – KNOWLEDGE – MATERIAL CONDITIONS; AI

TRANSITION

In text No. 4, “WHAT IS LIFE? … When Life is ‘More,’ ‘Much More’ …”, there is a central passage that should be recalled here. Following the revelation of the empirically strong acceleration in the development of complexity of life on this planet, it states:

“The curve tells the ‘historical reality’ that ‘classical biological systems’ up to Homo sapiens were able to generate with their ‘previous means.’ However, with the emergence of the ‘Homo’ type, and especially with the life form ‘Homo sapiens,’ entirely new properties come into play. With the sub-population of Homo sapiens, there is a life form that, through its ‘cognitive’ dimension and its novel ‘symbolic communication,’ can generate the foundations for action at an extremely faster and more complex level.”

Following this “overall picture,” much suggests that the emergence of Homo sapiens (that is, us) after approximately 3.5 billion years of evolution, preceded by about 400 million years of molecular development, does not occur randomly. It is hard to overlook that the emergence of Homo sapiens lies almost at the “center of the developmental trajectory.” This fact can—or must?—raise the question of whether a “special responsibility” for Homo sapiens derives from this, concerning the “future of all life” on this planet—or even beyond? This leads to the second quotation from text No. 4:

“How can a ‘responsibility for global life’ be understood by us humans, let alone practically implemented by individual human beings? How should humans, who currently live approximately 60–120 years, think about a development that must be projected millions or even more years into the future?”

Such “responsibility with a view toward the future” would—from the perspective of life as a whole—only make sense if Homo sapiens were indeed the “only currently existing life form” that possesses exactly those characteristics required for “assuming responsibility” in this current phase of life’s development.

PRELIMINARY NOTE

The following text will gradually explain how all these elements are interconnected. At this stage, references to relevant literature will be kept to a minimum, as each section would otherwise require countless citations. Nevertheless, occasional remarks will be made. If the perspective presented in the “What is Life” texts proves fundamentally viable, it would need to be further refined and embedded into current specialized knowledge in a subsequent iteration. This process could involve contributions from various perspectives. For now, the focus is solely on developing a new, complex working hypothesis, grounded in existing knowledge.


THE HOMO SAPIENS EVENT

In modern science fiction novels and films, extraterrestrials are a popular device used to introduce something extraordinary to planet Earth—whether futuristic advancements or adventurous developments from the future appearing on Earth. Of course, these are thought constructs, through which we humans tell ourselves stories, as storytelling has been an essential part of human culture since the very beginning.

Against this backdrop, it is remarkable that the Homo Sapiens Event (HSE) has not yet received a comparable level of empathic attention. Yet, the HSE possesses all the ingredients to surpass even the boldest science fiction novels and films known to us. The developmental timeline on planet Earth alone spans approximately 3.9 billion years.

If we open ourselves to the idea that the biological might be understood as the direct unfolding of properties inherently present in the non-biological—and thus ultimately in energy itself, from which the entire known universe emerged—then we are dealing with a maximal event whose roots are as old as the known universe.

Ultimately—since energy remains more unknown than known to us—the HSE, as a property of energy, could even be older than the known universe itself.

IMAGE 1: Homo Sapiens Event (HSE)

PHILOSOPHICAL APPROACH

In this text, the Homo Sapiens Event (HSE) is discussed or written about because this is the only way in which the author’s brain can exchange thoughts with the brains of readers. This means that—regardless of the content—without some form of communication, there can be no exchange between different brains.

For Homo sapiens, such communication has, from the very beginning, occurred through a symbolic language, embedded in a variety of actions, gestures, facial expressions, vocal tones, and more. Therefore, it makes sense to render this mechanism of symbolic language within a human communication process transparent enough to understand when and what kind of content can be exchanged via symbolic communication.

When attempting to explain this mechanism of symbolic communication, it becomes evident that certain preconditions must be made explicit in advance—without these, the subsequent explanation cannot function.

To encompass the broadest possible perspective on the symbolic communication occurring here, the author of this text adopts the term “philosophical perspective”—in the sense that it is intended to include all known and conceivable perspectives.

Three Isolated Perspectives (Within Philosophy)

In addition to the perspective of biology (along with many other supporting disciplines), which has been used to describe the development of the biological on planet Earth up to the Homo Sapiens Event (HSE), some additional perspectives will now be introduced. These perspectives, while grounded in the biological framework, can provide valuable insights:

Empirical Neuroscience: It is concerned with the description and analysis of observable processes in the human brain.

Phenomenology: A subdiscipline of both philosophy and psychology, it serves to describe and analyze subjective experiences.

Empirical Psychology: It focuses on the description and analysis of observable human behavior.

IMAGE 2: (Hand-drawn sketch, illustrating the developmental process) Philosophical Perspective with the subdisciplines ‘Phenomenology,’ ‘(Empirical) Psychology,’ and ‘Neuroscience’

If these three perspectives are arranged side by side, the phenomenological view includes only our own (subjective) experiences, without a direct connection to the body or the world outside the body. This is the perspective with which every human is born and which accompanies them throughout life as the “normal view of things.”

From the perspective of empirical psychology, observable behavior of humans is the central focus (other life forms can also be studied in this way, though this falls more under biology). However, the phenomena of subjective experience are not accessible within the framework of empirical psychology. While the observable properties of the brain as an empirical object, as well as those of the body, are in principle accessible to empirical psychology, the empirical properties of the brain are generally assigned to (empirical) neuroscience, and those of the body to (empirical) physiology.

From the perspective of (empirical) neuroscience, the observable properties of the brain are accessible, but not the phenomena of subjective experience or observable behavior (nor the observable properties of the body).

It becomes clear that in the chosen systematic approach to scientific perspectives, each discipline has its own distinct observational domain, which is completely separate from the observational domains of the other disciplines! This means that each of these three perspectives can develop views of its object that differ fundamentally from those of the others. Considering that all three perspectives deal with the same real object—concrete instances of Homo sapiens (HS)—one must ask: What status should we assign to these three fundamentally different perspectives, along with their partial representations of Homo sapiens? Must we, in the scientific view, divide one material object into three distinct readings of Homo sapiens (HS): the HS-Phenomenal, the HS-Behavioral, and the HS-Brain?

In scientific practice, researchers are, of course, aware that the contents of the individual observational perspectives interact with one another in some way. Science today knows that subjective experiences (Ph) strongly correlate with certain brain events (N). Similarly, it is known that certain behaviors (Vh) correlate both with subjective experiences (Ph) and with brain events (N). In order to at least observe these interactions between different domains (Ph-Vh, Ph-N, N-Vh), interdisciplinary collaborations have long been established, such as Neurophenomenology (N-Ph) and Neuropsychology (N-Vh). The relationship between psychology and phenomenology is less clear. Early psychology was heavily introspective and thus hardly distinguishable from pure phenomenology, while empirical psychology still struggles with theoretical clarity today. The term “phenomenological psychology (Ph-Vh)” appears occasionally, though without a clearly defined subject area.

While there are some interdisciplinary collaborations, a fully integrated perspective is still nowhere to be found.

The following section will attempt to present a sketch of the overall system, highlighting important subdomains and illustrating the key interactions between these areas.

Sketch of the Overall System

The following “sketch of the overall system” establishes a conceptual connection between the domains of subjective experiences (Ph), brain events (N), bodily events (BDY), the environment of the body (W), and the observable behavior (Vh) of the body in the world.

IMAGE 3: (Hand-drawn sketch, illustrating the developmental process) Depicting the following elements: (1) Subjective experiences (Ph), (2) Brain events (N), (3) Bodily events (BDY), (4) Observable behavior (Vh) of the body in the world, (5) The environment of the body (W). In the lower-left corner of the image, a concrete instance of Homo sapiens (HS) is indicated, observing the world (W) along with the various bodies (BDY) of other Homo sapiens individuals. This HS can document its observations in the form of a text, using language (L).

IMAGE 3b: Hand-drawn sketch, illustrating the developmental process – The core idea for the concept of ‘Contextual Consciousness (CCONSC)’

As can be seen, the different domains are numbered from (1) to (5), with number (1) assigned to the domain of subjective experiences (Ph). This is motivated by the fact that, due to the structure of the human body, we perceive ourselves and all other events in the form of such subjective experiences as phenomena. Where these phenomena originate—whether from the brain, the body, or the surrounding world—is not directly apparent from the phenomena themselves. They are our phenomena.

While philosophers like Kant—and all his contemporaries—were still limited to considering the possible world and themselves solely from the perspective of their own phenomena, empirical sciences since around 1900 have gradually uncovered the processes behind the phenomena, localized in the brain, allowing them to be examined more concretely. Over time, increasingly precise correlations in time between brain events (N) and subjective experiences (Ph) were discovered.

One significant breakthrough was the ability to establish a temporal relationship between subjective experiences (Ph) and brain events (N). This suggested that while our subjective experiences cannot be measured directly as experiences, their temporal relationships with brain events allow for the localization of specific areas in the brain whose functioning appears to be a prerequisite for our subjective experience. This also provided a first empirical concretization of the common concept of consciousness, which can be formulated as a working hypothesis:

What we refer to as consciousness (CONSC, 1) corresponds to subjective experiences (Ph) that are enabled by brain events (N) occurring in specific areas of the brain. How exactly this can be understood will be explained further below.

The brain events (N) localized in the brain (BRAIN, 2) form a complex event space that has been increasingly researched since around 1900. It is generally clear that this space is highly dynamic, manifesting in the fact that all events interact with each other in multiple ways. The brain is structurally distinct from the rest of the body, but at the same time, it maintains exchange processes with the body (BDY, 3) and the brain’s event space (BRAIN, 2). This exchange occurs via interfaces that can (i) translate body events into brain events and (ii) translate brain events into bodily events.

Examples of (i) include our sensory organs (eyes, ears, smell), which transform light, sound, or airborne molecules into brain events. Examples of (ii) include brain events that, for instance, activate muscles, leading to movements, or regulate glandular secretions, which influence bodily processes in various ways.

The body space (BODY, 4) is approximately 450 times larger than the space of brain events. It consists of multiple regions known as organs, which have complex internal structures and interact in diverse ways. Bodily events also maintain a complex exchange with brain events.

With the surrounding world (W,5), there are two types of exchange relationships. First, (i) interfaces where bodily events appear as excretions in the event space of the world (W), and second, (ii) bodily events that are directly controlled by brain events (e.g., in the case of movements). Together, these two forms of events constitute the OUTPUT (4a) of the body into the surrounding world (W). Conversely, there is also an INPUT (4b) from the world into the body’s event space. Here, we can distinguish between (i) events of the world that directly enter the body (e.g., nutrition intake) and (ii) events of the world that, through sensory interfaces of the body, are translated into brain events (e.g., seeing, hearing).

Given this setup, an important question arises:

How does the brain distinguish among the vast number of brain events (N)—whether an event is (i) an N originating from within the brain itself, (ii) an N originating from bodily events (BDY), or (iii) an N originating—via the body—from the external world (W)?

In other words: How can the brain recognize whether a given brain event (N) is (i) N from N, (ii) N from BDY, or (iii) N from W?

This question will be addressed further with a proposed working hypothesis.

Concept of ‘Consciousness’; Basic Assumptions

In the preceding section, an initial working hypothesis was proposed to characterize the concept of consciousness: what we refer to as consciousness (CONSC, 1) pertains to subjective experiences (Ph) that are enabled by brain events (N) occurring in specific regions of the brain.

This working hypothesis will now be refined by introducing additional assumptions. While all of these assumptions are based on scientific and philosophical knowledge, which are supported by various forms of justification, many details remain unresolved, and a fully integrated theory is still lacking. The following additional assumptions apply:

  1. Normally, all phenomena that we can explicitly experience subjectively are classified as part of explicit consciousness (ECONSC ⊆ CONSC). We then say that we are aware of something.
  2. However, there is also a consciousness of something that is not directly correlated with any explicit phenomenon. These are situations in which we assume relationships between phenomena, even though these relationships themselves are not experienced as phenomena. Examples include:
    • Spoken sounds that refer to phenomena,
    • Comparative size relations between phenomena,
    • Partial properties of a phenomenon,
    • The relationship between current and remembered phenomena,
    • The relationship between perceived and remembered phenomena.
      This form of consciousness that exists in the context of phenomena but is not itself a phenomenon will be referred to here as contextual consciousness (CCONSC ⊆ CONSC). Here, too, we can say that we are aware of something, but in a somewhat different manner.
  3. This distinction between explicit consciousness (ECONSC) and contextual consciousness (CCONSC) suggests that the ability to be aware of something is broader than what explicit consciousness alone implies. This leads to the working hypothesis that what we intuitively call consciousness (CONSC) is the result of the way our brain operates.

Basic Assumptions on the Relationship Between Brain Events and Consciousness

Given today’s neuroscientific findings, the brain appears as an exceedingly complex system. For the considerations in this text, the following highly simplified working hypotheses are formulated:

  1. Empirical brain events are primarily generated and processed by specialized cells called neurons (N). A neuron can register events from many other neurons and generate exactly one event, which can then be transmitted to many other neurons. This output event can also be fed back as an input event to the generating neuron (direct feedback loops). Time and intensity also play a role in the generation and transmission of events.
  2. The arrangement of neurons is both serial (an event can be transmitted from one neuron to the next, and so on, with modifications occurring along the way) and hierarchical (layers exist in which events from lower layers can be represented in a compressed or abstracted form in higher layers).

From this, the basic assumptions about the relationship between brain events and conscious events are as follows:

  1. Some brain events become explicitly conscious phenomena (ECONSC).
  2. Contextual consciousness (CCONSC) occurs when a network of neurons represents a relationship between different units. The relationship itself is then consciously known, but since a relationship is not an object (not an explicit phenomenon), we can know these relationships, but they do not appear explicitly as phenomena (e.g., the explicit phenomenon of a “red car” in text and the perceptual object of a “red car”—we can know the relationship between them, but it is not explicitly given).
  3. The concept of consciousness (CONSC) thus consists at least of explicit phenomenal consciousness (ECONSC) and contextual consciousness (CCONSC). A more detailed analysis of both the phenomenal space (Ph) and the working processes of the brain (N) as the domain of all brain events will allow for further differentiation of these working hypotheses.

After these preliminary considerations regarding the different event spaces in which a Homo sapiens (HS) can participate through different access modalities (W – BDY – N(CONSC)), the following section will provide an initial sketch of the role of language (L) (with further elaborations to follow).

Descriptive Texts

As previously indicated, within each of the listed observational perspectives—observable behavior (Vh), subjective experiences (Ph), and brain events (N) (see IMAGE 2)—texts are created through which actors exchange their individual views. Naturally, these texts must be formulated in a language that all participants can understand and actively use.

Unlike everyday language, modern scientific discourse imposes minimal requirements on these texts. Some of these requirements can be described as follows:

  1. For all linguistic expressions that refer to observable events within the domain of a given perspective, it must be clear how their empirical reference to a real object can be verified intersubjectively. In the verification process, it must be possible to determine at least one of the following: (i) It applies (is true), (ii) It does not apply (is false), (iii) A decision is not possible (undetermined)
  2. It must also be clear: (i) Which linguistic expressions are not empirical but abstract, (ii) How these abstract expressions relate to other abstract expressions or empirical expressions, (iii) To what extent expressions that are themselves not empirical can still be evaluated in terms of truth or falsehood through their relationships to other expressions

How these requirements are practically implemented remains, in principle, open—as long as they function effectively among all participating actors.

While these requirements can, in principle, be fulfilled within the perspective of empirical psychology and neuroscience, a phenomenological perspective cannot fully meet at least the first requirement, since the subjective phenomena of an individual actor cannot be observed by other actors. This is only possible—and even then, only partially—through indirect means.

For example, if there is a subjective phenomenon (such as an optical stimulus, a smell, or a sound) that correlates with something another actor can also perceive, then one could say: “I see a red light,” and the other actor can assume that the speaker is seeing something similar to what they themselves are seeing.

However, if someone says, “I have a toothache,” the situation becomes more difficult—because the other person may never have experienced toothache before and therefore does not fully understand what the speaker means. With the vast range of bodily sensations, emotions, dreams, and other subjective states, it becomes increasingly challenging to synchronize perceptual content.

The Asymmetry Between Empirical and Non-Empirical Perspectives

This indicates a certain asymmetry between empirical and non-empirical perspectives. Using the example of empirical psychology and neuroscience, we can demonstrate that we can engage empirically with the reality surrounding us—yet, as actors, we remain irreversibly anchored in a phenomenological (subjective) perspective.

The key question arises: How can we realize a transition from the inherently built-in phenomenological perspective to an empirical perspective?

Where is the missing link? What constitutes the possible connection that we cannot directly perceive?

Referring to IMAGE 3, this question can be translated into the following format: How can the brain recognize whether a given brain event (N) originates from
(i) another brain event (N from N),
(ii) a bodily event (N from BDY),
(iii) an external world event (N from W)?

This question will be explored further in the following sections.

Outlook

The following text will provide a more detailed explanation of the functioning of symbolic language, particularly in close cooperation with thinking. It will also illustrate that individual intelligence unfolds its true power only in the context of collective human communication and cooperation.

REVIEW: Keith E.Stanovich, Richard F.West, Maggie E.Toplak, “The Rational Quotient. Towards a Test of Rational Thinking”, MIT Press, 2016

(Last change: Nov 1, 2023)

CONTEXT

This text belongs to the overall theme REVIEWS.

In the last months I was engaged with the topic of text-generating algorithms and the possible impact for a scientific discourse (some first notices to this discussion you can find here (https://www.uffmm.org/2023/08/24/homo-sapiens-empirical-and-sustained-empirical-theories-emotions-and-machines-a-sketch/)). In this context it is important to clarify the role and structure of human actors as well as the concept of Intelligence. Meanwhile I have abandoned the word Intelligence completely because the inflationary use in today mainstream pulverises any meaning. Even in one discipline — like psychology — you can find many different concepts. In this context I have read the book of Stanovich et.al to have a prominent example of using the concept of intelligence, there combined with the concept of rationality, which is no less vague.

Introduction

The book “The Rationality Quotient” from 2016 represents not the beginning of a discourse but is a kind of summary of a long lasting discourse with many publications before. This makes this book interesting, but also difficult to read in the beginning, because the book is using nearly on every page theoretical terms, which are assumed to be known to the reader and cites other publications without giving sufficient explanations why exactly these cited publications are important. This is no argument against this book but sheds some light on the reader, who has to learn a lot to understand the text.

A text with the character of summing up its subject is good, because it has a confirmed meaning about the subject which enables a kind of clarity which is typical for that state of elaborated point of view.

In the following review it is not the goal to give a complete account of every detail of this book but only to present the main thesis and then to analyze the used methods and the applied epistemological framework.

Main Thesis of the Book

The reviewing starts with the basic assumptions and the main thesis.

FIGURE 1 : The beginning. Note: the number ‘2015’ has to be corrected to ‘2016’.

FIGURE 2 : First outline of cognition. Note: the number ‘2015’ has to be corrected to ‘2016’.

As mentioned in the introduction you will in the book not find a real overview about the history of psychological research dealing with the concept of Intelligence and also no overview about the historical discourse to the concept of Rationality, whereby the last concept has also a rich tradition in Philosophy. Thus, somehow you have to know it.

There are some clear warnings with regard to the fuzziness of the concept rationality (p.3) as well as to the concept of intelligence (p.15). From a point of view of Philosophy of Science it could be interesting to know what the circumstances are which are causing such a fuzziness, but this is not a topic of the book. The book talks within its own selected conceptual paradigm. Being in the dilemma, of what kind of intelligence paradigm one wants to use, the book has decided to work with the Cattell-Horn-Carroll (CTC) paradigm, which some call a theory. [1]

Directly from the beginning it is explained that the discussion of Intelligence is missing a clear explanation of the full human model of cognition (p.15) and that intelligence tests therefore are mostly measuring only parts of human cognitive functions. (p.21)

Thus let us have a more detailed look to the scenario.

[1] For a first look to the Cattell–Horn–Carroll theory see: https://en.wikipedia.org/wiki/Cattell%E2%80%93Horn%E2%80%93Carroll_theory, a first overview.

Which point of View?

The book starts with a first characterization of the concept of Rationality within a point of view which is not really clear. From different remarks one gets some hints to modern Cognitive Science (4,6), to Decision Theory (4) and Probability Calculus (9), but a clear description is missing.

And it is declared right from the beginning, that the main aim of the book is the Construction of a rational Thinking Test (4), because for the authors the used Intelligence Tests — later reduced to the Carroll-Horn-Carroll (CHC) type of intelligence test (16) — are too narrow in what they are measuring (15, 16, 21).

Related to the term Rationality the book characterizes some requirements which the term rationality should fulfill (e.g. ‘Rationality as a continuum’ (4), ’empirically based’ (4), ‘operationally grounded’ (4), a ‘strong definition’ (5), a ‘normative one’ (5), ‘normative model of optimum judgment’ (5)), but it is more or less open, what these requirements imply and what tacit assumptions have to be fulfilled, that this will work.

The two requirements ’empirically based’ as well as ‘operationally grounded’ point in the direction of an tacitly assumed concept of an empirical theory, but exactly this concept — and especially in association with the term cognitive science — isn’t really clear today.

Because the authors make in the next pages a lot of statements which claim to be serious, it seems to be important for the discussion in this review text to clarify the conditions of the ‘meaning of language expressions’ and of being classified as ‘being true’.

If we assume — tentatively — that the authors assume a scientific theory to be primarily a text whose expressions have a meaning which can transparently be associated with an empirical fact and if this is the case, then the expression will be understood as being grounded and classified as true, then we have characterized a normal text which can be used in everyday live for the communication of meanings which can become demonstrated as being true.

Is there a difference between such a ‘normal text’ and a ‘scientific theory’? And, especially here, where the context should be a scientific theory within the discipline of cognitive science: what distinguishes a normal text from a ‘scientific theory within cognitive science’?

Because the authors do not explain their conceptual framework called cognitive science we recur here to a most general characterization [2,3] which tells us, that cognitive science is not a single discipline but an interdisciplinary study which is taking from many different disciplines. It has not yet reached a state where all used methods and terms are embedded in one general coherent framework. Thus the relationship of the used conceptual frameworks is mostly fuzzy, unclear. From this follows directly, that the relationship of the different terms to each other — e.g. like ‘underlying preferences’ and ‘well ordered’ — is within such a blurred context rather unclear.

Even the simple characterization of an expression as ‘having an empirical meaning’ is unclear: what are the kinds of empirical subjects and the used terms? According to the list of involved disciplines the disciplines linguistics [4], psychology [5] or neuroscience [6] — besides others — are mentioned. But every of these disciplines is itself today a broad field of methods, not integrated, dealing with a multifaceted subject.

Using an Auxiliary Construction as a Minimal Point of Reference

Instead of becoming somehow paralyzed from these one-and-all characterizations of the individual disciplines one can try to step back and taking a look to basic assumptions about empirical perspectives.

If we take a group of Human Observers which shall investigate these subjects we could make the following assumptions:

  1. Empirical Linguistics is dealing with languages, spoken as well as written by human persons, within certain environments, and these can be observed as empirical entities.
  2. Empirical Psychology is dealing with the behavior of human persons (a kind of biological systems) within certain environments, and these can be observed.
  3. Empirical Neuroscience is dealing with the brain as part of a body which is located in some environment, and this all can be observed.

The empirical observations of certain kinds of empirical phenomena can be used to define more abstract concepts, relations, and processes. These more abstract concepts, relations, and processes have ‘as such’ no empirical meaning! They constitute a formal framework which has to become correlated with empirical facts to get some empirical meaning. As it is known from philosophy of science [7] the combination of empirical concepts within a formal framework of abstracts terms can enable ‘abstract meanings’ which by logical conclusions can produce statements which are — in the moment of stating them — not empirically true, because ‘real future’ has not yet happened. And on account of the ‘generality’ of abstract terms compared to the finiteness and concreteness of empirical facts it can happen, that the inferred statements never will become true. Therefore the mere usage of abstract terms within a text called scientific theory does not guarantee valid empirical statements.

And in general one has to state, that a coherent scientific theory including e.g. linguistics, psychology and neuroscience, is not yet in existence.

To speak of cognitive science as if this represents a clearly defined coherent discipline seems therefore to be misleading.

This raises questions about the project of a constructing a coherent rational thinking test (CART).

[2] See ‘cognitive science’ in wikipedia: https://en.wikipedia.org/wiki/Cognitive_science

[3] See too ‘cognitive science’ in the Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/entries/cognitive-science/

[4] See ‘linguistics’ in wikipedia: https://en.wikipedia.org/wiki/Linguistics

[5] See ‘psychology’ in wikipedia: https://en.wikipedia.org/wiki/Psychology

[6] See ‘neuroscience’ in wikipedia: https://en.wikipedia.org/wiki/Neuroscience

[7] See ‘philosophy of science’ in wikipedia: https://en.wikipedia.org/wiki/Philosophy_of_science

‘CART’ TEST FRAMEWORK – A Reconstruction from the point of View of Philosophy of Science

Before I will dig deeper into the theory I try to understand the intended outcome of this theory as some point of reference. The following figure 3 gives some hints.

FIGURE 3 : Outline of the Test Framework based on the Appendix in Stanovich et.al 2016. This Outline is a Reconstruction by the author of this review.

It seems to be important to distinguish at least three main parts of the whole scientific endeavor:

  1. The group of scientists which has decided to process a certain problem.
  2. The generated scientific theory as a text.
  3. The description of a CART Test, which describes a procedure, how the abstract terms of the theory can be associated with real facts.

From the group of scientists (Stanovich et al.) we know that they understand themselves as cognitive scientists (without having a clear characterization, what this means concretely).

The intended scientific theory as a text is here assumed to be realized in the book, which is here the subject of a review.

The description of a CART Test is here taken from the appendix of the book.

To understand the theory it is interesting to see, that in the real test the test system (assumed here as a human person) has to read (and hear?) a instruction, how to proceed with a task form, and then the test system (a human person) has to process the test form in the way it has understood the instructions and the test form as it is.

The result is a completed test form.

And it is then this completed test form which will be rated according to the assumed CART theory.

This complete paradigm raises a whole bunch of questions which to answer here in full is somehow out of range.

Mix-Up of Abstract Terms

Because the Test Scenario presupposes a CART theory and within this theory some kind of a model of intended test users it can be helpful to have a more closer look to this assumed CART model, which is located in a person.

FIGURE 4 : General outline of the logic behind CART according to Stanovich et al. (2016).

The presented cognitive architecture shall present a framework for the CART (Comprehensive Assessment of Rational Thinking), whereby this framework is including a model. The model is not only assumed to contextualize and classify heuristics and tasks, but it also presents Rationality in a way that one can deduce mental characteristics included in rationality.(cf. 37)

Because the term Rationality is not an individual empirical fact but an abstract term of a conceptual framework, this term has as such no meaning. The meaning of this abstract term has to be arranged by relations to other abstract terms which themselves are sufficiently related to concrete empirical statements. And these relations between abstract terms and empirical facts (represented as language expressions) have to be represented in a manner, that it is transparent how the the measured facts are related to the abstract terms.

Here Stanovich et al. is using another abstract term Mind, which is associated with characteristics called mental characteristics: Reflective mind, Algorithmic Level, and Mindware.

And then the text tells that Rationality is presenting mental characteristics. What does this mean? Is rationality different from the mind, who has some characteristics, which can be presented from rationality using somehow the mind, or is rationality nevertheless part of the mind and manifests themself in these mental characteristics? But what kind of the meaning could this be for an abstract term like rationality to be part of the mind? Without an explicit model associated with the term Mind which arranges the other abstract term Rationality within this model there exists no meaning which can be used here.

These considerations are the effect of a text, which uses different abstract terms in a way, which is rather unclear. In a scientific theory this should not be the case.

Measuring Degrees of Rationality

In the beginning of chapter 4 Stanovich et al. are looking back to chapter 1. Here they built up a chain of arguments which illustrate some general perspective (cf. 63):

  1. Rationality has degrees.
  2. These degrees of rationality can be measured.
  3. Measurement is realized by experimental methods of cognitive science.
  4. The measuring is based on the observable behavior of people.
  5. The observable behavior can manifest whether the individual actor (a human person) follows assumed preferences related to an assumed axiom of choice.
  6. Observable behavior which is classified as manifesting assumed internal preferences according to an assumed internal axiom of choice can show descriptive and procedural invariance.
  7. Based on these deduced descriptive and procedural invariance, it can be inferred further, that these actors are behaving as if they are maximizing utility.
  8. It is difficult to assess utility maximization directly.
  9. It is much easier to assess whether one of the axioms of rational choice is being violated.

These statements characterize the Logic of the CART according to Stanovich et al. (cf.64)

A major point in this argumentation is the assumption, that observable behavior is such, that one can deduce from the properties of this behavior those attributes/ properties, which point (i) to an internal model of an axiom of choice, (ii) to internal processes, which manifest the effects of this internal model, (iii) to certain characteristics of these internal processes which allow the deduction of the property of maximizing utility or not.

These are very strong assumptions.

If one takes further into account the explanations from the pages 7f about the required properties for an abstract term axiom of choice (cf. figure 1) then these assumptions appear to be very demanding.

Can it be possible to extract the necessary meaning out of observable behavior in a way, which is clear enough by empirical standards, that this behavior shows property A and not property B ?

As we know from the description of the CART in the appendix of the book (cf. figure 3) the real behavior assumed for an CART is the (i) reading (or hearing?) of an instruction communicated by ordinary English, and then (ii) a behavior deduced from the understanding of the instruction, which (iii) manifests themself in the reading of a form with a text and filling out this form in predefined positions in a required language.

This described procedure is quite common throughout psychology and similar disciplines. But it is well known, that the understanding of language instructions is very error-prone. Furthermore, the presentation of a task as a text is inevitably highly biased and additionally too very error-prone with regard to the understanding (this is a reason why in usability testing purely text-based tests are rather useless).

The point is, that the empirical basis is not given as a protocol of observations of language free behavior but of a behavior which is nearly completely embedded in the understanding and handling of texts. This points to the underlying processes of text understanding which are completely internal to the actor. There exists no prewired connection between the observable strings of signs constituting a text and the possible meaning which can be organized by the individual processes of text understanding.

Stopping Here

Having reached this point of reading and trying to understand I decided to stop here: to many questions on all levels of a scientific discourse and the relationships between main concepts and terms appear in the book of Stanovich et al. to be not clear enough. I feel therefore confirmed in my working hypothesis from the beginning, that the concept of intelligence today is far too vague, too ambiguous to contain any useful kernel of meaning any more. And concepts like Rationality, Mind (and many others) seem to do not better.

Chatting with chatGPT4

Since April 2023 I have started to check the ability of chatGPT4 to contribute to a philosophical and scientific discourse. The working hypothesis is, that chatGPT4 is good in summarizing the common concepts, which are used in public texts, but chatGPT is not able for critical evaluations, not for really new creative ideas and in no case for systematic analysis of used methods, used frameworks, their interrelations, their truth-conditons and much more, what it cannot. Nevertheless, it is a good ‘common sense check’. Until now I couldn’t learn anything new from these chats.

If you have read this review with all the details and open questions you will be perhaps a little bit disappointed about the answers from chatGPT4. But keep calm: it is a bit helpful.

Protocol with chatGPT4