COLLECTIVE (man-machine) INTELLIGENCE and SUSTAINABILITY. An investigation

(June 21, 2023 – June 22, 2023)

–!! Not yet finished !!–


The steady progress of science has defeated many familiar ideas from the past and this change of concepts continues. This belongs to concepts like ‘intelligence’, ‘collective intelligence’ , ‘man, ‘machine’, ‘artificial intelligence’, ‘life’, ‘matter’ and many more.

Such changes with concepts are always difficult to describe. Ideally one would be an ‘external observer’ with a ‘full view’ of everything which is going on, and additionally one possesses a ‘full knowledge’ about all the features and dynamics of the field of the phenomena.

But we aren’t. We are part of the process ourselves . Our understanding is interspersed with familiar images and at the same time with new questions and new partial views. Under these conditions to find a ‘consistent new view’ of the whole process can only be worked out step wise, associated with experiments to check the viability of a new aspect of the new view.

And, one should not forget, the ‘reader’ of a text from lives under the same conditions: a mixture of everything is possible; therefore an understanding can crash not because a certain text is ‘wrong’ or ‘bad’ or whatever, but because at that moment of reading the ‘models in the heads’ of reader and writer are not ‘overlapping enough’. Then there is no chance of understanding because we depend completely from the ‘models in our heads’.

Accepting this the following text is an undertaken to describe a special view of life in this universe be laying out some possible principles how this new view could be constructed following these principles.


Because at the beginning of this writing the final outcome is open and the ‘way to reach the result’ is as such difficult, the author decided to make the research process directly the content of a process article.

The following parts of the process article seem to be important:

  1. Describe a ‘working hypotheses’ at the start.
  2. Look for ‘arguments pro or contra’.
  3. Look for ‘other texts’ related to these arguments (always pro & contra).
  4. Make decisions after every step, whether an argument (and possibly different texts) supports or criticizes or modifies the working hypothesis.
  5. Give a new version of the working hypothesis, if necessary.

Moreover it has to be ‘monitored’ (Meta-Level), whether this procedure works satisfyingly.


To begin, a first version of the working hypothesis has to be formulated. What is ‘given’ as an ‘assumption’ are the concepts ‘COLLECTIVE INTELLIGENCE’ with the special focus on the role of the intelligence of ‘man’ and ‘machines’ as part of a — possibly larger — concept of ‘INTELLIGENCE’. Furthermore it is assumed, that these concepts shall be investigated in the context of the question of a possible ‘SUSTAINABILITY’ of the hybrid ‘man-machine’ cooperation as part of the ‘whole life (the ‘biosphere’)’ on this planet, even extended to the whole known universe.

To elaborate these concepts in more concreteness and as a ‘hypothesis’ which can be ‘tested’ in the future, whether it ‘works’ or not, one needs a ‘minimal vision’ of what shall be assumed as ‘wishful future’ for a biosphere with a man-machine pair as part of it.

A ‘wishful future’ which can be ‘tested’ has to be (i) a ‘description of a state’, located some time ahead, and (ii) the ‘way into this future’ must be describable such, that we have a clear ‘starting point’ — e.g. the year 2023 — and (iii) that we have a sufficient knowledge about all possible changes, which can ‘transform/ change’ the actual situation step wise, that it is highly probable that we will reach finally the ‘envisioned future state’. Here highly import are especially those changes, which can be triggered by our own actions as humankind. And it has to be mentioned (iv), that we would need clear instructions how to apply the changes in order to be successful.

To (i): Wishful State

What would a citizen somewhere on this planet answer, if he would be asked “What do you think is a ‘wishful state’ in the future?”

It needs not too much fantasy that we would get nearly as many different answer as there are citizens living on this planet.

To (ii): The ‘way into this future’

To (iii): ‘Knowledge about all possible changes’

To (iv): ‘Clear instructions how to apply’


wkp-en :=

[2023] Raymond NobleUniversity College LondonDenis NobleUniversity of Oxford, Understanding Living Systems, Cambridge University Press. (Expected Online Publication June 23). Words by the publisher: “Life is definitively purposive and creative. Organisms use genes in controlling their destiny. This book presents a paradigm shift in understanding living systems. The genome is not a code, blueprint or set of instructions. It is a tool orchestrated by the system. This book shows that gene-centrism misrepresents what genes are and how they are used by living systems. It demonstrates how organisms make choices, influencing their behaviour, their development and evolution, and act as agents of natural selection. It presents a novel approach to fundamental philosophical and cultural issues, such as free-will. Reading this book will make you see life in a new light, as a marvellous phenomenon, and in some sense a triumph of evolution. We are not in our genes, our genes are in us.”

[2023]  Benedict RattiganDenis NobleAfiq Hatta, (Eds), The Language of Symmetry, CRC Press

[2022] RAYMOND NOBLE and DENIS NOBLE, Physiology restores purpose to evolutionary biology, Biological Journal of the Linnean Society, 2022, XX, 1–13. With 3 figures. Abstract: “Life is purposefully creative in a continuous process of maintaining integrity; it adapts to counteract change. This is an ongoing, iterative process. Its actions are essentially directed to this purpose. Life exists to exist. Physiology is the study of purposeful living function. Function necessarily implies purpose. This was accepted all the way from William Harvey in the 17th century, who identified the purpose of the heart to pump blood and so feed the organs and tissues of the body, through many 19th and early 20th century examples. But late 20th century physiology was obliged to hide these ideas in shame. Teleology became the ‘lady who no physiologist could do without, but who could not be acknowledged in public.’ This emasculation of the discipline accelerated once the Central Dogma of molecular biology was formulated, and once physiology had become sidelined as concerned only with the disposable vehicle of evolution. This development has to be reversed. Even on the practical criterion of relevance to health care, gene-centrism has been a disaster, since prediction from elements to the whole system only rarely succeeds, whereas identifying whole system functions invariably makes testable predictions at an elemental level.”

[2017] Manuel Vogel, Review: From matter to life: information and causality, edited by S. I. Walker, P. C. W. Davies and G. F. R. Ellis: Scope: edited book. Level: general readership, review in Contemporary Physics · June 2017

[2017] S. I. Walker, P. C. W.Davies and G. F. R. Ellis (Eds), From MATTER to LIFE. Information and Causality, Cambridge University Press

[2017] Denis Noble, Dance to the Tune of Life. Biological Relativity, Cambridge University Press

[2007] Denis Noble, Video Lecture, 2007, “Principle of Systems Biology illustrated using the Virtual Heart”, URL:

[2006] Denis Noble, The Music of Life. Biology beyond the genome, Oxford University Press Inc., New York

[] Denis Noble in wkp-en:


(June 20, 2023 – June 22, 2023)

(This text is a translation from the German blog of the author. The translation is supported by the deepL Software)


The meaning of and adherence to moral values in the context of everyday actions has always been a source of tension, debate, and tangible conflict.

This text will briefly illuminate why this is so, and why it will probably never be different as long as we humans are the way we are.


In this text it is assumed that the reality in which we ‘find’ ourselves from childhood is a ‘finite’ world. By this is meant that no phenomenon we encounter in this world – ourselves included – is ‘infinite’. In other words, all resources we encounter are ‘finite’. Even ‘solar energy’, which is considered ‘renewable’ in today’s parlance, is ‘finite’, although this finiteness outlasts the lifetimes of many generations of humans.

But this ‘finiteness’ is no contradiction to the fact that our finite world is continuously in a ‘process of change’ fed from many sides. An ‘itself-self-changing finiteness’ is with it, a something which in and in itself somehow ‘points beyond itself’! The ‘roots’ of this ‘immanent changeability’ are to a large extent perhaps still unclear, but the ‘effects’ of the ‘immanent changeability’ indicate that the respective ‘concrete finite’ is not the decisive thing; the ‘respective concrete finite’ is rather a kind of ‘indicator’ for an ‘immanent change cause’ which ‘manifests itself’ by means of concrete finites in change. The ‘forms of concrete manifestations of change’ can therefore perhaps be a kind of ‘expression’ of something that ‘works immanently behind’.

In physics there is the pair of terms ‘energy’ and ‘mass’, the latter as synonym for ‘matter’. Atomic physics and quantum mechanics have taught us that the different ‘manifestations of mass/matter’ can only be a ‘state form of energy’. The everywhere and always assumed ‘energy’ is that ‘enabling factor’, which can ‘manifest’ itself in all the known forms of matter. ‘Changing-matter’ can then be understood as a form of ‘information’ about the ‘enabling energy’.

If one sets what physics has found out so far about ‘energy’ as that form of ‘infinity’ which is accessible to us via the experiential world, then the various ‘manifestations of energy’ in diverse ‘forms of matter’ are forms of concrete finites, which, however, are ultimately not really finite in the context of infinite energy. All known material finites are only ‘transitions’ in a nearly infinite space of possible finites, which is ultimately grounded in ‘infinite energy’. Whether there is another ‘infinity’ ‘beside’ or ‘behind’ or ‘qualitatively again quite different to’ the ‘experienceable infinity’ is thus completely open.”[1]


Our normal life context is what we now call ‘everyday life’: a bundle of regular processes, often associated with characteristic behavioral roles. This includes the experience of having a ‘finite body’; that ‘processes take time in real terms’; that each process is characterized by its own ‘typical resource consumption’; that ‘all resources are finite’ (although there can be different time scales here (see the example with solar energy)).

But also here: the ’embeddedness’ of all resources and their consumption in a comprehensive variability makes ‘snapshots’ out of all data, which have their ‘truth’ not only ‘in the moment’, but in the ‘totality of the sequence’! In itself ‘small changes’ in the everyday life can, if they last, assume sizes and achieve effects which change a ‘known everyday life’ so far that long known ‘views’ and ‘long practiced behaviors’ are ‘no longer correct’ sometime: in that case the format of one’s own thinking and behavior can come into increasing contradiction with the experiential world. Then the point has come where the immanent infinity ‘manifests itself’ in the everyday finiteness and ‘demonstrates’ to us that the ‘imagined cosmos in our head’ is just not the ‘true cosmos’. In the end this immanent infinity is ‘truer’ than the ‘apparent finiteness’.


Beside the life-free material processes in this finite world there are since approx. 3.5 billion years the manifestations, which we call ‘life’, and very late – quasi ‘just now’ – showed up in the billions of life forms one, which we call ‘Homo sapiens’. That is us.

The today’s knowledge of the ‘way’, which life has ‘taken’ in these 3.5 billion years, was and is only possible, because science has learned to understand the ‘seemingly finite’ as ‘snapshot’ of an ongoing process of change, which shows its ‘truth’ only in the ‘totality of the individual moments’. That we as human beings, as the ‘latecomers’ in this life-creation-process’, have the ability to ‘recognize’ successive ‘moments’ ‘individually’ as well as ‘in sequence’, is due to the special nature of the ‘brain’ in the ‘body’ and the way in which our body ‘interacts’ with the surrounding world. So, we don’t know about the ‘existence of an immanent infinity’ ‘directly’, but only ‘indirectly’ through the ‘processes in the brain’ that can identify, store, process and ‘arrange’ moments in possible sequences in a ‘neuronally programmed way’. So: our brain enables us on the basis of a given neuronal and physical structure to ‘construct’ an ‘image/model’ of a possible immanent infinity, which we assume to ‘represent’ the ‘events around us’ reasonably well.


One characteristic attributed to Homo Sapiens is called ‘thinking’; a term which until today is described only vaguely and very variously by different sciences. From another Homo Sapiens we learn about his thinking only by his way of ‘behaving’, and a special case of it is ‘linguistic communication’.

Linguistic communication is characterized by the fact that it basically works with ‘abstract concepts’, to which as such no single object in the real world directly corresponds (‘cup’, ‘house’, ‘dog’, ‘tree’, ‘water’ etc.). Instead, the human brain assigns ‘completely automatically’ (‘unconsciously’!) most different concrete perceptions to one or the other abstract concept in such a way that a human A can agree with a human B whether one assigns this concrete phenomenon there in front to the abstract concept ‘cup’, ‘house’, ‘dog’, ‘tree’, or ‘water’. At some point in everyday life, person A knows which concrete phenomena can be meant when person B asks him whether he has a ‘cup of tea’, or whether the ‘tree’ carries apples etc.

This empirically proven ‘automatic formation’ of abstract concepts by our brain is not only based on a single moment, but these automatic construction processes work with the ‘perceptual sequences’ of finite moments ’embedded in changes’, which the brain itself also automatically ‘creates’. ‘Change as such’ is insofar not a ‘typical object’ of perception, but is the ‘result of a process’ taking place in the brain, which constructs ‘sequences of single perceptions’, and these ‘calculated sequences’ enter as ‘elements’ into the formation of ‘abstract concepts’: a ‘house’ is from this point of view not a ‘static concept’, but a concept, which can comprise many single properties, but which is ‘dynamically generated’ as a ‘concept’, so that ‘new elements’ can be added or ‘existing elements’ may be ‘taken away’ again.


(The words are from the German text)

Although there is no universally accepted comprehensive theory of human thought to date, there are many different models (everyday term for the more correct term ‘theories’) that attempt to approximate important aspects of human thought.

The preceding image shows the outlines of a minimally simple model to our thinking.

This model assumes that the surrounding world – with ourselves as components of that world – is to be understood as a ‘process’ in which, at a chosen ‘point in time’, one can describe in an idealized way all the ‘observable phenomena’ that are important to the observer at that point in time. This description of a ‘section of the world’ is here called ‘situation description’ at time t or simply ‘situation’ at t.

Then one needs a ‘knowledge about possible changes’ of elements of the situation description in the way (simplified): ‘If X is element of situation description at t, then for a subsequent situation at t either X is deleted or replaced by a new X*’. There may be several alternatives for deletion or replacement with different probabilities. Such ‘descriptions of changes’ are here simplified called ‘change rules’.

Additionally, as part of the model, there is a ‘game instruction’ (classically: ‘inference term’), which explains when and how to apply a change rule to a given situation Sit at t in such a way that at the subsequent time t+1, there is a situation Sit* in which the changes have been made that the change rule describes.

Normally, there is more than one change rule that can be applied simultaneously with the others. This is also part of the game instructions.

This minimal model can and must be seen against the background of continuous change.

For this structure of knowledge it is assumed that one can describe ‘situations’, possible changes of such a situation, and that one can have a concept how to apply descriptions of recognized possible changes to a given situation.

With the recognition of an immanent infinity manifested in many concrete finite situations, it is immediately clear that the set of assumed descriptions of change should correspond with the observable changes, otherwise the theory has little practical use. Likewise, of course, it is important that the assumed situation descriptions correspond with the observable world. Fulfilling the correspondence requirements or checking that they are true is anything but trivial.


To these ‘correspondence requirements’ here some additional considerations, in which the view of the everyday perspective comes up.

It is to be noted that a ‘model’ is not the environment itself, but only a ‘symbolic description’ of a section of the environment from the point of view and with the understanding of a human ‘author’! To which properties of the environment a description refers, only the author himself knows, who ‘links’ the chosen ‘symbols’ (text or language) ‘in his head’ with certain properties of the environment, whereby these properties of the environment must also be represented ‘in the head’, quasi ‘knowledge images’ of ‘perception events’, which have been triggered by the environmental properties. These ‘knowledge images in the head’ are ‘real’ for the respective head; compared to the environment, however, they are basically only ‘fictitious’; unless there is currently a connection between current fictitious ‘images in the head’ and the ‘current perceptions’ of ‘environmental events’, which makes the ‘concrete elements of perception’ appear as ‘elements of the fictitious images’. Then the ‘fictitious’ pictures would be ‘fictitious and real’.

Due to the ‘memory’, whose ‘contents’ are more or less ‘unconscious’ in the ‘normal state’, we can however ‘remember’ that certain ‘fictitious pictures’ were once ‘fictitious and real’ in the past. This can lead to a tendency in everyday life to ascribe a ‘presumed reality’ to fictional images that were once ‘real’ in the past, even in the current present. This tendency is probably of high practical importance in everyday life. In many cases these ‘assumptions’ also work. However, this ‘spontaneous-for-real-holding’ can often be off the mark; a common source of error.

The ‘spontaneous-for-real-holding’ can be disadvantageous for many reasons. For example, the fictional images (as inescapably abstract images) may in themselves be only ‘partially appropriate’. The context of the application may have changed. In general, the environment is ‘in flux’: facts that were given yesterday may be different today.

The reasons for the persistent changes are different. Besides such changes, which we could recognize by our experience as an ‘identifiable pattern’, there are also changes, which we could not assign to a pattern yet; these can have a ‘random character’ for us. Finally there are also the different ‘forms of life’, which are basically ‘not determined’ by their system structure in spite of all ‘partial determinateness’ (one can also call this ‘immanent freedom’). The behavior of these life forms can be contrary to all other recognized patterns. Furthermore, life forms behave only partially ‘uniformly’, although everyday structures with their ‘rules of behavior’ – and many other factors – can ‘push’ life forms with their behavior into a certain direction.

If one remembers at this point again the preceding thoughts about the ‘immanent infinity’ and the view that the single, finite moments are only understandable as ‘part of a process’, whose ‘logic’ is not decoded to a large extent until today, then it is clear, that any kind of ‘modeling’ within the comprehensive change processes can only have a preliminary approximation character, especially since it is aggravated by the fact that the human actors are not only ‘passively receiving’, but at the same time always also ‘actively acting’, and thereby they influence the change process by their actions! These human influences result from the same immanent infinity as those which cause all other changes. The people (like the whole life) are thus inevitably real ‘co-creative’ …. with all the responsibilities which result from it.


What exactly one has to understand by ‘morality’, one has to read out of many hundreds – or even more – different texts. Every time – and even every region in this world – has developed different versions.

In this text it is assumed that with ‘moral’ such ‘views’ are meant, which should contribute to the fact that an individual person (or a group or …) in questions of the ‘decision’ of the kind “Should I rather do A or B?” should get ‘hints’, how this question can be answered ‘best’.

If one remembers at this point what was said before about that form of thinking which allows ‘prognoses’ (thinking in explicit ‘models’ or ‘theories’), then there should be an ‘evaluation’ of the ‘possible continuations’ independent of a current ‘situation description’ and independent of the possible ‘knowledge of change’. So there must be ‘besides’ the description of a situation as it ‘is’ at least a ‘second level’ (a ‘meta-level’), which can ‘talk about’ the elements of the ‘object-level’ in such a way that e.g. it can be said that an ‘element A’ from the object-level is ‘good’ or ‘bad’ or ‘neutral’ or with a certain gradual ‘tuning’ ‘good’ or ‘bad’ or ‘neutral’ at the meta-level. This can also concern several elements or whole subsets of the object level. This can be done. But for it to be ‘rationally acceptable’, these valuations would have to be linked to ‘some form of motivation’ as to ‘why’ this valuation should be accepted. Without such a ‘motivation of evaluations’ such an evaluation would appear as ‘pure arbitrariness’.

At this point the ‘air’ becomes quite ‘thin’: in the history so far no convincing model for a moral justification became known, which is in the end not dependent from the decision of humans to set certain rules as ‘valid for all’ (family, village, tribe, …). Often the justifications can still be located in the concrete ‘circumstances of life’, just as often the concrete circumstances of life ‘recede into the background’ in the course of time and instead abstract concepts are introduced, which one endows with a ‘normative power’, which elude a more concrete analysis. Rational access is then hardly possible, if at all.

In a time like in the year 2023, in which the available knowledge is sufficient to be able to recognize the interdependencies of literally everybody from everybody, in addition the change dynamics, which can threaten with the components ‘global warming’ the ‘sustainable existence of life on earth’ substantially, ‘abstractly set normative terms’ appear not only ‘out of time’, no, they are highly dangerous, since they can substantially hinder the preservation of life in the further future.

META-MORAL (Philosophy)

The question then arises whether this ‘rational black hole’ of ‘justification-free normative concepts’ marks the end of human thinking or whether thinking should instead just begin here?

Traditionally, ‘philosophy’ understands itself as that attitude of thinking, in which every ‘given’ – including any kind of normative concepts – can be made an ‘object of thinking’. And just the philosophical thinking has produced exactly this result in millennia of struggle: there is no point in thinking, from which all ought/all evaluating can be derived ‘just like that’.

In the space of philosophical thinking, on the meta-moral level, it is possible to ‘thematize’ more and more aspects of our situation as ‘mankind’ in a dynamic environment (with man himself as part of this environment), to ‘name’ them, to place them in a ‘potential relations’, to make ‘thinking experiments’ about ‘possible developments’, but this philosophical meta-moral knowledge is completely transparent and always identifiable. The inferences about why something seems ‘better’ than something else are always ’embedded’, ‘related’. The demands for an ‘autonomous morality’, for an ‘absolute morality’ besides philosophical thinking appear ‘groundless’, ‘arbitrary’, ‘alien’ to the ‘matter’ against this background. A rational justification is not possible.

A ‘rationally unknowable’ may exist, exists even inescapably, but this rationally unknowable is our sheer existence, the actual real occurrence, for which so far there is no rational ‘explanation’, more precisely: not yet. But this is not a ‘free pass’ for irrationality. In ‘irrationality’ everything disappears, even the ‘rationally unrecognizable’, and this belongs to the most important ‘facts’ in the world of life.


[1] The different forms of ‘infinity’, which have been introduced into mathematics with the works of Georg Cantor and have been intensively further investigated, have nothing to do with the experienceable finiteness/ infinity described in the text: . However, if one wants to ‘describe’ the ‘experience’ of real finiteness/ infinity, then one will possibly want to fall back on descriptive means of mathematics. But it is not a foregone conclusion whether the mathematical concepts ‘harmonize’ with the empirical experience standing to the matter.

THINKING: everyday – philosophical – empirical theoretical (sketch)

(First: June 9, 2023 – Last change: June 10, 2023)

Comment: This post is a translation from a German text in my blog ‘’ with the aid of the deepL software


The current phase of my thinking continues to revolve around the question how the various states of knowledge relate to each other: the many individual scientific disciplines drift side by side; philosophy continues to claim supremacy, but cannot really locate itself convincingly; and everyday thinking continues to run its course unperturbed with the conviction that ‘everything is clear’, that you just have to look at it ‘as it is’. Then the different ‘religious views’ come around the corner with a very high demand and a simultaneous prohibition not to look too closely. … and much more.


In the following text three fundamental ways of looking at our present world are outlined and at the same time they are put in relation to each other. Some hitherto unanswered questions can possibly be answered better, but many new questions arise as well. When ‘old patterns of thinking’ are suspended, many (most? all?) of the hitherto familiar patterns of thinking have to be readjusted. All of a sudden they are simply ‘wrong’ or strongly ‘in need of repair’.

Unfortunately it is only a ‘sketch’.[1]


FIG. 1: In everyday thinking, every human being (a ‘homo sapiens’ (HS)) assumes that what he knows of a ‘real world’ is what he ‘perceives’. That there is this real world with its properties, he is – more or less – ‘aware’ of, there is no need to discuss about it specially. That, what ‘is, is’.

… much could be said …


FIG. 2: Philosophical thinking starts where one notices that the ‘real world’ is not perceived by all people in ‘the same way’ and even less ‘imagined’ in the same way. Some people have ‘their ideas’ about the real world that are strikingly ‘different’ from other people’s ideas, and yet they insist that the world is exactly as they imagine it. From this observation in everyday life, many new questions can arise. The answers to these questions are as manifold as there were and are people who gave or still give themselves to these philosophical questions.

… famous examples: Plato’s allegory of the cave suggests that the contents of our consciousness are perhaps not ‘the things themselves’ but only the ‘shadows’ of what is ultimately ‘true’ … Descartes‘ famous ‘cogito ergo sum’ brings into play the aspect that the contents of consciousness also say something about himself who ‘consciously perceives’ such contents …. the ‘existence of the contents’ presupposes his ‘existence as thinker’, without which the existence of the contents would not be possible at all …what does this tell us? … Kant’s famous ‘thing in itself’ (‘Ding an sich’) can be referred to the insight that the concrete, fleeting perceptions can never directly show the ‘world as such’ in its ‘generality’. This lies ‘somewhere behind’, hard to grasp, actually not graspable at all? ….

… many things could be said …


FIG. 3: The concept of an ’empirical theory’ developed very late in the documented history of man on this planet. On the one hand philosophically inspired, on the other hand independent of the widespread forms of philosophy, but very strongly influenced by logical and mathematical thinking, the new ’empirical theoretical’ thinking settled exactly at this breaking point between ‘everyday thinking’ and ‘theological’ as well as ‘strongly metaphysical philosophical thinking’. The fact that people could make statements about the world ‘with the chest tone of conviction’, although it was not possible to show ‘common experiences of the real world’, which ‘corresponded’ with the expressed statements, inspired individual people to investigate the ‘experiential (empirical) world’ in such a way that everyone else could have the ‘same experiences’ with ‘the same procedure’. These ‘transparent procedures’ were ‘repeatable’ and such procedures became what was later called ’empirical experiment’ or then, one step further, ‘measurement’. In ‘measuring’ one compares the ‘result’ of a certain experimental procedure with a ‘previously defined standard object’ (‘kilogram’, ‘meter’, …).

This procedure led to the fact that – at least the experimenters – ‘learned’ that our knowledge about the ‘real world’ breaks down into two components: there is the ‘general knowledge’ what our language can articulate, with terms that do not automatically have to have something to do with the ‘experiential world’, and such terms that can be associated with experimental experiences, and in such a way that other people, if they engage in the experimental procedure, can also repeat and thereby confirm these experiences. A rough distinction between these two kinds of linguistic expressions might be ‘fictive’ expressions with unexplained claims to experience, and ’empirical’ expressions with confirmed claims to experience.

Since the beginning of the new empirical-theoretical way of thinking in the 17th century, it took at least 300 years until the concept of an ’empirical theory’ was consolidated to such an extent that it became a defining paradigm in many areas of science. However, many methodological questions remained controversial or even ‘unsolved’.


For many centuries, the ‘misuse of everyday language’ for enabling ’empirically unverifiable statements’ was directly chalked up to this everyday language and the whole everyday language was discredited as ‘source of untruths’. A liberation from this ‘ monster of everyday language’ was increasingly sought in formal artificial languages or then in modern axiomatized mathematics, which had entered into a close alliance with modern formal logic (from the end of the 19th century). The expression systems of modern formal logic or then of modern formal mathematics had as such (almost) no ‘intrinsic meaning’. They had to be introduced explicitly on a case-by-case basis. A ‘formal mathematical theory’ could be formulated in such a way that it allowed ‘logical inferences’ even without ‘explicit assignment’ of an ‘external meaning’, which allowed certain formal expressions to be called ‘formally true’ or ‘formally false’.

This seemed very ‘reassuring’ at first sight: mathematics as such is not a place of ‘false’ or ‘foisted’ truths.

The intensive use of formal theories in connection with experience-based experiments, however, then gradually made clear that a single measured value as such does not actually have any ‘meaning’ either: what is it supposed to ‘mean’ that at a certain ‘time’ at a certain ‘place’ one establishes an ‘experienceable state’ with certain ‘properties’, ideally comparable to a previously agreed ‘standard object’? ‘Expansions’ of bodies can change, ‘weight’ and ‘temperature’ as well. Everything can change in the world of experience, fast, slow, … so what can a single isolated measured value say?

It dawned to some – not only to the experience-based researchers, but also to some philosophers – that single measured values only get a ‘meaning’, a possible ‘sense’, if one can at least establish ‘relations’ between single measured values: Relations ‘in time’ (before – after), relations at/in place (higher – lower, next to each other, …), ‘interrelated quantities’ (objects – areas, …), and that furthermore the different ‘relations’ themselves again need a ‘conceptual context’ (single – quantity, interactions, causal – non-causal, …).

Finally, it became clear that single measured values needed ‘class terms’, so that they could be classified somehow: abstract terms like ‘tree’, ‘plant’, ‘cloud’, ‘river’, ‘fish’ etc. became ‘collection points’, where one could deliver ‘single observations’. With this, hundreds and hundreds of single values could then be used, for example, to characterize the abstract term ‘tree’ or ‘plant’ etc.

This distinction into ‘single, concrete’ and ‘abstract, general’ turns out to be fundamental. It also made clear that the classification of the world by means of such abstract terms is ultimately ‘arbitrary’: both ‘which terms’ one chooses is arbitrary, and the assignment of individual experiential data to abstract terms is not unambiguously settled in advance. The process of assigning individual experiential data to particular terms within a ‘process in time’ is itself strongly ‘hypothetical’ and itself in turn part of other ‘relations’ which can provide additional ‘criteria’ as to whether date X is more likely to belong to term A or more likely to belong to term B (biology is full of such classification problems).

Furthermore, it became apparent that mathematics, which comes across as so ‘innocent’, can by no means be regarded as ‘innocent’ on closer examination. The broad discussion of philosophy of science in the 20th century brought up many ‘artifacts’ which can at least easily ‘corrupt’ the description of a dynamic world of experience.

Thus it belongs to formal mathematical theories that they can operate with so-called ‘all- or particular statements’. Mathematically it is important that I can talk about ‘all’ elements of a domain/set. Otherwise talking becomes meaningless. If I now choose a formal mathematical system as conceptual framework for a theory which describes ’empirical facts’ in such a way that inferences become possible which are ‘true’ in the sense of the theory and thus become ‘predictions’ which assert that a certain fact will occur either ‘absolutely’ or with a certain probability X greater than 50%, then two different worlds unite: the fragmentary individual statements about the world of experience become embedded in ‘all-statements’ which in principle say more than empirical data can provide.

At this point it becomes visible that mathematics, which appears to be so ‘neutral’, does exactly the same job as ‘everyday language’ with its ‘abstract concepts’: the abstract concepts of everyday language always go beyond the individual case (otherwise we could not say anything at all in the end), but just by this they allow considerations and planning, as we appreciate them so much in mathematical theories.

Empirical theories in the format of formal mathematical theories have the further problem that they as such have (almost) no meanings of their own. If one wants to relate the formal expressions to the world of experience, then one has to explicitly ‘construct a meaning’ (with the help of everyday language!) for each abstract concept of the formal theory (or also for each formal relation or also for each formal operator) by establishing a ‘mapping’/an ‘assignment’ between the abstract constructs and certain provable facts of experience. What may sound so simple here at first sight has turned out to be an almost unsolvable problem in the course of the last 100 years. Now it does not follow that one should not do it at all; but it does draw attention to the fact that the choice of a formal mathematical theory need not automatically be a good solution.

… many things could still be said …


A formal mathematical theory can derive certain statements as formally ‘true’ or ‘false’ from certain ‘assumptions’. This is possible because there are two basic assumptions: (i) All formal expressions have an ‘abstract truth value’ as ‘abstractly true’ or just as ‘abstractly not true’. Furthermore, there is a so-called ‘formal notion of inference’ which determines whether and how one can ‘infer’ other formal expressions from a given ‘set of formal expressions’ with agreed abstract truth values and a well-defined ‘form’. This ‘derivation’ consists of ‘operations over the signs of the formal expressions’. The formal expressions are here ‘objects’ of the notion of inference, which is located on a ‘level higher’, on a ‘meta-level 1’. The inference term is insofar a ‘formal theory’ of its own, which speaks about certain ‘objects of a deeper level’ in the same way as the abstract terms of a theory (or of everyday language) speak about concrete facts of experience. The interaction of the notion of inference (at meta-level 1) and the formal expressions as objects presupposes its own ‘interpretive relation’ (ultimately a kind of ‘mapping’), which in turn is located at yet another level – meta-level 2. This interpretive relation uses both the formal expressions (with their truth values!) and the inference term as ‘objects’ to install an interpretive relation between them. Normally, this meta-level 2 is handled by the everyday language, and the implicit interpretive relation is located ‘in the minds of mathematicians (actually, in the minds of logicians)’, who assume that their ‘practice of inference’ provides enough experiential data to ‘understand’ the ‘content of the meaning relation’.

It had been Kurt Gödel [2], who in 1930/31 tried to formalize the ‘intuitive procedure’ of meta-proofs itself (by means of the famous Gödelization) and thus made the meta-level 3 again a new ‘object’, which can be discussed explicitly. Following Gödel’s proof, there were further attempts to formulate this meta-level 3 again in a different ways or even to formalize a meta-level 4. But these approaches remained so far without clear philosophical result.

It seems to be clear only that the ability of the human brain to open again and again new meta-levels, in order to analyze and discuss with it previously formulated facts, is in principle unlimited (only limited by the finiteness of the brain, its energy supply, the time, and similar material factors).

An interesting special question is whether the formal inference concept of formal mathematics applied to experience facts of a dynamic empirical world is appropriate to the specific ‘world dynamics’ at all? For the area of the ‘apparently material structures’ of the universe, modern physics has located multiple phenomena which simply elude classical concepts. A ‘matter’, which is at the same time ‘energy’, tends to be no longer classically describable, and quantum physics is – despite all ‘modernity’ – in the end still a ‘classical thinking’ within the framework of a formal mathematics, which does not possess many properties from the approach, which, however, belong to the experienceable world.

This limitation of a formal-mathematical physical thinking shows up especially blatantly at the example of those phenomena which we call ‘life’. The experience-based phenomena that we associate with ‘living (= biological) systems’ are, at first sight, completely material structures, however, they have dynamic properties that say more about the ‘energy’ that gives rise to them than about the materiality by means of which they are realized. In this respect, implicit energy is the real ‘information content’ of living systems, which are ‘radically free’ systems in their basic structure, since energy appears as ‘unbounded’. The unmistakable tendency of living systems ‘out of themselves’ to always ‘enable more complexity’ and to integrate contradicts all known physical principles. ‘Entropy’ is often used as an argument to relativize this form of ‘biological self-dynamics’ with reference to a simple ‘upper bound’ as ‘limitation’, but this reference does not completely nullify the original phenomenon of the ‘living’.

It becomes especially exciting if one dares to ask the question of ‘truth’ at this point. If one locates the meaning of the term ‘truth’ first of all in the situation in which a biological system (here the human being) can establish a certain ‘correspondence’ between its abstract concepts and such concrete knowledge structures within its thinking, which can be related to properties of an experiential world through a process of interaction, not only as a single individual but together with other individuals, then any abstract system of expression (called ‘language’) has a ‘true relation to reality’ only to the extent that there are biological systems that can establish such relations. And these references further depend on the structure of perception and the structure of thought of these systems; these in turn depend on the nature of bodies as the context of brains, and bodies in turn depend on both the material structure and dynamics of the environment and the everyday social processes that largely determine what a member of a society can experience, learn, work, plan, and do. Whatever an individual can or could do, society either amplifies or ‘freezes’ the individual’s potential. ‘Truth’ exists under these conditions as a ‘free-moving parameter’ that is significantly affected by the particular process environment. Talk of ‘cultural diversity’ can be a dangerous ‘trivialization’ of massive suppression of ‘alternative processes of learning and action’ that are ‘withdrawn’ from a society because it ‘locks itself in’. Ignorance tends not to be a good advisor. However, knowledge as such does not guarantee ‘right’ action either. The ‘process of freedom’ on planet Earth is a ‘galactic experiment’, the seriousness and extent of which is hardly seen so far.


[1] References are omitted here. Many hundreds of texts would have to be mentioned. No sketch can do that.

[2] See for the ‘incompleteness theorems’ of Kurt Gödel (1930, published 1931):