Category Archives: actor-story (AS)

HMI ANALYSIS, Part 4: Tool based Actor Story Development with Testing and Gaming

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, March 3-4, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 4, 2021, 07:49h (Minor corrections; relating to the UN SDGs)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 4: Tool based Actor Story Development with Testing and Gaming

Context

This text is preceded by the following texts:

INFO GRAPH

Overview about different scenarios which will be possible for the development, simulation, testing and gaming of actor stories using the oksimo software tool

Introduction

In the preceding post it has been explained, how one can format an actor story [AS] as a theory in the  format  of  an Evaluated Theory Tε with Algorithmic Intelligence:   Tε,α=<M,∑,ε,α>.

In the following text it will be explained which kinds of different scenarios will be possible to elaborate, to simulate, to test, and to enable gaming with  an actor story theory by using the oksimo software tool.

UNIVERSAL TEAM

The classical distinctions between certain types of managers, special experts and the rest of the world is given up here in favor of a stronger generalization: everybody is a potential expert with regard to a future, which nobody knows. This is emphasized by the fact, that everybody can use its usual mother tongue, a normal language, every language. Nothing more is needed.

BASIC MODELS (S, X)

As minimal elements for all possible applications it is assumed here that the experts define at least a given situation (state) [S] and a set of change rules [X].

The given state S is  either (i)  taken as it is or (ii)  as a state which  should be improved. In both cases the initial state S is called the start state [S0].

The change rules X describe possible changes which transform a given state S into a changed successor state S’.

A pair of S and X as (S,X) is called a basic model M(S,X). One can define as many models as one wants.

A DIRECTION BY A VISION V

A vision [V] can describe a possible state SV  in an assumed future. If such a state SV is given, then this state becomes a goal state SGoal In this case  we assume V ≠ 0. If no explicit goal is given, then we assume V = 0.

DEVELOPMENT BY GOALS

If a vision is given (V ≠ 0), then the vision can be used to induce a direction which can/ shall be approached by creating a set X, which enables the generation of a sequence of states with the start state S0 as first state followed by successor state Si until the goal state SGoal has been reached or at least it holds that the goal state is a subset of the reached state: SGoalSn.

It is possible to use many basic models M(S,X) in parallel and for each model Mi one can define a different goal Vi (the typical situation in a pluralistic society).

Thus there can be many basic theories T(M,V) in parallel.

STEADY STATES (V = 0)

If no explicit visions are defined (V = 0) then every direction of change is allowed. A basic steady state theory T(M,V) with V = 0 can   be written as T(M,0). Whether such a case can be of interest is not clear at the moment.

BASIC INTERACTION PATTERNS

The following interaction modes are assumed as typical cases:

  1. N-1: Within an online session an interactive webpage with the oksimo software is active and the whole group can interact with the oksimo software tool.
  2. N-N-1: N-many participants can individually login into the interactive oksimo website and being logged in they can collaborate within the oksimo software with one project.
  3. N-N-N: N-many participants can individually login into the interactive oksimo website and there everybody can run its own process or can collaborate in various ways.

The default case is case (1). The exact dates for the availability of modes (2) – (3) depends from how fast the roadmap can be realized.

BASIC APPLICATIONS
  1. Exploring Simulation-Based Development [ESBD] (V ≠ 0): If the main goal is to find a path from a given state today S (Now) to an envisioned state V in the future then one has  to collect appropriate change rules X to approach the final goal state SGoal better and better. Activating the simulator ∑ during search and construction phase at will can be of great help, especially if the documents (S, X, V) are becoming more and more complex.
  2. Embedded Simulation-Based  Testing [ESBT] (V ≠ 0): If a basic  actor story theory T(M,) is given with a given goal (V ≠ 0) then it is of great help if the simulation is done in interactive mode where the simulator is not applying the change rules by itself but by asking different logged in users which rule they want to apply and how. These tests show not only which kinds of errors will occur but they can also show during n-many repetitions to which degree an user  can learn to behave task-conform. If the tests will not show the expected outcomes then this can point  to possible deficiencies of the software as well to specialties of the user.
  3. Embedded Simulation-Based Gaming [ESBTG] (V ≠ 0):  The case of gaming is partially  different to the case of testing.  Although it is assumed here too that at least one vision (goal) is given, it is additionally assumed that  there exists  a competition between different players or different teams. Different to testing exists in gaming according to the goal(s) the role of a winner: that player/ team which has reached a defined  goal state before the other player/ teams,  has won. As a side-effect of gaming one can also evaluate the playing environment and give some feedback to the developers.
ALGORITHMIC INTELLIGENCE
  1. Case ESBD, T(S,X,V,∑,ε,α): Because a normal simulation with the simulator always does  produce only one path from the start state to the goal state it is desirable to have an algorithm α which would run on demand as many times as wanted and thereby the algorithm α would search for all possible paths and at the same time it would look for those derivations, where the goal state satisfies with  ε certain special requirements. Thus the result from the application of α onto a given model M with the vision V would generate the set SV* of all those final states which satisfy the special requirements.
  2. Case ESBG, T(S,X,V,∑,ε,α):   The case of gaming allows at least three kinds of interesting applications for algorithmic intelligence: (i) Introduce non-biological players with learning capabilities which can act simultaneously with the biological players; (ii) Introduce non-biological players with learning capabilities which have to learn how to support, to assist, to train biological player. This second case addresses the challenging task to develop algorithmic tutors for several kinds of learning tasks. (iii) Another variant of case (ii) is to enable the development of a personal algorithmic assistant who works only with one person on a long-term basis.

The kinds of algorithmic Intelligence in (2)(i)-(iii) are different to the  mentioned algorithmic intelligence α in (1).

TYPES OF ACTORS

As the default standard case of an actor it is assumed that there are biological actors, usually human persons, which will not be analyzed with their inner structure [IS]. While the behavior of every system — and  therefore any biological system too — can be described with a behavior function φ: I x IS —> IS x O (if one has all the necessary knowledge), in the default case of biological systems  no behavior function φ is specified, φ = 0. During interactive simulations biological systems act by themselves.

If non-biological actors are used — e.g. automata with a certain machine program (an algorithm) — then one can use these only if one has a fully specified behavior function φ. From this follows that a  change rule which is associated with a non-biological actor has in its Eplus and in its Eminus part not a concrete expression but a variable, which will be computed during the simulation by the non-biological actor depending from its input and its behavior function φ: φ(input)IS=(Eplus, Eminus)IS.

FINAL COMMENT

Everybody who has read the parts (1) – (4) has now a general knowledge about the motivation to develop the oksimo software tool to support human kind to have a better communication and thinking of possible futures and a first understanding (hopefully :-)) how this tool can work. Reading the UN sustainable development goals [SDGs] [1] you will learn, that the SDG4 (Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all) is fundamental to all other SDGs. The oksimo software tool is one tool to be of help to reach these goals.

REFERENCES

[1] The 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, provides a shared blueprint for peace and prosperity for people and the planet, now and into the future. At its heart are the 17 Sustainable Development Goals (SDGs), which are an urgent call for action by all countries – developed and developing – in a global partnership. They recognize that ending poverty and other deprivations must go hand-in-hand with strategies that improve health and education, reduce inequality, and spur economic growth – all while tackling climate change and working to preserve our oceans and forests. See PDF: https://sdgs.un.org/sites/default/files/publication/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf

[2] UN, SDG4, PDF, Argumentation why the SDG4 ist fundamental for all other SDGs: https://sdgs.un.org/sites/default/files/publications/2275sdbeginswitheducation.pdf

 

 

 

 

 

 

 

 

HMI Analysis for the CM:MI paradigm. Part 3. Actor Story and Theories

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, March 2, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 2, 2021 13:59h (Minor corrections)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 3: Actor Story and  Theories

Context

This text is preceded by the following texts:

Introduction

Having a vision is that moment  where something really new in the whole universe is getting an initial status in some real brain which can enable other neural events which  can possibly be translated in bodily events which finally can change the body-external outside world. If this possibility is turned into reality than the outside world has been changed.

When human persons (groups of homo sapiens specimens) as experts — here acting as stakeholder and intended users as one but in different roles! — have stated a problem and a vision document, then they have to translate these inevitably more fuzzy than clear ideas into the concrete terms of an everyday world, into something which can really work.

To enable a real cooperation  the experts have to generate a symbolic description of their vision (called specification) — using an everyday language, possibly enhanced by special expressions —  in a way that  it can became clear to the whole group, which kind of real events, actions and processes are intended.

In the general case an engineering specification describes concrete forms of entanglements of human persons which enable  these human persons to cooperate   in a real situation. Thereby the translation of  the vision inside the brain  into the everyday body-external reality happens. This is the language of life in the universe.

WRITING A STORY

To elaborate a usable specification can metaphorically be understood  as the writing of a new story: which kinds of actors will do something in certain situations, what kinds of other objects, instruments etc. will be used, what kinds of intrinsic motivations and experiences are pushing individual actors, what are possible outcomes of situations with certain actors, which kind of cooperation is  helpful, and the like. Such a story is  called here  Actor Story [AS].

COULD BE REAL

An Actor Story must be written in a way, that all participating experts can understand the language of the specification in a way that   the content, the meaning of the specification is either decidable real or that it eventually can become real.  At least the starting point of the story should be classifiable as   being decidable actual real. What it means to be decidable actual real has to be defined and agreed between the participating experts before they start writing the Actor Story.

ACTOR STORY [AS]

An Actor Story assumes that the described reality is classifiable as a set of situations (states) and  a situation as part of the Actor Story — abbreviated: situationAS — is understood  as a set of expressions of some everyday language. Every expression being part of an situationAS can be decided as being real (= being true) in the understood real situation.

If the understood real situation is changing (by some event), then the describing situationAS has to be changed too; either some expressions have to be removed or have to be added.

Every kind of change in the real situation S* has to be represented in the actor story with the situationAS S symbolically in the format of a change rule:

X: If condition  C is satisfied in S then with probability π  add to S Eplus and remove from  S Eminus.

or as a formula:

S’π = S + Eplus – Eminus

This reads as follows: If there is an situationAS S and there is a change rule X, then you can apply this change rule X with probability π onto S if the condition of X is satisfied in S. In that case you have to add Eplus to S and you have to remove Eminus from S. The result of these operations is the new (successor) state S’.

The expression C is satisfied in S means, that all elements of C are elements of S too, written as C ⊆ S. The expression add Eplus to S means, that the set Eplus is unified with the set S, written as Eplus ∪ S (or here: Eplus + S). The expression remove Eminus from S means, that the set Eminus is subtracted from the set S, written as S – Eminus.

The concept of apply change rule X to a given state S resulting in S’ is logically a kind of a derivation. Given S,X you will derive by applicating X the new  S’. One can write this as S,X ⊢X S’. The ‘meaning’ of the sign ⊢  is explained above.

Because every successor state S’ can become again a given state S onto which change rules X can be applied — written shortly as X(S)=S’, X(S’)=S”, … — the repeated application of change rules X can generate a whole sequence of states, written as SQ(S,X) = <S’, S”, … Sgoal>.

To realize such a derivation in the real world outside of the thinking of the experts one needs a machine, a computer — formally an automaton — which can read S and X documents and can then can compute the derivation leading to S’. An automaton which is doing such a job is often called a simulator [SIM], abbreviated here as ∑. We could then write with more information:

S,X ⊢ S’

This will read: Given a set S of many states S and a set X of change rules we can derive by an actor story simulator ∑ a successor state S’.

A Model M=<S,X>

In this context of a set S and a set of change rules X we can speak of a model M which is defined by these two sets.

A Theory T=<M,>

Combining a model M with an actor story simulator enables a theory T which allows a set of derivations based on the model, written as SQ(S,X,⊢) = <S’, S”, … Sgoal>. Every derived final state Sgoal in such a derivation is called a theorem of T.

An Empirical Theory Temp

An empirical theory Temp is possible if there exists a theory T with a group of experts which are using this theory and where these experts can interpret the expressions used in theory T by their built-in meaning functions in a way that they always can decide whether the expressions are related to a real situation or not.

Evaluation [ε]

If one generates an Actor Story Theory [TAS] then it can be of practical importance to get some measure how good this theory is. Because measurement is always an operation of comparison between the subject x to be measured and some agreed standard s one has to clarify which kind of a standard for to be good is available. In the general case the only possible source of standards are the experts themselves. In the context of an Actor Story the experts have agreed to some vision [V] which they think to be a better state than a  given state S classified as a problem [P]. These assumptions allow a possible evaluation of a given state S in the ‘light’ of an agreed vision V as follows:

ε: V x S —> |V ⊆ S|[%]
ε(V,S) = |V ⊆ S|[%]

This reads as follows: the evaluation ε is a mapping from the sets V and S into the number of elements from the set V included in the set S converted in the percentage of the number of elements included. Thus if no  element of V is included in the set S then 0% of the vision is realized, if all elements are included then 100%, etc. As more ‘fine grained’ the set V is as more ‘fine grained’  the evaluation can be.

An Evaluated Theory Tε=<M,,ε>

If one combines the concept of a  theory T with the concept of evaluation ε then one can use the evaluation in combination with the derivation in the way that every  state in a derivation SQ(S,X,⊢) = <S’, S”, … Sgoal> will additionally be evaluated, thus one gets sequences of pairs as follows:

SQ(S,X,⊢∑,ε) = <(S’,ε(V,S’)), (S”,ε(V,S”)), …, (Sgoal, ε(V,Sgoal))>

In the ideal case Sgoal is evaluated to 100% ‘good’. In real cases 100% is only an ideal value which usually will only  be approximated until some threshold.

An Evaluated Theory Tε with Algorithmic Intelligence Tε,α=<M,,ε,α>

Because every theory defines a so-called problem space which is here enhanced by some evaluation function one can add an additional operation α (realized by an algorithm) which can repeat the simulator based derivations enhanced with the evaluations to identify those sets of theorems which are qualified as the best theorems according to some criteria given. This operation α is here called algorithmic intelligence of an actor story AS]. The existence of such an algorithmic intelligence of an actor story [αAS] allows the introduction of another derivation concept:

S,X ⊢∑,ε,α S* ⊆  S’

This reads as follows: Given a set S and a set X an evaluated theory with algorithmic intelligence Tε,α can derive a subset S* of all possible theorems S’ where S* matches certain given criteria within V.

WHERE WE ARE NOW

As it should have become clear now the work of HMI analysis is the elaboration of a story which can be done in the format of different kinds of theories all of which can be simulated and evaluated. Even better, the only language you have to know is your everyday language, your mother tongue (mathematics is understood here as a sub-language of the everyday language, which in some special cases can be of some help). For this theory every human person — in all ages! — can be a valuable  colleague to help you in understanding better possible futures. Because all parts of an actor story theory are plain texts, everybody ran read and understand everything. And if different groups of experts have investigated different  aspects of a common field you can merge all texts by only ‘pressing a button’ and you will immediately see how all these texts either work together or show discrepancies. The last effect is a great opportunity  to improve learning and understanding! Together we represent some of the power of life in the universe.

CONTINUATION

See here.

 

 

 

 

 

 

 

 

KOMEGA REQUIREMENTS No.4, Version 2. Basic Application Scenario

ISSN 2567-6458, 28.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF DOCUMENT

requirements-no4-v2-27Aug2020

KOMEGA REQUIREMENTS No.4, Version 1

ISSN 2567-6458, 26.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF DOCUMENT

requirements-no4-v1-26Aug2020

KOMEGA REQUIREMENTS No.3, Version 1. Basic Application Scenario – Editing S

ISSN 2567-6458, 26.July – 12.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF DOCUMENT

requirements-no3-v1-12Aug2020 (Last update: August 12, 2020)

KOMEGA REQUIREMENTS No.2. Actor Story Overview

ISSN 2567-6458, 26.July – 12.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF DOCUMENT

requirements-no2-v1-11Aug2020 (Last change: August 12, 2020)

STARTING WITH PYTHON3 – The very beginning – part 5

Journal: uffmm.org,
ISSN 2567-6458, July 18-19, 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email:
gerd@doeben-henisch.de

CONTEXT

This is the next step in the python3 programming project. The overall context is still the python Co-Learning project.

SUBJECT

After a first clearing of the environment for python programming we have started with the structure of the python programming language, and in this section will continue dealing with the object type sequences and string and more programming elements are shown in a simple example of a creative actor.

Remark: for general help information go directly to the python manuals, which you can find associated with the entry for python 3.7.3 if you press the Windows-Button, look to the list of Apps (= programs), and identify the entry for python 3.7.3. If you open the python entry by clicking you see the sub-entry python 3.7.3 Manuals. If you click on this sub-entry the python documentation will open. In this documentation you can find nearly everything you will need. For Beginners you even find a small tutorial.

SZENARIO

For the further discussion of additional properties of python string and sequence objects I will assume again a simple scenario. I will expand the last scenario with the simple input-output actor by introducing some creativity into the actor. This means that the actor receives again either one word or sequences of words but instead of classifying the word according to some categories or instead of giving back the list of the multiple words as individual entities the actor will change the input creatively.
In case of a single word the actor will re-order the symbols of the string and additionally he can replace one individual symbol by some random symbol out of a finite alphabet.
In case of multiple words the actor will first partition the sequence of words into the individual words in a list, then he will also re-order these items of the list, will then re-order the letters in the words, and finally he can replace in every word one individual symbol by some random symbol out of a finite alphabet. After these operations the list is again concatenated to one sequence of words.
In this version of the program one can repeat in two ways: either (i) input manually new words or (ii) redirect the output into the input that the actor can continue to change the output further.
Interesting feature Cognitive Entropy: If the user selects always the closed world option then the set of available letters will not be expanded during all the repetitions. This reveals then after some repetitions the implicit tendency of all words to become more and more equal until only one type of word ‘survived’. This depends on the random character of the process which increases the chances of the bigger numbers to overrun the smaller ones. The other option is the open world option. This includes that in a repetition a completely new letter can be introduced in a single word. This opposes the implicit tendency of cognitive entropy to enforce the big numbers against the smaller ones.

How can this scenario be realized?

ACTOR STORY

1. There is a user (as executive actor) who can enter single or multiple words into the input interface of an assisting interface.
2. After confirming the input the assisting actor will respond in a creative manner. These creativity is manifested in changed orders of symbols and words as well as by replaced symbols.
3. After the response the user can either repeat the sequence or he can stop. If repeating then he can select between two options: (i) enter manually new words as input or (ii) redirect the output of the system as new input. This allows a continuous creative change of the words.
4. The repeated re-direction offers again two options: (i) Closed world, no real input, or (ii) Open world; some real new input

IMPLEMENTATION

Download here the python source code. This text appears as an HTML-document, because the blog-software does not allow to load a python program file directly.

stringDemo2.py

DEMOS

Single word in a closed world:

PS C:\Users\gerd_2\code> python stringDemo2.py
Single word = ‘1’ or Multiple words = ‘2’
1
New manual input =’1′ or Redirect the last output = ‘2’
1
Closed world =’1′ or Open world =’2′
1
Input a single word
abcde
Your input word is = abcde
New in-word order with worder():
ebaca
STOP = ‘N’, CONTINUE != ‘N’
y
Single word = ‘1’ or Multiple words = ‘2’
1
New manual input =’1′ or Redirect the last output = ‘2’
2
Closed world =’1′ or Open world =’2′
1
The last output was = ebaca
New in-word order with worder():
ccbaa
STOP = ‘N’, CONTINUE != ‘N’
y
Single word = ‘1’ or Multiple words = ‘2’
1
New manual input =’1′ or Redirect the last output = ‘2’
2
Closed world =’1′ or Open world =’2′
1
The last output was = ccbaa
New in-word order with worder():
ccccb
STOP = ‘N’, CONTINUE != ‘N’
y
Single word = ‘1’ or Multiple words = ‘2’
1
New manual input =’1′ or Redirect the last output = ‘2’
2
Closed world =’1′ or Open world =’2′
1
The last output was = ccccb
New in-word order with worder():
ccccc
STOP = ‘N’, CONTINUE != ‘N’

The original word ‘abcde’ has been changed to ‘ccccc’ in a closed world environment. If one introduces an open world scenario then this monotonicity can never happen.

Multiple words in a closed world

PS C:\Users\gerd_2\code> python stringDemo2.py
Single word = ‘1’ or Multiple words = ‘2’
2
New manual input =’1′ or Redirect the last output = ‘2’
1
Closed world =’1′ or Open world =’2′
1
Input multiple words
abc def geh
Your input words are = abc def geh
List version of sqorder input =
[‘abc’, ‘def’, ‘geh’]
New word order in sequence with sqorder():
def geh geh
List version of input in mcworder()=
[‘def’, ‘geh’, ‘geh’]
New in-word order with worder():
fef
New in-word order with worder():
hee
New in-word order with worder():
ege
New word-sequence order :
fef hee ege
STOP = ‘N’, CONTINUE != ‘N’
y
Single word = ‘1’ or Multiple words = ‘2’
2
New manual input =’1′ or Redirect the last output = ‘2’
2
Closed world =’1′ or Open world =’2′
1
The last output was = fef hee ege
List version of sqorder input =
[‘fef’, ‘hee’, ‘ege’]
New word order in sequence with sqorder():
fef fef ege
List version of input in mcworder()=
[‘fef’, ‘fef’, ‘ege’]
New in-word order with worder():
fff
New in-word order with worder():
fee
New in-word order with worder():
eee
New word-sequence order :
fff fee eee
STOP = ‘N’, CONTINUE != ‘N’
y
Single word = ‘1’ or Multiple words = ‘2’
2
New manual input =’1′ or Redirect the last output = ‘2’
2
Closed world =’1′ or Open world =’2′
1
The last output was = fff fee eee
List version of sqorder input =
[‘fff’, ‘fee’, ‘eee’]
New word order in sequence with sqorder():
eee fee fee
List version of input in mcworder()=
[‘eee’, ‘fee’, ‘fee’]
New in-word order with worder():
eee
New in-word order with worder():
eef
New in-word order with worder():
eee
New word-sequence order :
eee eef eee
STOP = ‘N’, CONTINUE != ‘N’
y
Single word = ‘1’ or Multiple words = ‘2’
2
New manual input =’1′ or Redirect the last output = ‘2’
2
Closed world =’1′ or Open world =’2′
1
The last output was = eee eef eee
List version of sqorder input =
[‘eee’, ‘eef’, ‘eee’]
New word order in sequence with sqorder():
eee eee eee
List version of input in mcworder()=
[‘eee’, ‘eee’, ‘eee’]
New in-word order with worder():
eee
New in-word order with worder():
eee
New in-word order with worder():
eee
New word-sequence order :
eee eee eee
STOP = ‘N’, CONTINUE != ‘N’

You can see that the cognitive entropy replicates with the closed world assumption in the multi-word scenario too.

EXERCISES

Here are some details of objects and operations.

Letters and Numbers

With  ord(‘a’) one can get the decimal code of the letter as ’97’ and the other way around one can translate a decimal number ’97’ in a letter with  chr(97) to ‘a’.  For ord(‘z’) one gets ‘122’, and then one can use the numbers to compute characters which has been used in the program to find random characters to be inserted in a word.

Strings and Lists

There are some operations only available for list-objects and others only for string-objects.  Thus to change and re-arrange a string directly is not possible, but translating a string in a list, then apply some operations, and then transfer the changed list back into a string, this works fine. Thus translate a word w into a list wl by wl = list(w) allows the re-order of these elements by appending: wll.append(wl[r]). Afterwords I have translated the list again in a string by constructing a new string wnew by concatenating all letters step by step: wnew=wnew+wl[i]. If yould try to transfer the list directly like in the following example, then you will get as a result again  list:

>> w=’abcd’
>>> wl=list(w)
>>> wl
[‘a’, ‘b’, ‘c’, ‘d’]
>>> wn=str(wl)
>>> wn
“[‘a’, ‘b’, ‘c’, ‘d’]”

Immediate Help

If one needs direct information about the operations which are possible with a certain object like here the string object ‘w’, then one can ask for all possible operation like this:

>> dir(w)
[‘__add__’, ‘__class__’, ‘__contains__’, ‘__delattr__’, ‘__dir__’, ‘__doc__’, ‘__eq__’, ‘__format__’, ‘__ge__’, ‘__getattribute__’, ‘__getitem__’, ‘__getnewargs__’, ‘__gt__’, ‘__hash__’, ‘__init__’, ‘__init_subclass__’, ‘__iter__’, ‘__le__’, ‘__len__’, ‘__lt__’, ‘__mod__’, ‘__mul__’, ‘__ne__’, ‘__new__’, ‘__reduce__’, ‘__reduce_ex__’, ‘__repr__’, ‘__rmod__’, ‘__rmul__’, ‘__setattr__’, ‘__sizeof__’, ‘__str__’, ‘__subclasshook__’, ‘capitalize’, ‘casefold’, ‘center’, ‘count’, ‘encode’, ‘endswith’, ‘expandtabs’, ‘find’, ‘format’, ‘format_map’, ‘index’, ‘isalnum’, ‘isalpha’, ‘isascii’, ‘isdecimal’, ‘isdigit’, ‘isidentifier’, ‘islower’, ‘isnumeric’, ‘isprintable’, ‘isspace’, ‘istitle’, ‘isupper’, ‘join’, ‘ljust’, ‘lower’, ‘lstrip’, ‘maketrans’, ‘partition’, ‘replace’, ‘rfind’, ‘rindex’, ‘rjust’, ‘rpartition’, ‘rsplit’, ‘rstrip’, ‘split’, ‘splitlines’, ‘startswith’, ‘strip’, ‘swapcase’, ‘title’, ‘translate’, ‘upper’, ‘zfill’]
>>>

In the case that ‘w’ is a sequence of strings/ words like w=’abc def’, then does the list operations be of no help, because one gets a list of letters, not of words:

>> wl2=list(w)
>>> wl2
[‘a’, ‘b’, ‘c’, ‘ ‘, ‘d’, ‘e’, ‘f’]

For the program one needs a list of single words. Looking to the possible operations with string objects with Dir() above, one sees the name ‘split’. We can ask, what this ‘split’ is about:

>>> help(str.split)
Help on method_descriptor:

split(self, /, sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string.

sep
The delimiter according which to split the string.
None (the default value) means split according to any whitespace,
and discard empty strings from the result.
maxsplit
Maximum number of splits to do.
-1 (the default value) means no limit.

This sounds as if it could be of help. Indeed, that is the mechanism I have used:

>> w=’abc def’
>>> w
‘abc def’
>>> wl=w.split()
>>> wl
[‘abc’, ‘def’]

Function Definition

As you can see in the program text the minimal structure of a function definition is as follows:

def fname(Input-Arguments):
     some commands
    [return VarNames]

The name is needed for the identification of the command, the input variables to get some values from the outside to work on and finally, but optionally, you can return the values of some variables back to the outside of the function.

The For-Loop

Besides the loop organized with the while-command there is the other command with a fixed number of repetitions indicated by the for-command:

for i in range(n):
commands

The operator ‘range()’ delivers a sequence of numbers from ‘0’ to ‘n-1’ and attaches these to the variable ‘i’. Thus the variable i takes one after the other all the numbers from range(). During one repetition all the commands will be executed which are listed after the for-command.

Random Numbers

In this program very heavily I have used random numbers. To be able to do this one has before this usage to import the random number library. I did this with the call:

import random as rnd

This introduces additionally an abbreviation ‘rnd’. Thus if one wants to call a certain operation from the random object one can write like this:

r=rnd.randrange(0,n)

In this example one uses  the randrange() operation from random with the arguments (0,n) this means that an integer random number will be generated in the intervall [0,n-1].

If-Operator with Combined Conditions

In the program you can find statements like

if opt==’1′ and opt2==’1′ and opt3==’1′:

Following the if-keyword you see three different conditions

opt==’1′
opt2==’1′
opt3==’1′

which are put together to one expression by the logical operator ‘and’. This means that all three conditions must simultaneously be true, otherwise this combined condition will not work.

Introduce the Import Module Mechanism

See for this the two files:

stringDemo2b.py
stringDemos.py

StringDemo2b.py is the same as stringDemo2.py discussed above but all the supporting functions are now removed from the main file and stored in an extra file called ‘stringDemos.py’ which works for the main file stringDemo2b.py as a module file. That this works there must be a special

import stringDemos as sd

command and at each occurence of a function call with functions from the imported module in the main module stringDemo2b.py one has to add the prefix ‘sd.’ indicating, that these functions are now located in a special place.

This import call does work only if the special path for the import module ‘stringDemos.py’ is visible to the python modulecall mechanisms. In this case the Path with the modul stringDemos.py is given as C:\Users\gerd_2\code. If one wants know what the actual path names are which are known to the python system one can use a system call:

>> import sys
>>> sys.path
>>> …

If the wanted path is not yet part of these given paths one can append the new path like this:

>> sys.path.append(‘C:\\Users\\gerd_2\\code’)

If this has all done rightly one can work with the program like before. The main advantage of this splitting of the main program and of the supporting functions is (i) a greater transparency of the main code and (ii) the supporting functions can now easily be used from other programs too if needed.

A next possible continuation you can find HERE.

 

STARTING WITH PYTHON3 – The very beginning – part 4

Journal: uffmm.org,
ISSN 2567-6458, July 15, 2019 – May 9, 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email:
gerd@doeben-henisch.de

Change: July 16, 2019 (Some re-arrangement of the content :-))

CONTEXT

This is the next step in the python3 programming project. The overall context is still the python Co-Learning project.

SUBJECT

After a first clearing of the environment for python programming we have started with the structure of the python programming language, and in this section will deal with the object type string(s).

Remark: the following information about strings you can get directly from the python manuals, which you can find associated with the entry for python 3.7.3 if you press the Windows-Button, look to the list of Apps (= programs), and identify the entry for python 3.7.3. If you open the python entry by clicking you see the sub-entry python 3.7.3 Manuals. If you click on this sub-entry the python documentation will open. In this documentation you can find nearly everything you will need. For Beginners you even find a nice tutorial.

TOPIC: VALUES (OBJECTS) AS STRINGS

PROBLEM(s)

(1) When I see a single word (a string of symbols) I do not know which type this is in python. (2) If I have a statement with many words I would like to get from this a partition into all the single words for further processing.

VISION OF A SOLUTION

There is a simple software actor which can receive as input either single words or multiple words and which can respond by giving either the type of the received word or the list of the received multiple words.

ACTOR STORY (AS)

We assume a human user as executing actor (eA) and a piece of running software as an assisting actor (aA). For these both we assume the following sequence of states:

  1. The user will start the program by calling python and the name of the program.
  2. The program offers the user two options: single word or multiple words.
  3. The user has to select one of these options.
  4. After the selection the user can enter accordingly either one  or multiple words.
  5. The program will respond either with the recognized type in python or with a list of words.
  6. Finally asks the program the user whether he/she will continue or stop.
  7. Depending from the answer of the user the program will continue or stop.

IMPLEMENTATION

Here you can download the sourcecode: stringDemo1

# File stringDemo1.py
# Author: G.Doeben-Henisch
# First date: July 15, 2019

##################
# Function definition sword()

def sword(w1):
w=str(w1)
if w.islower():
print(‘Is lower\n’)
elif w.isalpha() :
print(‘Is alpha\n’)
elif w.isdecimal():
print(‘Is decimal\n’)
elif w.isascii():
print(‘Is ascii\n’)
else : print(‘Is not lower, alpha, decimal, ascii\n’)

##########################
# Main Programm

###############
# Start main loop

loop=’Y’
while loop==’Y’:

###################
# Ask for Options

opt=input(‘Single word =1 or multiple words =2\n’)

if opt==’1′:
w1=input(‘Input a single word\n’)
sword(w1) # Call for new function defined above

elif opt==’2′:
w1=input(‘Input multiple words\n’)
w2=w1.split() # Call for built-in method of class str
print(w2)

loop=input(‘To stop enter N or Y otherwise\n’) # Check whether loop shall be repeated

DEMO

Here it is assumed that the code of the python program is stored in the folder ‘code’ in my home director.

I am starting the windows power shell (PS) by clicking on the icon. Then I enter the command ‘cd code’ to enter the folder code. Then I call the python interpreter together with the demo programm ‘stringDemo1.py’:

PS C:\Users\gerd_2\code> python stringDemo1.py
Single word =1 or multiple words =2

Then I select first option ‘Single word’ with entering 1:

1
Input a single word
Abrakadabra
Is alpha

To stop enter N

After entering 1 the program asks me to enter a single word.

I am entering the fantasy word ‘Abrakadabra’.

Then the program responds with the classification ‘Is alpha’, what is correct. If I want to stop I have to enter ‘N’ otherwise it contiues.

I want o try another word, therefore I am entering ‘Y’:

Y
Single word =1 or multiple words =2

I select again ‘1’ and the new menue appears:

1
Input a single word
29282726
Is decimal

To stop enter N

I entered a sequence of digits which has been classified as ‘decimal’.

I want to contiue with ‘Y’ and entering ‘2’:

Y
Single word =1 or multiple words =2
2
Input multiple words
Hans kommt meistens zu spät
[‘Hans’, ‘kommt’, ‘meistens’, ‘zu’, ‘spät’]
To stop enter N

I have entered a German sentence with 5 words. The response of the system is to identify every single word and generate a list of the individual words.

Thus, so far, the test works fine.

COMMENTS TO THE SOURCE CODE

Before the main program a new function ‘sword()’ has been defined:

def sword(w1):

The python keyword ‘def‘ indicates that here the definition of a function  takes place, ‘sword‘ is the name of this new function, and ‘w1‘ is the input argument for this function. ‘w1’ as such is the name of a variable pointing to some memory place and the value of this variable at this place will depend from the context.

w=str(w1)

The input variable w1 is taken by the operator str and str translates the input value into a python object of type ‘string’. Thus the further operations with the object string can assume that it is a string and therefore one can apply alle the operations to the object which can be applied to strings.

if w.islower():

One of these string-specific operations is islower(). Attached to the string object ‘w’ by a dot-operator ‘.’ the operation ‘islower() will check, whether the string object ‘w’ contains lower case symbols. If yes then the following ‘print()’ operation will send this message to the output, otherwise the program continues with the next ‘elif‘ statement.

The ‘if‘ (and following the if the ‘elif‘) keyword states a condition (whether ‘w’ is of type ‘lower case symbols’). The statement closes with the ‘:’ sign. This statement can be ‘true’ or not. If it is true then the part after the ‘:’ sign will be executed (the ‘print()’ action), if false then the next condition ‘elif … :’ will be checked.

If no condition would be true then the ‘else: …’ statement would be executed.

The main program is organized as a loop which can iterate as long as the user does not stop it. This entails that the user can enter as many words or multi-words as he/ she wants.

loop=’Y’
while loop==’Y’:

In the first line the variable ‘loop’ receives as a value the string ‘Y’ (short for ‘yes’). In the next line starts the loop with the python key-word ‘while’ forming a condition statement ‘while … :’. This is similar to the condition statements above with ‘if …. :’ and ‘elif … :’.

The condition depends on the expression ‘loop == ‘Y” which means that  as long as the variable loop is logically equal == to the value ‘Y’ the loop condition  is ‘true’ and the part after the ‘:’ sign will be executed. Thus if one wants to break this loop one has to change the value of the variable ‘loop’ before the while-statement ‘while … :’ will be checked again. This check is done in the last line of the while-execution part with the input command:

loop=input(‘To stop enter N\n’)

Before the while-condition will be checked again there is this input() operator asking the user to enter a ‘N’ if he/ she wantds to stop. If the user  enters a  ‘N’  in the input line the result of his input will be stored in the variable called ‘loop’ and therefore the variable will have the value ‘==’N” which is different from ‘==’Y”. But what would happen if the user enters something different from ‘N’ and ‘Y’, because ‘Y’ is expected for repetition?

Because the user does not know that he/she has to enter ‘Y’ to continue the program will highly probably stop even if the user does not want to stop. To avoid this unwanted case one should change the code for the while-condition as follows:

while loop!=’N’:

This states that the loop will be true as long as the value of the loop variable is different != from the value ‘N’ which will explicitly asked from the user at the end of the loop.

The main part of the while-loop distinguishes two cases: single word or multiple words. This is realized by a new input() operation:

opt=input(‘Single word =1 or multiple words =2\n’)

The user can enter a ‘1’ or a ‘2’, which will be stored in the variable ‘opt’. Then a construction with an if or an elif will test which one of these both happens. Depending from the option 1 or 2 ther program asks the user again with an input() operation for the specific input (one word or multiple words).

sword(w1)

In the case of the one word input in the variable ‘w1’ w1 contains as value a string input which will be delivered as input argument to the new function ‘sword()’ (explanation see above). In case of input 2 the

w2=w1.split()

‘split()’ operation will be applied to the object ‘w1’ by the dot operator ‘.’. This operation will take every word separated by a ‘blank’ and generates a list ‘[ … ]’ with the individual words as elements.

A next possible continuation you can find HERE.

 

ACI – TWO DIFFERENT READINGS

eJournal: uffmm.org
ISSN 2567-6458, 11.-12.May 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Change: May-17, 2019 (Some Corrections, ACI associations)
Change: May-20, 2019 (Reframing ACI with AAI)
CONTEXT

This text is part of the larger text dealing with the Actor-Actor Interaction (AAI)  paradigm.

HCI – HMI – AAI ==> ACI ?

Who has followed the discussion in this blog remembers several different phases in the conceptual frameworks used here.

The first paradigm called Human-Computer Interface (HCI) has been only mentioned by historical reasons.  The next phase Human-Machine Interaction (HMI) was the main paradigm in the beginning of my lecturing in 2005. Later, somewhere 2011/2012, I switched to the paradigm Actor-Actor Interaction (AAI) because I tried to generalize over  the different participating machines, robots, smart interfaces, humans as well as animals. This worked quite nice and some time I thought that this is now the final formula. But reality is often different compared to  our thinking. Many occasions showed up where the generalization beyond the human actor seemed to hide the real processes which are going on, especially I got the impression that very important factors rooted in the special human actor became invisible although they are playing decisive role in many  processes. Another punch against the AAI view came from application scenarios during the last year when I started to deal with whole cities as actors. At the end  I got the feeling that the more specialized expressions like   Actor-Cognition Interaction (ACI) or  Augmented Collective Intelligence (ACI) can indeed help  to stress certain  special properties  better than the more abstract AAI acronym, but using structures like ACI  within general theories and within complex computing environments it became clear that the more abstract acronym AAI is in the end more versatile and simplifies the general structures. ACI became a special sub-case

HISTORY

To understand this oscillation between AAI and  ACI one has to look back into the history of Human Computer/ Machine Interaction, but not only until the end of the World War II, but into the more extended evolutionary history of mankind on this planet.

It is a widespread opinion under the researchers that the development of tools to help mastering material processes was one of the outstanding events which changed the path of  the evolution a lot.  A next step was the development of tools to support human cognition like scripture, numbers, mathematics, books, libraries etc. In this last case of cognitive tools the material of the cognitive  tools was not the primary subject the processes but the cognitive contents, structures, even processes encoded by the material structures of the tools.

Only slowly mankind understood how the cognitive abilities and capabilities are rooted in the body, in the brain, and that the brain represents a rather complex biological machinery which enables a huge amount of cognitive functions, often interacting with each other;  these cognitive functions show in the light of observable behavior clear limits with regard to the amount of features which can be processed in some time interval, with regard to precision, with regard to working interconnections, and more. And therefore it has been understood that the different kinds of cognitive tools are very important to support human thinking and to enforce it in some ways.

Only in the 20th century mankind was able to built a cognitive tool called computer which could show   capabilities which resembled some human cognitive capabilities and which even surpassed human capabilities in some limited areas. Since then these machines have developed a lot (not by themselves but by the thinking and the engineering of humans!) and meanwhile the number and variety of capabilities where the computer seems to resemble a human person or surpasses human capabilities have extend in a way that it has become a common slang to talk about intelligent machines or smart devices.

While the original intention for the development of computers was to improve the cognitive tools with the intend  to support human beings one can  get today  the impression as if the computer has turned into a goal on its own: the intelligent and then — as supposed — the super-intelligent computer appears now as the primary goal and mankind appears as some old relic which has to be surpassed soon.

As will be shown later in this text this vision of the computer surpassing mankind has some assumptions which are

What seems possible and what seems to be a promising roadmap into the future is a continuous step-wise enhancement of the biological structure of mankind which absorbs the modern computing technology by new cognitive interfaces which in turn presuppose new types of physical interfaces.

To give a precise definition of these new upcoming structures and functions is not yet possible, but to identify the actual driving factors as well as the exciting combinations of factors seems possible.

COGNITION EMBEDDED IN MATTER
Actor-Cognition Interaction (ACI): A simple outline of the whole paradigm
Cognition within the Actor-Actor Interaction (AAI)  paradigm: A simple outline of the whole paradigm

The main idea is the shift of the focus away from the physical grounding of the interaction between actors looking instead more to the cognitive contents and processes, which shall be mediated  by the physical conditions. Clearly the analysis of the physical conditions as well as the optimal design of these physical conditions is still a challenge and a task, but without a clear knowledge manifested in a clear model about the intended cognitive contents and processes one has not enough knowledge for the design of the physical layout.

SOLVING A PROBLEM

Thus the starting point of an engineering process is a group of people (the stakeholders (SH)) which identify some problem (P) in their environment and which have some minimal idea of a possible solution (S) for this problem. This can be commented by some non-functional requirements (NFRs) articulating some more general properties which shall hold through the whole solution (e.g. ‘being save’, ‘being barrier-free’, ‘being real-time’ etc.). If the description of the problem with a first intended solution including the NFRs contains at least one task (T) to be solved, minimal intended users (U) (here called executive actors (eA)), minimal intended assistive actors (aA) to assist the user in doing the task, as well as a description of the environment of the task to do, then the minimal ACI-Check can be passed and the ACI analysis process can be started.

COGNITION AND AUGMENTED COLLECTIVE INTELLIGENCE

If we talk about cognition then we think usually about cognitive processes in an individual person.  But in the real world there is no cognition without an ongoing exchange between different individuals by communicative acts. Furthermore it has to be taken into account that the cognition of an individual person is in itself partitioned into two unequal parts: the unconscious part which covers about 99% of all the processes in the body and in the brain and about 1% which covers the conscious part. That an individual person can think somehow something this person has to trigger his own unconsciousness by stimuli to respond with some messages from his before unknown knowledge. Thus even an individual person alone has to organize a communication with his own unconsciousness to be able to have some conscious knowledge about its own unconscious knowledge. And because no individual person has at a certain point of time a clear knowledge of his unconscious knowledge  the person even does not really know what to look for — if there is no event, not perception, no question and the like which triggers the person to interact with its unconscious knowledge (and experience) to get some messages from this unconscious machinery, which — as it seems — is working all the time.

On account of this   logic of the individual internal communication with the individual cognition  an external communication with the world and the manifested cognition of other persons appears as a possible enrichment in the   interactions with the distributed knowledge in the different persons. While in the following approach it is assumed to represent the different knowledge responses in a common symbolic representation viewable (and hearable)  from all participating persons it is growing up a possible picture of something which is generally more rich, having more facets than a picture generated by an individual person alone. Furthermore can such a procedure help all participants to synchronize their different knowledge fragments in a bigger picture and use it further on as their own picture, which in turn can trigger even more aspects out of the distributed unconscious knowledge.

If one organizes this collective triggering of distributed unconscious knowledge within a communication process not only by static symbolic models but beyond this with dynamic rules for changes, which can be interactively simulated or even played with defined states of interest then the effect of expanding the explicit and shared knowledge will be boosted even more.

From this background it makes some sense to turn the wording Actor-Cognition Interaction into the wording Augmented Collective Intelligence where Intelligence is the component of dynamic cognition in a system — here a human person –, Collective means that different individual person are sharing their unconscious knowledge by communicative interactions, and Augmented can be interpreted that one enhances, extends this sharing of knowledge by using new tools of modeling, simulation and gaming, which expands and intensifies the individual learning as well as the commonly shared opinions. For nearly all problems today this appears to be  absolutely necessary.

ACI ANALYSIS PROCESS

Here it will be assumed that there exists a group of ACI experts which can supervise  other actors (stakeholders, domain experts, …) in a process to analyze the problem P with the explicit goal of finding a satisfying solution (S+).

For the whole ACI analysis process an appropriate ACI software should be available to support the ACI experts as well as all the other domain experts.

In this ACI analysis process one can distinguish two main phases: (1) Construct an actor story (AS) which describes all intended states and intended changes within the actor story. (2) Make several tests of the actor story to exploit their explanatory power.

ACTOR STORY (AS)

The actor story describes all possible states (S) of the tasks (T) to be realized to reach intended goal states (S+). A mapping from one state to a follow-up state will be described by a change rule (X). Thus having start state (S0) and appropriate change rules one can construct the follow-up states from the actual state (S*)  with the aid of the change rules. Formally this computation of the follow-up state (S’) will be computed by a simulator function (σ), written as: σ: S* x X  —> S.

SEVERAL TESTS

With the aid of an explicit actor story (AS) one can define the non-functional requirements (NFRs) in a way that it will become decidable whether  a NFR is valid with regard to an actor story or not. In this case this test of being valid can be done as an automated verification process (AVP). Part of this test paradigm is the so-called oracle function (OF) where one can pose a question to the system and the system will answer the question with regard to all theoretically possible states without the necessity to run a (passive) simulation.

If the size of the group is large and it is important that all members of the group have a sufficient similar knowledge about the problem(s) in question (as it is the usual case in a city with different kinds of citizens) then is can be very helpful to enable interactive simulations or even games, which allow a more direct experience of the possible states and changes. Furthermore, because the participants can act according to their individual reflections and goals the process becomes highly uncertain and nearly unpredictable. Especially for these highly unpredictable processes can interactive simulations (and games) help to improve a common understanding of the involved factors and their effects. The difference between a normal interactive simulation and a game is given in the fact that a game has explicit win-states whereas the interactive simulations doesn’t. Explicit win-states can improve learning a lot.

The other interesting question is whether an actor story AS with a certain idea for an assistive actor (aA) is usable for the executive actors. This requires explicit measurements of the usability which in turn requires a clear norm of reference with which the behavior of an executive actor (eA) during a process can be compared. Usually is the actor Story as such the norm of reference with which the observable behavior of the executing actors will be compared. Thus for the measurement one needs real executive actors which represent the intended executive actors and one needs a physical realization of the intended assistive actors called mock-up. A mock-up is not yet  the final implementation of the intended assistive actor but a physical entity which can show all important physical properties of the intended assistive actor in a way which allows a real test run. While in the past it has been assumed to be sufficient to test a test person only once it is here assumed that a test person has to be tested at least three times. This follows from the assumption that every executive (biological) actor is inherently a learning system. This implies that the test person will behave differently in different tests. The degree of changes can be a hint of the easiness and the learnability of the assistive actor.

COLLECTIVE MEMORY

If an appropriate ACI software is available then one can consider an actor story as a simple theory (ST) embracing a model (M) and a collection of rules (R) — ST(x) iff x = <M,R> –which can be used as a kind of a     building block which in turn can be combined with other such building blocks resulting in a complex network of simple theories. If these simple theories are stored in a  public available data base (like a library of theories) then one can built up in time a large knowledge base on their own.

 

 

AAI-THEORY V2 – BLUEPRINT: Bottom-up

eJournal: uffmm.org,
ISSN 2567-6458, 27.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: 28.February 2019 (Several corrections)

CONTEXT

An overview to the enhanced AAI theory version 2 you can find here. In this post we talk about the special topic how to proceed in a bottom-up approach.

BOTTOM-UP: THE GENERAL BLUEPRINT
Outine of the process how to generate an AS
Figure 1: Outline of the process how to generate an AS with a bottom-up approach

As the introductory figure shows it is assumed here that there is a collection of citizens and experts which offer their individual knowledge, experiences, and skills to ‘put them on the table’ challenged by a given problem P.

This knowledge is in the beginning not structured. The first step in the direction of an actor story (AS) is to analyze the different contributions in a way which shows distinguishable elements with properties and relations. Such a set of first ‘objects’ and ‘relations’ characterizes a set of facts which define a ‘situation’ or a ‘state’ as a collection of ‘facts’. Such a situation/ state can also be understood as a first simple ‘model‘ as response to a given problem. A model is as such ‘static‘; it describes what ‘is’ at a certain point of ‘time’.

In a next step the group has to identify possible ‘changes‘ which can be associated with at least one fact. There can be many possible changes which eventually  need different durations to come into effect. These effects can happen  as ‘exclusive alternatives’ or in ‘parallel’. Apply the possible changes to a  situation  generates   ‘successors’ to the actual situation. A sequence of situations generated by applied changes is  usually called a ‘simulation‘.

If one allows the interaction between real actors with a simulation by associating  a real actor to one of the actors ‘inside the simulation’ one is turning the simulation into an ‘interactive simulation‘ which represents basically a ‘computer game‘ (short: ‘egame‘).

One can use interactive simulations e.g. to (i) learn about the dynamics of a model, to (ii) test the assumptions of a model, to (iii) test the knowledge and skills of the real actors.

Making new experiences with a  simulation allows a continuous improvement of the model and its change rules.

Additionally one can include more citizens and experts into this process and one can use available knowledge from databases and libraries.

EPISTEMOLOGY OF CONCEPTS
Epistemology of concepts used in an AAI Analysis rprocess
Fig.2: Epistemology of concepts used in an AAI Analysis process

As outlined in the preceding section about the blueprint of a bottom-up process there will be a heavy   usage of concepts to describe state of affairs.

The literature about this topic in philosophy as well as many scientific disciplines is overwhelmingly and therefore this small text here can only be a ‘pointer’ into a complex topic. Nevertheless I will use exactly this pointer to explore this topic further.

While the literature is mainly dealing with  more or less specific partial models, I am trying here to point out a very general framework which fits to a more genera philosophical — especially epistemological — view as well as gives respect to many results of scientific disciplines.

The main dimensions here are (i) the outside external empirical world, which connects via sensors to the (ii) internal body, especially the brain,  which works largely ‘unconscious‘, and then (iii) the ‘conscious‘ part of he brain.

The most important relationship between the ‘conscious’ and the ‘unconscious’ part of the brain is the ability of the unconscious brain to transform automatically incoming concrete sens-experiences into more   ‘abstract’ structures, which have at least three sub-dimensions: (i) different concrete material, (ii) a sub-set of extracted common properties, (iii) different sets of occurring contexts associated with the different subsets. This enables the brain to extract only a ‘few’ abstract structures (= abstract concepts)  to deal with ‘many’  concrete events. Thus the abstract concept ‘chair’ can cover many different concrete chairs which have only a few properties in common. Additionally the chairs can occur in different ‘contexts’ associating them with different ‘relations’ which can  specify  possible different ‘usages’   of  the concept ‘chair’.

Thus, if the actor perceives something which ‘matches’ some ‘known’ concept then the actor is  not only conscious about the empirical concrete phenomenon but also simultaneously about the abstract concept which will automatically be activated. ‘Immediately’ the actor ‘knows’ that this empirical something is e.g. a ‘chair’. Concrete: this concrete something is matching an abstract concept ‘chair’ which can as such cover many other concrete things too which can be as concrete somethings partially different from another concrete something.

From this follows an interesting side effect: while an actor can easily decide, whether a concrete something is there  (“it is the case, that” = “it is true”) or not (“it is not the case, that” = “it isnot true” = “it is false”), an actor can not directly decide whether an abstract concept like ‘chair’ as such is ‘true’ in the sense, that the concept ‘as a whole’ corresponds to concrete empirical occurrences. This depends from the fact that an abstract concept like ‘chair’ can match with a  nearly infinite set of possible concrete somethings which are called ‘possible instances’ of the abstract concept. But a human actor can directly   ‘check’ only a ‘few’ concrete somethings. Therefore the usage of abstract concepts like ‘chair’, ‘house’, ‘bottle’ etc. implies  inherently an ‘open set’ of ‘possible’ concrete  exemplars and therefor is the usage of such concepts necessarily a ‘hypothetical’ usage.  Because we can ‘in principle’ check the real extensions of these abstract concepts   in everyday life as long there is the ‘freedom’ to do  such checks,  we are losing the ‘truth’ of our concepts and thereby the basis for a  realistic cooperation, if this ‘freedom of checking’ is not possible.

If some incoming perception is ‘not yet known’,  because nothing given in the unconsciousness does ‘match’,  it is in a basic sens ‘new’ and the brain will automatically generate a ‘new concept’.

THE DIMENSION OF MEANING

In Figure 2 one can find two other components: the ‘meaning relation’ which maps concepts into ‘language expression’.

Language expressions inside the brain correspond to a diversity of visual, auditory, tactile or other empirical event sequences, which are in use for communicative acts.

These language expressions are usually not ‘isolated structures’ but are embedded in relations which map the expression structures to conceptual structures including  the different substantiations of the abstract concepts and the associated contexts. By these relations the expressions are attached to the conceptual structures which are called the ‘meaning‘ of the expressions and vice versa the expressions are called the ‘language articulation’ of the meaning structures.

As far as conceptual structures are related via meaning relations to language expressions then  a perception can automatically cause the ‘activation’ of the associated language expressions, which in turn can be uttered in some way. But conceptual structures   can exist  (especially with children) without an available  meaning relation.

When language expressions are used within a communicative act then  their usage can activate in all participants of the communication the ‘learned’ concepts as their intended meanings. Heaving the meaning activated in someones ‘consciousness’ this is a real phenomenon for that actor. But from the occurrence of  concepts alone does not automatically follow, that a  concept is ‘backed up’ by some ‘real matter’ in the external world. Someone can utter that it is raining, in the hearer of this utterance the intended concepts can become activated, but in the outside external world no rain is happening. In this case one has to state that the utterance of the language expressions “Look, its raining” has no counterpart in the real world, therefore we call the utterance in this case ‘false‘ or  ‘not true‘.

THE DIMENSION OF TIME
The dimension of time based on past experience and combinatoric thinking
Fig.3: The dimension of time based on past experience and combinatoric thinking

The preceding figure 2 of the conceptual space is not yet complete. There is another important dimension based on the ability of the unconscious brain to ‘store’ certain structures in a ‘timely order’ which enables an actor — under certain conditions ! — to decide whether a certain structure X occurred in the consciousness ‘before’ or ‘after’ or ‘at the same time’ as another structure Y.

Evidently the unconscious brain is able do exactly this:  (i) it can arrange the different structures under certain conditions in a ‘timely order’;  (ii)  it can detect ‘differences‘ between timely succeeding structures;  the brain (iii) can conceptualize these changes as ‘change concepts‘ (‘rules of change’), and it can  can classify different kinds of change like ‘deterministic’, ‘non-deterministic’ with different kinds of probabilities, as well as ‘arbitrary’ as in the case of ‘free learning systems‘. Free learning systems are able to behave in a ‘deterministic-like manner’, but they can also change their patterns on account of internal learning and decision processes in nearly any direction.

Based on memories of conceptual structures and derived change concepts (rules of change) the unconscious brain is able to generate different kinds of ‘possible configurations’, whose quality is  depending from the degree of dependencies within the  ‘generating  criteria’: (i) no special restrictions; (ii) empirical restrictions; (iii) empirical restrictions for ‘upcoming states’ (if all drinkable water would be consumed, then one cannot plan any further with drinkable water).

 

 

 

 

 

 

 

AAI THEORY V2 –A Philosophical Framework

eJournal: uffmm.org,
ISSN 2567-6458, 22.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: 23.February 2019 (continued the text)

Last change: 24.February 2019 (extended the text)

CONTEXT

In the overview of the AAI paradigm version 2 you can find this section  dealing with the philosophical perspective of the AAI paradigm. Enjoy reading (or not, then send a comment :-)).

THE DAILY LIFE PERSPECTIVE

The perspective of Philosophy is rooted in the everyday life perspective. With our body we occur in a space with other bodies and objects; different features, properties  are associated with the objects, different kinds of relations an changes from one state to another.

From the empirical sciences we have learned to see more details of the everyday life with regard to detailed structures of matter and biological life, with regard to the long history of the actual world, with regard to many interesting dynamics within the objects, within biological systems, as part of earth, the solar system and much more.

A certain aspect of the empirical view of the world is the fact, that some biological systems called ‘homo sapiens’, which emerged only some 300.000 years ago in Africa, show a special property usually called ‘consciousness’ combined with the ability to ‘communicate by symbolic languages’.

General setting of the homo sapiens species (simplified)
Figure 1: General setting of the homo sapiens species (simplified)

As we know today the consciousness is associated with the brain, which in turn is embedded in the body, which  is further embedded in an environment.

Thus those ‘things’ about which we are ‘conscious’ are not ‘directly’ the objects and events of the surrounding real world but the ‘constructions of the brain’ based on actual external and internal sensor inputs as well as already collected ‘knowledge’. To qualify the ‘conscious things’ as ‘different’ from the assumed ‘real things’ ‘outside there’ it is common to speak of these brain-generated virtual things either as ‘qualia’ or — more often — as ‘phenomena’ which are  different to the assumed possible real things somewhere ‘out there’.

PHILOSOPHY AS FIRST PERSON VIEW

‘Philosophy’ has many facets.  One enters the scene if we are taking the insight into the general virtual character of our primary knowledge to be the primary and irreducible perspective of knowledge.  Every other more special kind of knowledge is necessarily a subspace of this primary phenomenological knowledge.

There is already from the beginning a fundamental distinction possible in the realm of conscious phenomena (PH): there are phenomena which can be ‘generated’ by the consciousness ‘itself’  — mostly called ‘by will’ — and those which are occurring and disappearing without a direct influence of the consciousness, which are in a certain basic sense ‘given’ and ‘independent’,  which are appearing  and disappearing according to ‘their own’. It is common to call these independent phenomena ’empirical phenomena’ which represent a true subset of all phenomena: PH_emp  PH. Attention: These empirical phenomena’ are still ‘phenomena’, virtual entities generated by the brain inside the brain, not directly controllable ‘by will’.

There is a further basic distinction which differentiates the empirical phenomena into those PH_emp_bdy which are controlled by some processes in the body (being tired, being hungry, having pain, …) and those PH_emp_ext which are controlled by objects and events in the environment beyond the body (light, sounds, temperature, surfaces of objects, …). Both subsets of empirical phenomena are different: PH_emp_bdy PH_emp_ext = 0. Because phenomena usually are occurring  associated with typical other phenomena there are ‘clusters’/ ‘pattern’ of phenomena which ‘represent’ possible events or states.

Modern empirical science has ‘refined’ the concept of an empirical phenomenon by introducing  ‘standard objects’ which can be used to ‘compare’ some empirical phenomenon with such an empirical standard object. Thus even when the perception of two different observers possibly differs somehow with regard to a certain empirical phenomenon, the additional comparison with an ’empirical standard object’ which is the ‘same’ for both observers, enhances the quality, improves the precision of the perception of the empirical phenomena.

From these considerations we can derive the following informal definitions:

  1. Something is ‘empirical‘ if it is the ‘real counterpart’ of a phenomenon which can be observed by other persons in my environment too.
  2. Something is ‘standardized empirical‘ if it is empirical and can additionally be associated with a before introduced empirical standard object.
  3. Something is ‘weak empirical‘ if it is the ‘real counterpart’ of a phenomenon which can potentially be observed by other persons in my body as causally correlated with the phenomenon.
  4. Something is ‘cognitive‘ if it is the counterpart of a phenomenon which is not empirical in one of the meanings (1) – (3).

It is a common task within philosophy to analyze the space of the phenomena with regard to its structure as well as to its dynamics.  Until today there exists not yet a complete accepted theory for this subject. This indicates that this seems to be some ‘hard’ task to do.

BRIDGING THE GAP BETWEEN BRAINS

As one can see in figure 1 a brain in a body is completely disconnected from the brain in another body. There is a real, deep ‘gap’ which has to be overcome if the two brains want to ‘coordinate’ their ‘planned actions’.

Luckily the emergence of homo sapiens with the new extended property of ‘consciousness’ was accompanied by another exciting property, the ability to ‘talk’. This ability enabled the creation of symbolic languages which can help two disconnected brains to have some exchange.

But ‘language’ does not consist of sounds or a ‘sequence of sounds’ only; the special power of a language is the further property that sequences of sounds can be associated with ‘something else’ which serves as the ‘meaning’ of these sounds. Thus we can use sounds to ‘talk about’ other things like objects, events, properties etc.

The single brain ‘knows’ about the relationship between some sounds and ‘something else’ because the brain is able to ‘generate relations’ between brain-structures for sounds and brain-structures for something else. These relations are some real connections in the brain. Therefore sounds can be related to ‘something  else’ or certain objects, and events, objects etc.  can become related to certain sounds. But these ‘meaning relations’ can only ‘bridge the gap’ to another brain if both brains are using the same ‘mapping’, the same ‘encoding’. This is only possible if the two brains with their bodies share a real world situation RW_S where the perceptions of the both brains are associated with the same parts of the real world between both bodies. If this is the case the perceptions P(RW_S) can become somehow ‘synchronized’ by the shared part of the real world which in turn is transformed in the brain structures P(RW_S) —> B_S which represent in the brain the stimulating aspects of the real world.  These brain structures B_S can then be associated with some sound structures B_A written as a relation  MEANING(B_S, B_A). Such a relation  realizes an encoding which can be used for communication. Communication is using sound sequences exchanged between brains via the body and the air of an environment as ‘expressions’ which can be recognized as part of a learned encoding which enables the receiving brain to identify a possible meaning candidate.

DIFFERENT MODES TO EXPRESS MEANING

Following the evolution of communication one can distinguish four important modes of expressing meaning, which will be used in this AAI paradigm.

VISUAL ENCODING

A direct way to express the internal meaning structures of a brain is to use a ‘visual code’ which represents by some kinds of drawing the visual shapes of objects in the space, some attributes of  shapes, which are common for all people who can ‘see’. Thus a picture and then a sequence of pictures like a comic or a story board can communicate simple ideas of situations, participating objects, persons and animals, showing changes in the arrangement of the shapes in the space.

Pictorial expressions representing aspects of the visual and the auditory sens modes
Figure 2: Pictorial expressions representing aspects of the visual and the auditory sens modes

Even with a simple visual code one can generate many sequences of situations which all together can ‘tell a story’. The basic elements are a presupposed ‘space’ with possible ‘objects’ in this space with different positions, sizes, relations and properties. One can even enhance these visual shapes with written expressions of  a spoken language. The sequence of the pictures represents additionally some ‘timely order’. ‘Changes’ can be encoded by ‘differences’ between consecutive pictures.

FROM SPOKEN TO WRITTEN LANGUAGE EXPRESSIONS

Later in the evolution of language, much later, the homo sapiens has learned to translate the spoken language L_s in a written format L_w using signs for parts of words or even whole words.  The possible meaning of these written expressions were no longer directly ‘visible’. The meaning was now only available for those people who had learned how these written expressions are associated with intended meanings encoded in the head of all language participants. Thus only hearing or reading a language expression would tell the reader either ‘nothing’ or some ‘possible meanings’ or a ‘definite meaning’.

A written textual version in parallel to a pictorial version
Figure 3: A written textual version in parallel to a pictorial version

If one has only the written expressions then one has to ‘know’ with which ‘meaning in the brain’ the expressions have to be associated. And what is very special with the written expressions compared to the pictorial expressions is the fact that the elements of the pictorial expressions are always very ‘concrete’ visual objects while the written expressions are ‘general’ expressions allowing many different concrete interpretations. Thus the expression ‘person’ can be used to be associated with many thousands different concrete objects; the same holds for the expression ‘road’, ‘moving’, ‘before’ and so on. Thus the written expressions are like ‘manufacturing instructions’ to search for possible meanings and configure these meanings to a ‘reasonable’ complex matter. And because written expressions are in general rather ‘abstract’/ ‘general’ which allow numerous possible concrete realizations they are very ‘economic’ because they use minimal expressions to built many complex meanings. Nevertheless the daily experience with spoken and written expressions shows that they are continuously candidates for false interpretations.

FORMAL MATHEMATICAL WRITTEN EXPRESSIONS

Besides the written expressions of everyday languages one can observe later in the history of written languages the steady development of a specialized version called ‘formal languages’ L_f with many different domains of application. Here I am  focusing   on the formal written languages which are used in mathematics as well as some pictorial elements to ‘visualize’  the intended ‘meaning’ of these formal mathematical expressions.

Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)
Fig. 4: Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)

One prominent concept in mathematics is the concept of a ‘graph’. In  the basic version there are only some ‘nodes’ (also called vertices) and some ‘edges’ connecting the nodes.  Formally one can represent these edges as ‘pairs of nodes’. If N represents the set of nodes then N x N represents the set of all pairs of these nodes.

In a more specialized version the edges are ‘directed’ (like a ‘one way road’) and also can be ‘looped back’ to a node   occurring ‘earlier’ in the graph. If such back-looping arrows occur a graph is called a ‘cyclic graph’.

Directed cyclic graph extended to represent 'states of affairs'
Fig.5: Directed cyclic graph extended to represent ‘states of affairs’

If one wants to use such a graph to describe some ‘states of affairs’ with their possible ‘changes’ one can ‘interpret’ a ‘node’ as  a state of affairs and an arrow as a change which turns one state of affairs S in a new one S’ which is minimally different to the old one.

As a state of affairs I  understand here a ‘situation’ embedded in some ‘context’ presupposing some common ‘space’. The possible ‘changes’ represented by arrows presuppose some dimension of ‘time’. Thus if a node n’  is following a node n indicated by an arrow then the state of affairs represented by the node n’ is to interpret as following the state of affairs represented in the node n with regard to the presupposed time T ‘later’, or n < n’ with ‘<‘ as a symbol for a timely ordering relation.

Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token
Fig.6: Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token

The space can be any kind of a space. If one assumes as an example a 2-dimensional space configured as a grid –as shown in figure 6 — with two tokens at certain positions one can introduce a language to describe the ‘facts’ which constitute the state of affairs. In this example one needs ‘names for objects’, ‘properties of objects’ as well as ‘relations between objects’. A possible finite set of facts for situation 1 could be the following:

  1. TOKEN(T1), BLACK(T1), POSITION(T1,1,1)
  2. TOKEN(T2), WHITE(T2), POSITION(T2,2,1)
  3. NEIGHBOR(T1,T2)
  4. CELL(C1), POSITION(1,2), FREE(C1)

‘T1’, ‘T2’, as well as ‘C1’ are names of objects, ‘TOKEN’, ‘BACK’ etc. are names of properties, and ‘NEIGHBOR’ is a relation between objects. This results in the equation:

S1 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), TOKEN(T2), WHITE(T2), POSITION(T2,2,1), NEIGHBOR(T1,T2), CELL(C1), POSITION(1,2), FREE(C1)}

These facts describe the situation S1. If it is important to describe possible objects ‘external to the situation’ as important factors which can cause some changes then one can describe these objects as a set of facts  in a separated ‘context’. In this example this could be two players which can move the black and white tokens and thereby causing a change of the situation. What is the situation and what belongs to a context is somewhat arbitrary. If one describes the agriculture of some region one usually would not count the planets and the atmosphere as part of this region but one knows that e.g. the sun can severely influence the situation   in combination with the atmosphere.

Change of a state of affairs given as a state which will be enhanced by a new object
Fig.7: Change of a state of affairs given as a state which will be enhanced by a new object

Let us stay with a state of affairs with only a situation without a context. The state of affairs is     a ‘state’. In the example shown in figure 6 I assume a ‘change’ caused by the insertion of a new black token at position (2,2). Written in the language of facts L_fact we get:

  1. TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)

Thus the new state S2 is generated out of the old state S1 by unifying S1 with the set of new facts: S2 = S1 {TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)}. All the other facts of S1 are still ‘valid’. In a more general manner one can introduce a change-expression with the following format:

<S1, S2, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)})>

This can be read as follows: The follow-up state S2 is generated out of the state S1 by adding to the state S1 the set of facts { … }.

This layout of a change expression can also be used if some facts have to be modified or removed from a state. If for instance  by some reason the white token should be removed from the situation one could write:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)})>

Another notation for this is S2 = S1 – {TOKEN(T2), WHITE(T2), POSITION(2,1)}.

The resulting state S2 would then look like:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1)}

And a combination of subtraction of facts and addition of facts would read as follows:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)}, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would result in the final state S2:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1),TOKEN(T3), BLACK(T3), POSITION(2,2)}

These simple examples demonstrate another fact: while facts about objects and their properties are independent from each other do relational facts depend from the state of their object facts. The relation of neighborhood e.g. depends from the participating neighbors. If — as in the example above — the object token T2 disappears then the relation ‘NEIGHBOR(T1,T2)’ no longer holds. This points to a hierarchy of dependencies with the ‘basic facts’ at the ‘root’ of a situation and all the other facts ‘above’ basic facts or ‘higher’ depending from the basic facts. Thus ‘higher order’ facts should be added only for the actual state and have to be ‘re-computed’ for every follow-up state anew.

If one would specify a context for state S1 saying that there are two players and one allows for each player actions like ‘move’, ‘insert’ or ‘delete’ then one could make the change from state S1 to state S2 more precise. Assuming the following facts for the context:

  1. PLAYER(PB1), PLAYER(PW1), HAS-THE-TURN(PB1)

In that case one could enhance the change statement in the following way:

<S1, S2, PB1,insert(TOKEN(T3,2,2)),add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would read as follows: given state S1 the player PB1 inserts a  black token at position (2,2); this yields a new state S2.

With or without a specified context but with regard to a set of possible change statements it can be — which is the usual case — that there is more than one option what can be changed. Some of the main types of changes are the following ones:

  1. RANDOM
  2. NOT RANDOM, which can be specified as follows:
    1. With PROBABILITIES (classical, quantum probability, …)
    2. DETERMINISTIC

Furthermore, if the causing object is an actor which can adapt structurally or even learn locally then this actor can appear in some time period like a deterministic system, in different collected time periods as an ‘oscillating system’ with different behavior, or even as a random system with changing probabilities. This make the forecast of systems with adaptive and/ or learning systems rather difficult.

Another aspect results from the fact that there can be states either with one actor which can cause more than one action in parallel or a state with multiple actors which can act simultaneously. In both cases the resulting total change has eventually to be ‘filtered’ through some additional rules telling what  is ‘possible’ in a state and what not. Thus if in the example of figure 6 both player want to insert a token at position (2,2) simultaneously then either  the rules of the game would forbid such a simultaneous action or — like in a computer game — simultaneous actions are allowed but the ‘geometry of a 2-dimensional space’ would not allow that two different tokens are at the same position.

Another aspect of change is the dimension of time. If the time dimension is not explicitly specified then a change from some state S_i to a state S_j does only mark the follow up state S_j as later. There is no specific ‘metric’ of time. If instead a certain ‘clock’ is specified then all changes have to be aligned with this ‘overall clock’. Then one can specify at what ‘point of time t’ the change will begin and at what point of time t*’ the change will be ended. If there is more than one change specified then these different changes can have different timings.

THIRD PERSON VIEW

Up until now the point of view describing a state and the possible changes of states is done in the so-called 3rd-person view: what can a person perceive if it is part of a situation and is looking into the situation.  It is explicitly assumed that such a person can perceive only the ‘surface’ of objects, including all kinds of actors. Thus if a driver of a car stears his car in a certain direction than the ‘observing person’ can see what happens, but can not ‘look into’ the driver ‘why’ he is steering in this way or ‘what he is planning next’.

A 3rd-person view is assumed to be the ‘normal mode of observation’ and it is the normal mode of empirical science.

Nevertheless there are situations where one wants to ‘understand’ a bit more ‘what is going on in a system’. Thus a biologist can be  interested to understand what mechanisms ‘inside a plant’ are responsible for the growth of a plant or for some kinds of plant-disfunctions. There are similar cases for to understand the behavior of animals and men. For instance it is an interesting question what kinds of ‘processes’ are in an animal available to ‘navigate’ in the environment across distances. Even if the biologist can look ‘into the body’, even ‘into the brain’, the cells as such do not tell a sufficient story. One has to understand the ‘functions’ which are enabled by the billions of cells, these functions are complex relations associated with certain ‘structures’ and certain ‘signals’. For this it is necessary to construct an explicit formal (mathematical) model/ theory representing all the necessary signals and relations which can be used to ‘explain’ the obsrvable behavior and which ‘explains’ the behavior of the billions of cells enabling such a behavior.

In a simpler, ‘relaxed’ kind of modeling  one would not take into account the properties and behavior of the ‘real cells’ but one would limit the scope to build a formal model which suffices to explain the oservable behavior.

This kind of approach to set up models of possible ‘internal’ (as such hidden) processes of an actor can extend the 3rd-person view substantially. These models are called in this text ‘actor models (AM)’.

HIDDEN WORLD PROCESSES

In this text all reported 3rd-person observations are called ‘actor story’, independent whether they are done in a pictorial or a textual mode.

As has been pointed out such actor stories are somewhat ‘limited’ in what they can describe.

It is possible to extend such an actor story (AS)  by several actor models (AM).

An actor story defines the situations in which an actor can occur. This  includes all kinds of stimuli which can trigger the possible senses of the actor as well as all kinds of actions an actor can apply to a situation.

The actor model of such an actor has to enable the actor to handle all these assumed stimuli as well as all these actions in the expected way.

While the actor story can be checked whether it is describing a process in an empirical ‘sound’ way,  the actor models are either ‘purely theoretical’ but ‘behavioral sound’ or they are also empirically sound with regard to the body of a biological or a technological system.

A serious challenge is the occurrence of adaptiv or/ and locally learning systems. While the actor story is a finite  description of possible states and changes, adaptiv or/ and locally learning systeme can change their behavior while ‘living’ in the actor story. These changes in the behavior can not completely be ‘foreseen’!

COGNITIVE EXPERT PROCESSES

According to the preceding considerations a homo sapiens as a biological system has besides many properties at least a consciousness and the ability to talk and by this to communicate with symbolic languages.

Looking to basic modes of an actor story (AS) one can infer some basic concepts inherently present in the communication.

Without having an explicit model of the internal processes in a homo sapiens system one can infer some basic properties from the communicative acts:

  1. Speaker and hearer presuppose a space within which objects with properties can occur.
  2. Changes can happen which presuppose some timely ordering.
  3. There is a disctinction between concrete things and abstract concepts which correspond to many concrete things.
  4. There is an implicit hierarchy of concepts starting with concrete objects at the ‘root level’ given as occurence in a concrete situation. Other concepts of ‘higher levels’ refer to concepts of lower levels.
  5. There are different kinds of relations between objects on different conceptual levels.
  6. The usage of language expressions presupposes structures which can be associated with the expressions as their ‘meanings’. The mapping between expressions and their meaning has to be learned by each actor separately, but in cooperation with all the other actors, with which the actor wants to share his meanings.
  7. It is assume that all the processes which enable the generation of concepts, concept hierarchies, relations, meaning relations etc. are unconscious! In the consciousness one can  use parts of the unconscious structures and processes under strictly limited conditions.
  8. To ‘learn’ dedicated matters and to be ‘critical’ about the quality of what one is learnig requires some disciplin, some learning methods, and a ‘learning-friendly’ environment. There is no guaranteed method of success.
  9. There are lots of unconscious processes which can influence understanding, learning, planning, decisions etc. and which until today are not yet sufficiently cleared up.

 

 

 

 

 

 

 

 

ACTOR-ACTOR INTERACTION ANALYSIS – A rough Outline of the Blueprint

eJournal: uffmm.org,
ISSN 2567-6458, 13.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last corrections: 14.February 2019 (add some more keywords; added  emphasizes for central words)

Change: 5.May 2019 (adding the the aspect of simulation and gaming; extending the view of the driving actors)

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about the blueprint  of the whole  AAI analysis process. Here I leave out the topic of actor models (AM); the aspect of  simulation and gaming is mentioned only shortly. For these topics see other posts.

THE AAI ANALYSIS BLUEPRINT

Blueprint of the whole AAI analysis process including the epistemological assumptions. Not shown here is the whole topic of actor models (AM) and as well simulation.
Blueprint of the whole AAI analysis process including the epistemological assumptions. Not shown here is the whole topic of actor models (AM) and as well simulation.

The Actor-Actor Interaction (AAI) analysis is understood here as part of an  embracing  systems engineering process (SEP), which starts with the statement of a problem (P) which includes a vision (V) of an improved alternative situation. It has then to be analyzed how such a new improved situation S+ looks like; how one can realize certain tasks (T)  in an improved way.

DRIVING ACTORS

The driving actors for such an AAI analysis are at least one  stakeholder (STH) which communicates a problem P and an envisioned solution (ES) to an  expert (EXPaai) with a sufficient AAI experience. This expert will take   the lead in the process of transforming the problem and the envisioned  solution into a working solution (WS).

In the classical industrial case the stakeholder can be a group of managers from some company and the expert is also represented by a whole team of experts from different disciplines, including the AAI perspective as leading perspective.

In another case which  I will call here the  communal case — e.g. a whole city —      the stakeholder as well as the experts are members of the communal entity.   As   in the before mentioned cases there is some commonly accepted problem P combined  with a first envisioned solution ES, which shall be analyzed: what is needed to make it working? Can it work at all? What are costs? And many other questions can arise. The challenge to include all relevant experience and knowledge from all participants is at the center of the communication and to transform this available knowledge into some working solution which satisfies all stated requirements for all participants is a central  condition for the success of the project.

EPISTEMOLOGY

It has to be taken into account that the driving actors are able to do this job because they  have in their bodies brains (BRs) which in turn include  some consciousness (CNS). The processes and states beyond the consciousness are here called ‘unconscious‘ and the set of all these unconscious processes is called ‘the Unconsciousness’ (UCNS).

For more details to the cognitive processes see the post to the philosophical framework as well as the post bottom-up process. Both posts shall be integrated into one coherent view in the future.

SEMIOTIC SUBSYSTEM

An important set of substructures of the unconsciousness are those which enable symbolic language systems with so-called expressions (L) on one side and so-called non-expressions (~L) on the other. Embedded in a meaning relation (MNR) does the set of non-expressions ~L  function as the meaning (MEAN) of the expressions L, written as a mapping MNR: L <—> ~L. Depending from the involved sensors the expressions L can occur either as acoustic events L_spk, or as visual patterns written L_txt or visual patterns as pictures L_pict or even in other formats, which will not discussed here. The non-expressions can occur in every format which the brain can handle.

While written (symbolic) expressions L are only associated with the intended meaning through encoded mappings in the brain,  the spoken expressions L_spk as well as the pictorial ones L_pict can show some similarities with the intended meaning. Within acoustic  expressions one can ‘imitate‘ some sounds which are part of a meaning; even more can the pictorial expressions ‘imitate‘ the visual experience of the intended meaning to a high degree, but clearly not every kind of meaning.

DEFINING THE MAIN POINT OF REFERENCE

Because the space of possible problems and visions it nearly infinite large one has to define for a certain process the problem of the actual process together with the vision of a ‘better state of the affairs’. This is realized by a description of he problem in a problem document D_p as well as in a vision statement D_v. Because usually a vision is not without a given context one has to add all the constraints (C) which have to be taken into account for the possible solution.  Examples of constraints are ‘non-functional requirements’ (NFRs) like “safety” or “real time” or “without barriers” (for handicapped people). Part of the non-functional requirements are also definitions of win-lose states as part of a game.

AAI ANALYSIS – BASIC PROCEDURE

If the AAI check has been successful and there is at least one task T to be done in an assumed environment ENV and there are at least one executing actor A_exec in this task as well as an assisting actor A_ass then the AAI analysis can start.

ACTOR STORY (AS)

The main task is to elaborate a complete description of a process which includes a start state S* and a goal state S+, where  the participating executive actors A_exec can reach the goal state S+ by doing some actions. While the imagined process p_v  is a virtual (= cognitive/ mental) model of an intended real process p_e, this intended virtual model p_e can only be communicated by a symbolic expressions L embedded in a meaning relation. Thus the elaboration/ construction of the intended process will be realized by using appropriate expressions L embedded in a meaning relation. This can be understood as a basic mapping of sensor based perceptions of the supposed real world into some abstract virtual structures automatically (unconsciously) computed by the brain. A special kind of this mapping is the case of measurement.

In this text especially three types of symbolic expressions L will be used: (i) pictorial expressions L_pict, (ii) textual expressions of a natural language L_txt, and (iii) textual expressions of a mathematical language L_math. The meaning part of these symbolic expressions as well as the expressions itself will be called here an actor story (AS) with the different modes  pictorial AS (PAS), textual AS (TAS), as well as mathematical AS (MAS).

The basic elements of an  actor story (AS) are states which represent sets of facts. A fact is an expression of some defined language L which can be decided as being true in a real situation or not (the past and the future are special cases for such truth clarifications). Facts can be identified as actors which can act by their own. The transformation from one state to a follow up state has to be described with sets of change rules. The combination of states and change rules defines mathematically a directed graph (G).

Based on such a graph it is possible to derive an automaton (A) which can be used as a simulator. A simulator allows simulations. A concrete simulation takes a start state S0 as the actual state S* and computes with the aid of the change rules one follow up state S1. This follow up state becomes then the new actual state S*. Thus the simulation constitutes a continuous process which generally can be infinite. To make the simulation finite one has to define some stop criteria (C*). A simulation can be passive without any interruption or interactive. The interactive mode allows different external actors to select certain real values for the available variables of the actual state.

If in the problem definition certain win-lose states have been defined then one can turn an interactive simulation into a game where the external actors can try to manipulate the process in a way as to reach one of the defined win-states. As soon as someone (which can be a team) has reached a win-state the responsible actor (or team) has won. Such games can be repeated to allow accumulation of wins (or loses).

Gaming allows a far better experience of the advantages or disadvantages of some actor story as a rather lose simulation. Therefore the probability to detect aspects of an actor story with their given constraints is by gaming quite high and increases the probability to improve the whole concept.

Based on an actor story with a simulator it is possible to increase the cognitive power of exploring the future even more.  There exists the possibility to define an oracle algorithm as well as different kinds of intelligent algorithms to support the human actor further. This has to be described in other posts.

TAR AND AAR

If the actor story is completed (in a certain version v_i) then one can extract from the story the input-output profiles of every participating actor. This list represents the task-induced actor requirements (TAR).  If one is looking for concrete real persons for doing the job of an executing actor the TAR can be used as a benchmark for assessing candidates for this job. The profiles of the real persons are called here actor-actor induced requirements (AAR), that is the real profile compared with the ideal profile of the TAR. If the ‘distance’ between AAR and TAR is below some threshold then the candidate has either to be rejected or one can offer some training to improve his AAR; the other option is to  change the conditions of the TAR in a way that the TAR is more closer to the AARs.

The TAR is valid for the executive actors as well as for the assisting actors A_ass.

CONSTRAINTS CHECK

If the actor story has in some version V_i a certain completion one has to check whether the different constraints which accompany the vision document are satisfied through the story: AS_vi |- C.

Such an evaluation is only possible if the constraints can be interpreted with regard to the actor story AS in version vi in a way, that the constraints can be decided.

For many constraints it can happen that the constraints can not or not completely be decided on the level of the actor story but only in a later phase of the systems engineering process, when the actor story will be implemented in software and hardware.

MEASURING OF USABILITY

Using the actor story as a benchmark one can test the quality of the usability of the whole process by doing usability tests.

 

 

 

 

 

 

 

 

 

 

 

AAI THEORY V2 – MEASURING USABILITY

eJournal: uffmm.org
ISSN 2567-6458, 6.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

An overview of the enhanced AAI theory  version 2 you can find here.  In this post we talk about the tenth chapter dealing with Measuring Usability

MEASURING  USABILITY

As has been delineated in the post “Usability and Usefulness”   statements  about the quality of the usability of some assisting actor are based on some  kinds of measurement: mapping some target (here the interactions of an executive actor with some assistive actor) into some predefined norm (e.g. ‘number of errors’, ‘time needed for completion’, …).   These remarks are here embedded in a larger perspective following   Dumas and  Fox (2008).

Overview of Usability Testing following the article of Dumas & Fox (2008), with some new AAI specific terminology
Overview of Usability Testing following the article of Dumas & Fox (2008), with some new AAI specific terminology

From the three main types of usability testing with regard to the position in the life-cycle of a system we focus here primarily on the usability testing as part of the analysis phase where the developers want to get direct feedback for the concepts embedded in an actor story. Depending from this feedback the actor story and its related models can become modified and this can result in a modified exploratory mock-up  for a new test. The challenge is not to be ‘complete’ in finding ‘disturbing’ factors during an interaction but to increase the probability to detect possible disturbing factors by facing the symbolically represented concepts of the actor story with a sample of real world actors. Experiments  point to the number of 5-10 test persons which seem to be sufficient to detect the most severe disturbing factors of the concepts.

Usability testing procedure according to Lauesen (2005), adapted to the AAI paradigm
Usability testing procedure according to Lauesen (2005), adapted to the AAI paradigm

A good description of usability testing can be found in the book Lauesen (2005), especially chapters 1 +13.  According to this one can infer the following basic schema for a usability test:

  1. One needs 5 – 10 test persons whose input-output profile (AAR) comes close to the profile (TAR) required by the actor story.
  2. One needs a  mock-up of the assistive actor; this mock-up  should  correspond ‘sufficiently well’ with the input-output profile (TAR) required by the  actor story. In the simplest case one has a ‘paper model’, whose sheets can be changed on demand.
  3. One needs a facilitator who is receiving the test person, introduces the test person into the task (orally and/ or by a short document (less than a page)), then accompanies the test without interacting further with the test person until the end of the test.  The end is either reached by completing the task or by reaching the end of a predefined duration time.
  4. After the test person has finished the test   a debriefing happens by interrogating the test person about his/ her subjective feelings about the test. Because interviews are always very fuzzy and not very reliable one should keep this interrogation simple, short, and associated with concrete points. One strategy could be to ask the test person first about the general feeling: Was it ‘very good’, ‘good’, ‘OK’, ‘undefined’, ‘not OK’, ‘bad’, ‘very bad’ (+3 … 0 … -3). If the stated feeling is announced then one can ask back which kinds of circumstances caused these feelings.
  5. During the test at least two observers are observing the behavior of the test person. The observer are using as their ‘norm’ the actor story which tells what ‘should happen in the ideal case’. If a test person is deviating from the actor story this will be noted as a ‘deviation of kind X’, and this counts as an error. Because an actor story in the mathematical format represents a graph it is simple to quantify the behavior of the test person with regard to how many nodes of a solution path have been positively passed. This gives a count for the percentage of how much has been done. Thus the observer can deliver data about at least the ‘percentage of task completion’, ‘the number (and kind) of errors by deviations’, and ‘the processing time’. The advantage of having the actor story as a  norm is that all observers will use the same ‘observation categories’.
  6. From the debriefing one gets data about the ‘good/ bad’ feelings on a scale, and some hints what could have caused the reported feelings.

STANDARDS – CIF (Common Industry Format)

There are many standards around describing different aspects of usability testing. Although standards can help in practice  from the point of research standards are not only good, they can hinder creative alternative approaches. Nevertheless I myself are looking to standards to check for some possible ‘references’.  One standard I am using very often is the  “Common Industry Format (CIF)”  for usability reporting. It is  an ISO standard (ISO/IEC 25062:2006) since  2006. CIF describes a method for reporting the findings of usability tests that collect quantitative measurements of user performance. CIF does not describe how to carry out a usability test, but it does require that the test include measurements of the application’s effectiveness and efficiency as well as a measure of the users’ satisfaction. These are the three elements that define the concept of usability.

Applied to the AAI paradigm these terms are fitting well.

Effectiveness in CIF  is targeting  the accuracy and completeness with which users achieve their goal. Because the actor story in AAI his represented as a graph where the individual paths represents a way to approach a defined goal one can measure directly the accuracy by comparing the ‘observed path’ in a test and the ‘intended ideal path’ in the actor story. In the same way one can compute the completeness by comparing the observed path and the intended ideal path of the actor story.

Efficiency in CIF covers the resources expended to achieve the goals. A simple and direct measure is the measuring of the time needed.

Users’ satisfaction in CIF means ‘freedom from discomfort’ and ‘positive attitudes towards the use of the product‘. These are ‘subjective feelings’ which cannot directly be observed. Only ‘indirect’ measures are possible based on interrogations (or interactions with certain tasks) which inherently are fuzzy and not very reliable.  One possibility how to interrogate is mentioned above.

Because the term usability in CIF is defined by the before mentioned terms of effectiveness, efficiency as well as  users’ satisfaction, which in turn can be measured in many different ways the meaning of ‘usability’ is still a bit vague.

DYNAMIC ACTORS – CHANGING CONTEXTS

With regard to the AAI paradigm one has further to mention that the possibility of adaptive, learning systems embedded in dynamic, changing  environments requires for a new type of usability testing. Because learning actors change by every exercise one should run a test several times to observe how the dynamic learning rates of an actor are developing in time. In such a dynamic framework  a system would only be  ‘badly usable‘ when the learning curves of the actors can not approach a certain threshold after a defined ‘typical learning time’. And,  moreover, there could be additional effects occurring only in a long-term usage and observation, which can not be measured in a single test.

REFERENCES

  • ISO/IEC 25062:2006(E)
  • Joseph S. Dumas and Jean E. Fox. Usability testing: Current practice
    and future directions. chapter 57, pp.1129 – 1149,  in J.A. Jacko and A. Sears, editors, The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and Emerging Applications. 2nd edition, 2008
  • S. Lauesen. User Interface Design. A software Engineering Perspective.
    Pearson – Addison Wesley, London et al., 2005

AAI THEORY V2 –GENERATING AN AS

eJournal: uffmm.org,
ISSN 2567-6458, 1.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

— Outdated —

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about  the special topic how to generate an actor story.

GENERATING AN AS

Outine of the process how to generate an AS
Outline of the process how to generate an AS

Until now it has been described which final format an actor story (AS) should have. Three different modes (textual, pictorial, mathematical) have been distinguished. The epistemology of these expressions has been outlined to shed some light on the underlying cognitive processes enabling such a story.

Now I describe a possible process  which has the capacity to generate an AS.

As the introductory figure shows  it is assumed here that there is a collection of citizens and experts which offer their individual knowledge, experiences, and skills to ‘put them on the table’ challenged by a given problem P.

This knowledge is in the beginning not structured. The first step in the direction of an AS is to analyze the different contributions in a way which shows distinguishable elements with properties and relations. Such a set of first ‘objects’ and ‘relations’ characterizes a set of facts which define a ‘situation’ or a ‘state’ as a collection of ‘facts’. Such a situation/ state can also be understood as a first simple ‘model‘ as response to a given problem. A model is as such ‘static‘; it describes what ‘is’ at a certain point of ‘time’.

In a next step the group has to identify possible ‘changes‘ which can be associated with t least one fact. There can be many possible changes which can need different durations  to come into effect. Furthermore they can be ‘alternatively’ or in ‘parallel’. Combining a situation (model) with possible changes allows the application of the actual situation which generates a  — or many — ‘successors’ to the actual situation. A process starts which we call usually ‘simulation‘.

If one allows the interaction between real actors with the simulation by mapping a real actor to one of the actors ‘inside the simulation’ one is turning the simulation into an ‘interactive simulation‘ which represents basically a ‘computer game‘ (short: ‘egame‘).

One can use interactive simulations e.g. to (i) learn about the dynamics of a model, to (ii) test the assumptions of a model, to (iii) test the knowledge and skills of the real actors.

Making new experiences with a (interactive) simulation allows a continuous improvement of the model and its change rules.

Additionally one can include more citizens and experts into this  process, using available knowledge from databases and libraries etc.

 

 

 

AAI THEORY V2 – Actor Story (AS)

eJournal: uffmm.org,
ISSN 2567-6458, 28.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

— Outdated —

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about  the generation of the actor story (AS).

ACTOR STORY

To get from the problem P to an improved configuration S measured by some expectation  E needs a process characterized by a set of necessary states Q which are connected by necessary changes X. Such a process can be described with the aid of  an actor story AS.

  1. The target of an actor story (AS) is a full specification of all identified necessary tasks T which lead from a start state q* to a goal state q+, including all possible and necessary changes X between the different states M.
  2. A state is here considered as a finite set of facts (F) which are structured as an expression from some language L distinguishing names of objects (like  ‘D1’, ‘Un1’, …) as well as properties of objects (like ‘being open’, ‘being green’, …) or relations between objects (like ‘the user stands before the door’). There can also e a ‘negation’ like ‘the door is not open’. Thus a collection of facts like ‘There is a door D1’ and ‘The door D1 is open’ can represent a state.
  3. Changes from one state q to another successor state q’ are described by the object whose action deletes previous facts or creates new facts.
  4. In this approach at least three different modes of an actor story will be distinguished:
    1. A textual mode generating a Textual Actor Story (TAS): In a textual mode a text in some everyday language (e.g. in English) describes the states and changes in plain English. Because in the case of a written text the meaning of the symbols is hidden in the heads of the writers it can be of help to parallelize the written text with the pictorial mode.
    2. A pictorial mode generating a Pictorial Actor Story (PAS). In a pictorial mode the drawings represent the main objects with their properties and relations in an explicit visual way (like a Comic Strip). The drawings can be enhanced by fragments of texts.
    3. A mathematical mode generating a Mathematical Actor Story (MAS): this can be done either (i) by  a pictorial graph with nodes and edges as arrows associated with formal expressions or (ii)  by a complete formal structure without any pictorial elements.
    4. For every mode it has to be shown how an AAI expert can generate an actor story out of the virtual cognitive world of his brain and how it is possible to decide the empirical soundness of the actor story.