Is Mathematics a Fake? No! Discussing N.Bourbaki, Theory of Sets (1968) – Introduction

eJournal: uffmm.org, ISSN 2567-6458,
6.June 2022 – 13.June 2022, 10:30h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

SCOPE

In the uffmm review section the different papers and books are discussed from the point of view of the oksimo paradigm, which is embedded in the general view of a generalized ‘citizen science’ as a ‘computer aided sustainable applied empirical theory’ (CSAET). In the following text the author discusses the introduction of the book “Theory of Sets” from the series “Elements of Mathematics” by N.Bourbaki (1968) [1b]

CONTEXT

In the foundational post with the title “From SYSTEMS Engineering to THEORY Engineering” [3] the assumptions of the whole formalization approach in logic, mathematics and science are questioned as to narrow to allow a modern sustainable theory of science dealing explicitly with the future. To sharpen some of the arguments in that post it seems to be helpful to discuss one of the cornerstones of modern (formalized) mathematics substantiated in the book ‘Theory of sets’ from the Bourbaki group.[1a] It has to be mentioned that the question of the insufficiency of formalization has been discussed in the uffmm blog in several posts before. (cf. e.g. [2])

Formalization

preface

In the introduction to the ‘Set Theory Book’ the bourbaki group reveals a little bit of their meta-mathematical point of view, which finally belongs to the perspective of philosophy. At the one hand they try to be ‘radically formal’, but doing this they notice themselves that this is — by several reasons — only a ‘regulative idea’, somehow important for our thinking, but not completely feasible. This ‘practical impossibility’ is not necessarily a problem as long as one is conscious about this. The Bourbaki group is conscious about this problem, but different to their ‘rigor’ with the specialized formalization of mathematical ideas, they leave it widely ‘undefined’ what follows from the practical impossibility of being ‘completely rigorous’. In the following text it will be tried to describe the Bourbaki position with both dimensions: the idea of ‘formalization’ and the reality of ‘non-formalized realities’ which give the ‘ground’ for everything, even for the formalization. Doing this it will — hopefully — become clear that the idea of formalization was a great achievement in the philosophical and scientific thinking but it did not really solve our problems of understanding the world. The most important aspects of knowledge are ‘outside’ of this formalization approach, and many ‘problems’ which seem to bother our actual thinking are perhaps only ‘artifacts’ of this simplified formalization approach (somehow similar to the problems which have been induced by the metaphysical thinking of the older philosophy). To say it flatly: to introduce new names for old problems does not necessarily solve problems. It enables new ways of speaking and perhaps some new kinds of knowledge, but it does not really solve the big problems of knowledge. And the biggest problem of knowledge is — perhaps — the primary ‘knowledge machine’ itself: the biological actors which have brains to transform ‘reality’ in ‘virtual models’ in their brains and communication tools to ‘communicate’ these virtual models to enable a ‘collective intelligence’ as well as a ‘collective cooperation’. As long as we do not understand this we do not really understand the ‘process of knowing’.

before formalization

With the advent of the homo sapiens population on the planet earth about 300.000 years ago [4] it became possible that biological systems could transform their perceptions of the reality around their brains into ‘internal’, ‘virtual’ models, which enabled ‘reference points’ for ‘acting’ and a ‘cooperation’ which was synchronized by a ‘symbolic communication’. Those properties of the internal virtual models which have no clear ‘correspondence’ to the ‘reality between the brains’ are difficult to communicate.

Everyday symbolic communication refers to parts of the reality by certain types of expressions, which are ‘combined’ in manners which encode different types of ‘relations’ or even ‘changes’. Expressions which ‘refer’ to ‘concrete’ properties can be ‘overloaded’ by expressions which refer to other expressions, which in turn refer either again to expressions or to ‘concrete meanings’. Those objects which are the targets of a referring relation — concrete objects or other expressions — are here called ‘the meaning’ of the expressions. Thus the ‘meaning space’ is populated by either expressions related to ‘concrete’ properties or by ‘expressions pointing forward’ to other expressions and these ‘pointing-forward’ expressions are here called ‘abstract meaning’. While concrete meanings are usually ‘decidable’ in the everyday world situations as being ‘given’ (being ‘true’) or as ‘not being given’ (‘being false’), abstract meanings are as expressions ‘undefined’: they can lead to some concrete property which in turn perhaps can be decided or not.

The availability of ‘abstract expressions’ in ordinary language can be seen as a ‘problem’ or as a ‘blessing’. Being able to generate and use abstract terms manifests a great flexibility in talking — and thinking! — about possible realities which allow to overcome the dictatorship of the ‘now’ and the ‘individual single’. Without abstraction thinking would indeed be impossible. Thus if one understands that ‘thinking’ is a real process with sequences of different states which reveal eventually more abstract classes, structures, and changes, then abstraction is the ‘opener’ for more reality, the ‘enabler’ for a more broader and flexible knowledge. Only by ‘transcending’ the eternal ‘Now’ we get an access to phenomena like time, changes, all kinds of dynamics, and only thereby are ‘pictures of some possible future’ feasible!

Clearly, the potential of abstraction can also be a source of ‘non-real’ ideas, of ‘fantastic’ pictures, of ‘fake news’ and the like.

But these possible ‘failures’ — if they will be ‘recognized’ as failures! — are inevitable if one wants to dig out some ‘truth’ in the nearly infinite space of the unknown. Before the ‘knowledge that something is true’ one has to master a ‘path of trial and error’ consuming ‘time’ and ‘resources’.

This process of creating new abstract ideas to guide a search in the space of the unknown is the only key to find besides ‘errors’ sometimes some ‘truth’.

Thus the ‘problem’ with abstract ideas is an unavoidable condition to find necessary ‘truths’. Stepping back in the face of possible problems is no option to survive in the unknown future.

the formal view of the world according to bourbaki

Figure 1: Graphical interpretation of N.Bourbaki, Set Theory (1968), Introduction, ‘liberal version’
Language, object language, meta language

Talking about mathematical objects with their properties within an ordinary language is not simple because the expressions of an ordinary language are as such usually part of a network of meanings, which can overlap, which can be fuzzy, which are giving space for many interpretations. Additionally, that which is called a ‘mathematical object’ is not a kind of an object wich is given in the everyday world experience. What can be done in such a situation?

Bourbaki proposes to introduce a ‘specialized language’ constructed out of a finite set of elements constituting the ‘alphabet’ of a new language, together with ‘syntactical rules’, which describe how to construct with the elements of the alphabet chains of elements called ‘(well formed) expressions’, which constitute the ‘language’ LO, which shall be used to talk about mathematical objects.

But because mathematics is not restricted to ‘static objects’ but deals also with ‘transformations’ (‘changes’) of objects, one needs ‘successions of objects’ (‘sequences’), which are related by ‘operations with mathematical objects’. In this case the operations are also represented by ‘expressions’ but these expressions are expressions of a ‘higher order’ which have as referenced subject those expressions which are representing objects . Thus, Bourbaki needs right from the beginning two languages: an ‘object language’ (expressions of a language LO representing mathematical objects) and a ‘meta language’ LL (expressions referring to expressions of the object language LO including certain ‘types of changes’ occurring with the object language expressions). Thus a mathematical language Lm consists in the combination of an object language LO with a meta language LL (Lm = (LO,LL)).

And, what becomes clear by this procedure, to introduce such a kind of mathematical language Lm one needs another language talking about the mathematical language Lm, and this is either the everyday (normal) language L, which is assumed to be a language which everybody can ‘understand’ and ‘apply correctly’, or it is a third specialized language LLL, which can talk with special expressions about the mathematical language Lm. Independent of the decision which solution one prefers, finally the ordinary language L will become the meta language for all other thinkable meta languages.

Translating(?) math objects into formal expressions

If the formalized expressions of the mathematical language (Lm = (LO,LL)) would be the mathematical objects themselves, then mathematics would consist only of those expressions. And, because there would be no other criteria available, whatever expressions one would introduce, every expression would claim to be a relevant mathematical expression. This situation would be a ‘maximum of non-sense’ construct: nothing could be ‘false’.

Thus, the introduction of formal expressions of some language alone seems to be not enough to establish a language which is called a ‘mathematical’ language Lm different from other languages which talk about other kinds of objects. But what could it be which relates to ‘specific math objects’ which are not yet the expressions used to ‘refer’ to these specific math objects?

Everybody knows that the main reason for to ‘speak’ (or ‘write’) about math specific objects are humans which are claiming to be ‘mathematicians’ and which are claiming to have some ‘knowledge’ about specific objects called ‘math objects’ which are the ‘content’ which they ‘translate’ into the expressions of a certain language call ‘mathematical language’.[5] Thus, if the ‘math objects’ are not the used expressions themselves then these ‘math objects’ have to be located ‘inside of these talking humans’. According to modern science one would specify this ‘inside’ as ‘brain’, which is connected in complex ways to a body which in turn is connected to the ‘outside world of the body’. Until today it is not possible to ‘observe’ directly math objects assumed to be in the brain of the body of someone which claims to be a mathematician. Thus one mathematician A can not decide what another mathematician B has ‘available in his brain’ at some point of time.

Bourbaki is using some formulations in his introduction which gives some ‘flavor’ of this ‘being not able to translate it into a formalized mathematical language’. Thus at one position in the text Bourbaki is recurring to the “common sense” of the mathematicians [6] or to the “reader’s intuition”. [7] Other phrases refer to the “modes of reasoning” which cannot be formalized [8], or simply to the “experience” on which “the opinion rests”. [9] Expressions like ‘common sense’, ‘intuition’, ‘modes of reasoning’, and ‘experience’ are difficult to interpret. All these expressions describe something ‘inside’ the brains which cannot be observed directly. Thus, how can mathematician A know what mathematician B ‘means’ if he is uttering some statement or writes it down? Does it make a difference whether a mathematician is a man or a woman or is belonging to some other kind of a ‘gender’? Does it make a difference which ‘age’ the mathematician has? How ‘big’ he is? Which ‘weight’ he has?

Thus, from a philosophical point of view the question to the specific criteria which classify a language as a ‘mathematical language’ and not some other language leads us into a completely unsatisfying situation: there are no ‘hard facts’ which can give us a hint what ‘mathematical objects’ could be. What did we ‘overlook’ here? What is the key to the specific mathematical objects which inspired the brains of many many thousand people through centuries and centuries? Is mathematics a ‘big fake’ or is there more than this?

A mathematician as an ‘actor’?
Figure 2: Graphical interpretation of N.Bourbaki, Set Theory (1968), Introduction, ‘Actor view’

This last question “Is mathematics a ‘big fake’ or is there more than this?” can lead o the assumption, that it is not enough to talk about ‘mathematics’ by not including the mathematician itself. Only the mathematician is that ‘mysterious source’ of knowledge, which seems to trigger the production of ‘mathematical expressions’ in speaking or writing (or drawing). Thus a meta-mathematical — and thereby philosophical’ — ‘description’ of mathematics should have at least the ‘components’ (MA, LO,LL,L) with ‘MA’ as abbreviation for the set of actors where each element of the set MA is a mathematician, and — this is decisive ! — it is this math actor MA which is in possession of those ‘criteria’ which decide whether an expression E belongs the ‘mathematical language Lm‘ or not.

The phrase of the ‘mathematician’ as a ‘mysterious source of knowledge’ is justified by an ’empirical observational point of view’: nobody can directly look into the brain of a mathematician. Thus the question of what an expression called ‘mathematical expression’ can ‘mean’ is in such an empirical view not decidable and appears to be a ‘mystery’.

But in the reality of everyday life we can observe, that every human actor — not only mathematicians — seems to be able to use expressions of the everyday language with referring to ‘internal states’ of the brain in a way which seems to ‘work’. If we are talking about ‘pain with my teeth’ or about ‘being hungry or thirsty’ or ‘having an idea’ etc. then usually other human actors seem to ‘understand’ what one is uttering. The ‘evidence’ of a ‘working understanding’ is growing up by the ‘confirmation of expectations’: if oneself is hungry, then one has a certain kind of ‘feeling’ and usually this feeling leads — depending from the cultural patterns one is living in — to a certain kind of ‘behavior’, which has — usually — the ‘felt effect’ of being again ‘not hungry’. This functional relation of ‘feeling to be hungry’, ‘behavior of consuming something’, ‘feeling of being not hungry again’ is an association between ‘bodily functions’ common to all human actors and additionally it is a certain kind of observable behavior, which is common to all human actors too. And it seems to work that human actors are able to associate ‘common internal states’ with ‘common observable behavior’ and associate this observable behavior with the ‘presupposed internal states’ with certain kinds of ‘expressions’. Thus although the internal states are directly not observable, they can become ‘communicated by expressions’ because these internal states are — usually — ‘common to the internal experience of every human actor’.

From this follows the ‘assumption’ that we should extend the necessary elements for ‘inter-actor communication’ with the factor of ‘common human actor HA experience’ abbreviated as ‘HAX‘ (HA, HAX, MA, LO,LL,L), which is usually accompanied by certain kinds of observable behavior ‘BX‘, which can be used as point of reference for certain expressions ‘LX‘, which ‘point to’ the associated intern al states HAX, which are not directly observable. This yields the structure (HA, HAX, MA, BX, LO,LL,LX,L).

Having reached this state of assumptions, there arises an other assumption regarding the relationship between ‘expressions of a language’ — like (LO,LL,LX,L) — and those properties which are constituting the ‘meaning’ of these expressions. In this context ‘meaning’ is not a kind of an ‘object’ but a ‘relation’ between two different things, the expressions at one side and the properties ‘referred to’ on the other side. Moreover this ‘meaning relation’ seems not to be a ‘static’ relation but a ‘dynamic’ one, associating two different kinds of properties one to another. This reminds to that what mathematicians call a ‘mapping, a function’, and the engineers a ‘process, an operation’. If we abbreviate this ‘dynamic meaning relation’ with the sign ‘μ’, then we could agree to the convention ‘μX : LX <—> (BX,HAX)’ saying that there exists a meaning function μX which maps the special expressions of LX to the special internal experience HAX, which in turn is associated with the special behavior BX. Thus, we extend our hypothetical structure to the format (HA, HAX, MA, BX, LO,LL,LX,L,μX).

With these assumptions we are getting a first idea how human actors in general can communicate about internal, directly not observable states, with other human actors by using external language expressions. We have to notice that the assumed dynamic meaning relation μX itself has to be located ‘inside’ the body, inside’ the brain. This triggers the further assumption to have ‘internal counterparts’ of the external observable behavior as well as external expressions. From this follows the further assumption that there must exists some ‘translation/ transformation’ ‘τ’ which ‘maps’ the internal ‘counterparts’ of the observable behavior and the observable expressions into the external behavior.(cf. figure 2) Thus, we are reaching the further extended format: (HA, HAX, MA, BX, LO,LL,LX,L,μX,τ).

Mathematical objects

Accepting the basic assumptions about an internal meaning function μX as well an internal translation function τ narrows the space of possible answers about the nature of ‘math objects’ a little bit, but as such this is possibly not yet a satisfying answer. Or, have we nevertheless yet to assume that ‘math objects’ and related ‘modes of reasoning’ are also rooted in internal properties and dynamics of the brain which are ‘common to all humans’?

If one sees that every aspect of the human world view is encoded in some internal states of the brain, and that what we call ‘world’ is only given as a constructed virtual structure in the brains of bodies including all the different kinds of ‘memories’, then there is no real alternative to the assumption that ‘math objects’ and related ‘modes of reasoning’ have to be located in these — yet not completely decoded — inner structures and dynamics of the brain.

From the everyday experience — additionally enlightened by different scientific disciplines, e.g. experimental (neuro) psychology — we know that the brain is — completely automatic — producing all kinds of ‘abstractions’ from concrete ‘perceptions’, can produce any kinds of ‘abstractions of abstractions’, can ‘associate’ abstractions with other abstractions, can arrange many different kinds of memories to ‘arrangements’ representing ‘states’/ ‘situations’, ‘transformations of states’, ‘sequences of states’ and the like. Thus everything which a ‘mathematical reasoning’ HAm needs seems to be available as concrete brain state or brain activity, and this is not only ‘special’ for an individual person alone, it is the common structure of all brains.

Therefore one has to assume that the set of mathematicians MA is a ‘subset’ of the set of human actors HA in general. From this one can further assume that the ‘mathematical reasoning’ HAm is a subset of the general human everyday experience HAX. And, saying this, the meaning function μX as well as the translation function τ should be applicable also to the mathematical reasoning and the mathematical objects as well: (HA, MA, HAX, HAm, BX, LO,LL,LX,L,μX,τ).

These assumptions would explain why it is not only possible but ‘inevitable’ to use the everyday language L to introduce and to use a mathematical language Lm with different kinds of sub-languages (LO,LL, LLL, …). Thus in analogy to the ‘feeling’ ‘to be hungry’ with a cultural encoded kind of accompanying behavior BX we have to assume that the different kinds of internal states and transformations in the case of mathematical reasoning can be associated with an observable kind of ‘behavior’ by using ‘expressions’ embedded (encoded) in certain kinds of ‘behavior’ accepted as ‘typical mathematical’. Introducing expressions like ‘0’, ‘1’, ‘2’, …, ’10’, … (belonging to a language Lo) for certain kinds of ‘objects’ and expressions like ‘+’, ‘-‘ … for certain kinds of operations with these before introduced objects (belonging to a language LL) one can construct combined expressions like ‘1+2=3’ (belonging to a mathematical language Lm). To introduce ‘more abstract objects’ like ‘sets’, ‘relations’, ‘functions’ etc. which have no direct counterpart in the everyday world does not break the assumptions. The everyday language L operates already only with abstract objects like ‘cup’, ‘dog’, ‘house’ etc. The expression ‘cup’ is an abstract concept, which can easily be associated with any kind of concrete phenomena provided by perceptions introducing ‘sets of different properties’, which allow the construction of ‘subsets of properties’ constituting a kind of ‘signature’ for a certain abstract ‘class’ which only exists in the dynamics of the brain. Thus having a set C named ‘cup’ introduces ‘possible elements’, whose ‘interpretation’ can be realized by associating different kinds of sets of properties provided by ‘sensory perception’. But the ‘memory’ as well as the ‘thinking’ can also provide other kinds of properties which can be used too to construct other ‘classes’.

In this outlined perspective of brain dynamics mathematics appears to be a science which is using these brain dynamics in a most direct way without to recur to the the huge amount of everyday experiences. Thus, mathematical languages (today summarized in that language, which enables the so called ‘set theory’) and mathematical thinking in general seems to reflect the basic machinery of the brain processing directly across all different cultures. Engineers worldwide speaking hundreds of different ‘everyday languages’ can work together by using mathematics as their ‘common language’ because this is their ‘common thinking’ underlying all those different everyday languages.

Being a human means being able to think mathematically … besides many other things which characterizes a human actor.

Epiloge

Basically every ordinary language offers all elements which are necessary for mathematics (mathematics is the kernel of every language). But history illustrates that it can be helpful to ‘extend’ an ordinary language with additional expressions (Lo, LL, LLL, …). But the development of modern mathematics and especially computer science shows increasing difficulties by ‘cutting away’ everyday experience in case of elaborating structures, models, theories in a purely formal manner, and to use these formal structures afterwards to interpret the everyday world. This separates the formal productions from the main part of users, of citizens, leading into a situation where only a few specialist have some ‘understanding’ (usually only partially because the formalization goes beyond the individual capacity of understanding), but all others have no more an understanding at all. This has he flavor of a ‘cultural self-destruction’.

In the mentioned oksimo software as part of a new paradigm of a more advanced citizen science this problem of ‘cultural self-destruction’ is avoided because in the format of a ‘computer aided sustainable applied empirical theory (CSAET) the basic language for investigating possible futures is the ordinary language which can be extend as needed with quantifying properties. The computer is not any more needed for ‘understanding’ but only for ‘supporting’ the ‘usage’ of everyday language expressions. This enables the best of both worlds: human thinking as well as machine operations.

COMMENTS

Def: wkp := Wikipedia; en := English

[1a] Bourbaki Group, see: https://en.wikipedia.org/wiki/Nicolas_Bourbaki

[1b] Theory of Sets with a chapter about structures, see: https://en.wikipedia.org/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique

[2] Gerd Doeben-Henisch, “Extended Concept for Meaning Based Inferences, Version 1”, August 2020, see: https://www.uffmm.org/wp-content/uploads/2020/08/TruthTheoryExtended-v1.pdf

[3] Gerd Doeben-Henisch, “From SYSTEMS Engineering to THEORY Engineering”, June 2022, see: https://www.uffmm.org/2022/05/26/from-systems-engineering-to-theory-engineering/

[4] Humans, How many years ago?, see: wkp (en): https://en.wikipedia.org/wiki/Human#:~:text=Homo%20sapiens,-Linnaeus%2C%201758&text=Anatomically%20modern%20humans%20emerged%20around,local%20populations%20of%20archaic%20humans.

[5] The difference between ‘talking’ about math objects and ‘writing’ is usually not thematised in the philosophy of mathematics. Because the ordinary language is the most general ‘meta language’ for all kinds of specialized languages and the primary source of the ordinary language then ‘speaking’ is perhaps not really a ‘trivial’ aspect in understanding the ‘meaning’ of any kind of language.

[6] “But formalized mathematics cannot in practice be written down in full, and therefore we must have confidence in what might be called the common sense of the mathematician …”. (p.11)

[7] “Sometimes we shall use ordinary language more loosely … and by indications which cannot be translated into formalized language and which are designed to help the reader to reconstruct the whole text. Other passages, equally untranslatable into formalized language, are introduced in order to clarify the ideas involved, if necessary by appealing to the reader’s intuition …”(p.11)

[8] “It may happen at some future date that mathematicians will agree to use modes of reasoning which cannot be formalized in the language described here : it would then be necessary, if not to change the language completely, at least to enlarge its rules of syntax.”(p.9)

[9] “To sum up, we believe that mathematics is destined to survive … but we cannot pretend that this opinion rests on anything more than experience.”(p.13)

OKSIMO and BOURBAKI. A Metamathematical Perspective on Oksimo. Part 1

eJournal: uffmm.org
ISSN 2567-6458, 22.Sept – 24.Sept  2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

(Some minor corrections: 23.Sept 2021)

(A substantial extension: 24.Sept.2021)

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.[*]

THE BOOK: THEORY OF SETS

Covered under the pseudonym of N.Bourbaki [1] appeared 1970 the French edition of a book which 1968 already had been translated into English  (reprinted 1970) called  Theory of Sets.[2] This book is the first book of a series about ELEMENTS OF MATHEMATICS.

To classify this book about set theory as a book of Metamathematics and as such as a book in the perspective of Philosophy of Science will become clear if one starts reading the book.[3]

MATHEMATICS WITH ONE LANGUAGE

It is the basic conviction of the Bourbaki book, that “… it is known to be possible … to derive practically the whole of known mathematics from a single source the Theory of Sets.” (p.9) And from this Bourbaki concludes, that it will be sufficient “… to describe the principles of a single formalized language, to indicate how the Thory of Sets could be written in this language, and then to show how the various branches of mathematics  … fit into this framework.”(p.9)

Thus, the content of mathematics — whatever it is — can according to Bourbaki be described in one single language [Lm] and the content will be called Theory of Sets [T] .

METAMATHEMATICS

Because the one single language Lm used to describe the Theory of Sets shall be a language with certain properties one has to define these properties with some other language, which is talking about Lm. As language for this job Bourbaki is using the ordinary language [Lo].(p.9) But the reasoning within which one is using this ordinary language is called metamathematics (cf. P.10f). Within the metamathematical point of view the language Lm under investigation is seen as a set of previously given objetcs without any kind of meaning, where only the assigned order is of importance.(cf. p.10): “… metamathematical ‘arguments’ usually assert that when a succession of operations has been performed on a text of a given type, then the final text will be of another given type.”(p.10)

What looks here at first glance  as the complete formalization of mathematics it is not. Bourbaki states clearly that “formalized mathematics cannot in practice be written down in full“(p.11) There has to be assumed as ‘last resort’ the assumption of a common sense of the mathematician and the intuition of the reader. (cf. p.11)

COGNITIVE-SEMIOTIC TURN

This conflict between at one hand of  the idea of a formalization of  Mathematics by a formalized language Lm  and on the other hand by the well known proof of Gödel [4] of the incompleteness of the axioms for classical arithmetic  (cf. p.12) is not a real conflict as long as one takes into account — as Bourbaki points out — that the ‘content of mathematics’ is only given in different layers of languages (Lm, Lo, …) which again are embedded in a presupposed ‘common sense’ which is nothing else as the cognitive machinery of human persons including an embedded meaning function relating different kinds of knowledge into different kinds of — internal as well as external — expressions of some language L. Thus any kind of a  ‘reduction of meaning’ seems never to be a ‘complete reduction’ but only a ‘technical reduction’ to introduce some ‘artificial (abstract) objetcs’ which can only work because of their embedding in some richer context.

This new perspective can be called the cognitive-semiotic turn which became possible by new insights of modern brain sciences in connection with pysychology and semiotics.

From this new point of view one can derive the idea of embedding metamathemics in a more advanced actor theory providing all the ingredients to make metamathematics more ‘rational’.

OUTLINE OF ACTOR THEORY

Actor theory first outline
Figure 1: Actor theory first outline

The details of the Actor Theory [AT] can become quite complex. Here a first outline of the basic ideas and what this can mean for a metamathematical point of view of mathematics.

World is not World

The main idea is founded in the new insights of Biology and Neuro-Psychology of the handling of body-world interactions as exercised by humans. One of the main insights is rooted back to von Uexküll [5] more than 100 years ago, when he described how every biological organism perceives and handles some world outside of the body  with the inner neuronal structures given! Thus different life forms in the same outside world  W will peceive and act neuronally in different worlds! Brain X acts in world X which is somehow related to the outside world W as well as Brain Y acts in world Y which also is  somehow related to the outside world W.

These basic insights relate as well to more developed life forms as such as  humans are. We as humans do not perceive and think the world W outside of our bodies ‘as it is’ but only as our brain inside our body can process all the body states related to the outside world in the mode of the inside brain. Thus if the different human individuals would have different brains they would live in different worlds and their would be no chance of a simple communication. But as we know from physiological and behavioral  studies humans can to some extend communicate successfully. Thus there exists inside of every human individual a human-processed world h(W) which is different from other life-forms like a rat, a worm, an octopus, etc.

From this basic insight it follows that if we speak about the world W we do indeed  not speak about the world  W directly but about the world W as it is processed in a human-specific manner, the  world h(W). This has many implications.

  1. Because we know already that the world h(W) is not a static but a dynamic world depending from our learning history it can happen — and it happens all the time — that different individuals have different learning histories.  This can result in quite strong differences of experience and knowledge attached to different individuals, which can prevent a simple understanding between such individuals: the learned world h1(W) can to some degree be different from the learned world  h2(W) such that a simple and direct understanding will not be possible.
  2. This difference between the outside world W and the processed inside world h(W) relates to the communication too! The spoken or written expressions E of some language L are belonging to the outside world. They have a counterpart in the inner world as inner expressions E*, which can be associated with all kinds of processed inner states of the inner world h(W) = W*. These possible — and learned — associations between inner expressions and inner states belonging to h(W) is assumed here to be that what commonly is called meaning. Thus one has to assume an internal meaning function μ which maps the internal expressions E* of some internal language L*  into parts of the internally processed world h(W)=W* and vice versa. Thus we have μ: E* <—> W*. Thus μ(e*) would point to some part w* of the internally processed world W* as the ‘meaning’ of the internal expression e*.
  3. This semiotic architecture of human beings enables a nearly infinite space of expressions as well as associated meanings definable during learning processes. This is powerful, but it is also very demanding for the speaker-hearer: to enable a succesful communication between different speaker-hearer these have to train their language usage under sufficient similar conditions thereby constructing individual meaning functions which work — hopefully — sufficiently similar. If not then communication can slow down, can produce lots of misunderstandings or can even break down completely. [6]
  4. In the case of mathematics it is a long debated question whether mathematics can be reduced to the expressions Em of some mathematical language Lm or if mathematics has some mathematical objects on its own which are different from the expressions. If one would assume that mathematics has no objects on its own but only some expressions Em, then it would become difficult to argue whether exactly these expressions Em should be used and not some other expressions Ex. Moreover to classify expressions as ‘axioms’ or ‘theorems’ would be completely arbitrary.   The only ‘anchor’ of non-arbitrariness would consist in some formal criteria of a formal consistency which would disable the formal generation of pairs of expressions {a,a*} where one is excluding the other. But even such a formal consistency presupposes some criteria which are beyond the expressions as such! Thus mathematics would need some criteria outside mathematics. This can be understood as an argument for metamathematics.  But according to Bourbaki  metamathematics is defined as a set of operations on given expressions without a specific meaning.  This is not enough to establish formal consistency! Thus even metamathematics is pointing to something outside of given mathematical expressions.  What can this be?
PART 2

To be continued …

COMMENTS

[*] More recent versions of the specification of the oksimo oftware can be found in the bolg oksimo.org. Unfortunately are the texts in that blog  — at the time if this writing — still only in German. Hopefully this will change in the future.

[1] Bourbaki group in Wikipedia [EN]: https://en.wikipedia.org/wiki/Nicolas_Bourbaki

[2] N.Bourbaki (1970), Theory of Sets, Series: ELEMENTS OF MATHEMATICS, Springer, Berlin — Heidelberg — New York (Engl. Translation from the French edition 1970)

[3] The first time when the author of this text has encountered the book was some time between 1984 – 1987 while being a PhD-student at the Ludwig-Maximilians Univesty [LMU] in Munich. It was in a seminar with Prof. Peter Hinst about structural approaches to Philosophy of Science. The point of view at that time was completely different to the point of view applied in this text.

[4] Kurt Goedel. Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme, i. Monatshefte fuer
Mathematik und Physik, 38:173–98, 1931.

[5] Jakob von Uexküll, 1909, Umwelt und Innenwelt der Tiere. Berlin: J.Springer.

[6] Probably everybody has made the experience in his life of being part of a situation where nobody speaks a language, which one is used to speak …

 

 

WHY THE WORLD NEEDS ANTHROPOLOGISTS – Review Part 1

eJournal: uffmm.org, ISSN 2567-6458, 1.December  2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

ANTHROPOLOGY AND ENGINEERING

The starting point of view in this blog has been and still is the point of engineering, especially the perspective of man-machine interface [MMI], later as Man-Machine Interaction, then  accompanied by   human-computer interaction [HCI] or human-machine interaction [HMI]. While MMI often is discussed in isolation, not as part of engineering, this blog emphasizes a point of view where MMI is understood as an integrated part of systems engineering. The past years have shown, that this integration makes a great difference in the overall layout as well as in the details of the used methods. This integration widened the scope of MMI to the context of engineering in a way which teared down many artificial boundaries in dealing with the subject of MMI. The analysis part of MMI can take into account not only the intended users and a limited set of tasks required for the usage of a system but it can extend the scope to the different kinds of contexts of the intended users as well as the intended service/product as such: cultural patterns, sustainable perspectives, climate relevance, political implications, and more. This triggers the question, whether there are other established scientific disciplines which are sharing this scope with MMI. Traditionally experimental and cognitive psychology has always played an important role as part of the MMI analysis.  Different special disciplines like physiology or neuro-psychology, linguistics, phonetics etc. have played some role too. More recently culture and society have been brought more into the focus of MMI. What about sociology? What about anthropology? The following text discusses a possible role of anthropology in the light of the recent book Why The World Needs Anthropologists?

INTRODUCTION AND CONCLUSION

This review has the addendum ‘Part 1’ pointing to the fact, that this text does not deal with the whole book first, but only with some parts, the introduction and the conclusion.

An Introduction

The introduction of the book is asking, why does the world needs anthropologists?, and the main pattern of the introduction looks back to the old picture of anthropology, and then seeks to identify, what could/is the new paradigm which should be followed.

The roots of anthropology are located in the colonial activities of the British Empire as well as in the federal activities of the USA, which both had a strong bias to serve the political power more than to evolve a really free science. And an enduring gap between the more theoretical anthropology and an applied one is thematised although there existed always  a strong inter-dependency  between both.

To leave the close connection with primarily  governmental interests and to see the relation  between the theory and the different Applications  more positive than negative anthropology is understood  as challenged to rebrand its appearance in the public and in their own practice.

The most vital forces for such a rebranding seem to be rooted in more engagements in societal problems of public interests and thereby challenging the theory to widen their concept and methods.

Besides the classical methods of anthropology (cultural relativism, ethnography, comparison, and contextual understanding)  anthropology has to show that it can make sense beyond pure data, deciphering ambiguity, complexity, and ambivalence, helping with  diversity, investigating the interface between culture, technology, and environment.

What Is Left Out

After the introduction the main chapters of the book  are left out in this text  until later. The chapters in the book are giving examples to the questions, why the world needs anthropology, what have been the motivations for active anthropologists to become one, how they have applied anthropology, and which five tips they would give for practicing and theorizing.

Conclusion

In the conclusion of the book not the five questions are the guiding principle but ‘five axis that matter greatly’, and these five axis are circumscribed as (i) navigate the ethics of change; (ii) own-it in the sense, that an anthropologist should have a self-esteem for his/ her/ x  profession and can co-create it with others; (iii) expand the skill-set; (iv) collaborate, co-create and study-up; (v) recommend as being advisors and consultants.

The stronger commitment with actual societal problems leads anthropology at the crossroads of many processes which require new views, new methods. To gain new knowledge and to do a new practice is  not always accompanied by  known ethical schemata. Doing this induces  ethical questions which have not been known before in this way.  While a new practice is challenging the old knowledge and induces a pressure for change, new versions of knowing can  trigger new forms of practice as well. Theory and application are a dynamic pair where each part learns from the other.

The long-lasting preference of academic anthropology, thinking predominantly  in the mind-setting of   white-western-man, is  more and more resolved  by extending anthropology from academia to application, from man into the diversity of genders, from western culture into all the other cultures, from single persons to assemblies of diverse gatherings living an ongoing discourse with a growing publicity.

This widening of anthropological subjects and methods calls naturally for more interdisciplinarity, transdisciplinarity, and of a constructive attitude  which looks ahead to  possible futures of processes.

Close to this are expressions like collaboration and co-creation with others. In the theory dimension this is reflected by multiperspectivity and a holistic view. In societal development processes — like urban planning — there are different driving forces acting working top-down or acting working bottom-up.

Recommending solutions based on anthropological thinking ending in a yes or no, can be of help and can be necessary because real world processes can not only wait of final answers (which are often not realistic), they need again and again decisions to proceed now.

REFLECTIONS FOLLOWING THE INTRODUCTION AND THE CONCLUSION

The just referred texts making a fresh impression of a discipline in a dynamic movement.

General Knowledge Architecture

For the point of view of MMI (Man-Machine Interface, later HMI Human-Machine Interaction, in my theory extended to DAAI Distributed Actor-Actor Interaction) embedded in systems engineering with an openness for the whole context of society and culture arises the question whether such a dynamic anthropology can be of help.

To clarify this question let us have a short look to the general architecture of knowledge.

Within the everyday world philosophy can be understood as the most general point of view of knowing  and thinking.  Traditionally logic and mathematics can be understood as part of philosophy although today this has been changed. But there are no real reasons for this departure: logic and mathematics are not empirical sciences and they are not engineering.

Empirical science can be understood as specialized extension of philosophical thinking with identifiable characteristics which allow to  differentiate to some extend different  disciplines.  Traditionally all the different disciplines of empirical science have a more theoretical part and a more applied part. But systematically they depend from each other. A theory is only an empirical one, if there exists a clear relationship to the everyday world, and certain aspects of the everyday world are only theoretical entities (data) if there exists a relationship to an explicit theory which gives a formal explanation.

Asking for a  systematic place for engineering it is often said, that it belongs to the applied dimension of empirical science.  But engineering has realized processes, buildings, machines long before there was a scientific framework for to do this, and engineering uses in its engineering processes lots of knowledge which is not part of science. On the other side, yes, engineering is using scientific knowledge as far as it is usable and it is also giving back many questions to science which are not yet solved sufficiently. Therefore it is sound to locate engineering besides science, but   being  part of philosophy dealing with the practical dimensions of life.

What About Anthropology?

While philosophy (with logic and mathematics) is ‘on top’ of empirical science and engineering, it is an interesting question where to place anthropology?

While empirical science as well as engineering are inheriting all what philosophy provides remains the question whether  anthropology is more an empirical science or more engineering or some kind of a hybrid system with roots in empirical science as well as in engineering?

Looking back into history it could arise the impression that anthropology is more a kind of an empirical science with strong roots in academia, but doing  fieldwork to feed the theories.

Looking to the new book it could support the image that anthropology should be more like engineering: identifying  open problems in society and trying to transform these problems — like engineers — into satisfying solutions, at least on the level of counseling.

Because in our societies the universities have traditionally a higher esteem then the engineers — although the engineers  are all  trained by highly demanding university courses — it could be a bias in the thinking of  anthropologist not to think of their discipline   as engineering.

If one looks to the real world than everything which  makes human societies livable is realized by engineers. Yes, without science many of the today solutions wouldn’t be possible, but no single scientific theory has ever enabled directly some practical stuff.  And without the engineers there would not exist any of the modern machines used for measurements and experiments for science. Thus both are intimately  interrelated: science inspires engineering and engineering inspires and enables science, but both are genuinely different and science and engineering play their own fundamental role.

Thus if I am reading the new book as engineer (attention: I am also a philosopher and I am trained in the Humanities too!) then I think there are more arguments to understand anthropology  as engineering than as a pure empirical science. In the light of my distributed actor-actor interaction paradigm, which is a ‘spinoff’ of engineering and societal thinking it seems very ‘naturally’ to think of anthropology as a kind of social engineering.

Let us discuss both perspectives a bit more, thereby not excluding the hybrid version.

1) Anthropology as Engineering

The basic idea of engineering is to enable a change process which is completely transparent in all respects: Why, Who, Where, When, How etc. The process starts with explicit preferences turning some known reality into a problem on account of some visions which have been imagined and which have become ranked higher than the given known reality. And then the engineers try to organized an appropriate change process which will lead from the given situation to a new situation until some date in the future where the then given situation — the envisioned goal state — has become real and the situation from the beginning, which has been ranked down, has disappeared, or is at least weakened in a way that one can say, yes, it has changed.

Usually engineers are known to enable change processes which enable the production of everyday things (tools, products, machines, houses, plants, ships, airplanes, …), but to the extend that the engineering is touching the everyday life deeper and deeper (e.g. the global digital revolution absorbing more and more from the real life processes by transforming them into digital realities forcing human persons to act digitally and not any more with their bodies in the everyday world) the sharp boundary between engineering products and the societal life of human persons is vanishing. In such a context engineering is becoming social engineering even if the majority of traditional engineers this doesn’t see yet in this way. As the traditional discipline MMI Man-Machine Interface and then  expanded to HMI Human-Machine Interaction and further morphed into DAAI Distributed Actor-Actor Interaction this  already manifests, that the realm of human persons, yes  the whole of society is already included in engineering.  The border between machines and human actors is already at least fuzzy and the mixing of technical devices and human actors (as well as all other biological actors) has already gained a degree which does not allow any longer a separation.

These ideas would argue for the option to see anthropology as social engineering: thematizing all the important visions which seem to be helpful or important for a good future of modern mankind, and to help to organize change processes, which will support approaching this better future. That these visions can fail, can be wrong is part of the ever lasting battle of the homo sapiens to gain the right knowledge.

2) Anthropology as  an Empirical Science

… to be continued …

3) Anthropology as a Hybrid Couple of Science and Engineering

… to be continued …