GRAMMAR FOR SUSTAINABLE DEVELOPMENT. Sketch


eJournal: uffmm.org
ISSN 2567-6458, 23.February 2023 – 23.February 2023, 13:23h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

This text is a translation from a German source, aided by the automatic translation program ‘www.DeepL.com/Translator’ (free version).

CONTEXT

This text is part of the Philosophy of Science theme within the the uffmm.org blog.

Motivation

The following text is a confluence of ideas that have been driving me for many months. Parts of it can be found as texts in all three blogs (Citizen Science 2.0 for Sustainable Development, Integrated Engineering and the Human Factor (this blog), Philosophy Now. In Search for a new Human Paradigm). The choice of the word ‘grammar’ [1] for the following text is rather unusual, but seems to me to reflect the character of the reflections well.

Sustainability for populations

The concept of sustainable development is considered here in the context of ‘biological populations’. Such populations are dynamic entities with many ‘complex properties’. For the analysis of the ‘sustainability’ of such populations, there is one aspect that seems ‘fundamental’ for a proper understanding. It is the aspect whether and how the members of a population – the actors – are interconnected or not.

An ‘unconnected’ set

If I have ‘actors’ of a ‘population’, which are in no direct ‘interaction’ with each other, then also the ‘acting’ of these actors is isolated from each other. In a wide area they probably do not ‘get in each other’s way’; in a narrow area they could easily hinder each other or even fight each other, up to mutual destruction.

It should be noted that even such disconnected actors must have minimal ‘knowledge’ about themselves and the environment, also minimal ’emotions’, in order to live at all.

Without direct interaction, an unconnected population will nevertheless die out relatively quickly as a population.

A ‘connected’ set

A ‘connected set’ exists if the actors of a population have a sufficient number of direct interactions through which they could ‘coordinate’ their knowledge about themselves and the world, as well as their emotions, to such an extent that they are capable of ‘coordinated action’. Thereby the single, individual actions become related to their possible effect to a ‘common (= social) action’ which can effect more than each of them would have been able to do individually.

The ’emotions’ involved must rather be such that they do not so much ‘delimit/exclude’, but rather ‘include/recognize’.

The ‘knowledge’ involved must be rather that it is not ‘static’ and not ‘unrealistic’, but rather ‘open’, ‘learning’ and ‘realistic’.

The ‘survival’ of a connected population is basically possible if the most important ‘factors’ of a survival are sufficiently fulfilled.

Transitions from – to

The ‘transition’ from an ‘unconnected’ to a ‘connected’ state of a population is not inevitable. The primary motive may simply be the ‘will to survive’ (an emotion), and the growing ‘insight’ (= knowledge) that this is only possible with ‘minimal cooperation’. An individual, however, can live in a state of ‘loner’ for the duration of his life, because he does not have to experience his individual death as a sufficient reason to ally with others. A population as such, however, can only survive if a sufficient number of individuals survive, interacting minimally with each other. The history of life on planet Earth suggests the working hypothesis that for 3.5 billion years there have always been sufficient members of a population in biological populations (including the human population) to counter the ‘self-destructive tendencies’ of individuals with a ‘constructive tendency’.

The emergence and the maintenance of a ‘connected population’ needs a minimum of ‘suitable knowledge’ and ‘suitable emotions’ to succeed.

It is a permanent challenge for all biological populations to shape their own emotions in such a way that they tend not to exclude, to despise, but rather to include and to recognize. Similarly, knowledge must be suitable for acquiring a realistic picture of oneself, others, and the environment so that the behavior in question is ‘factually appropriate’ and tends to be more likely to lead to ‘success’.

As the history of the human population shows, both the ‘shaping of emotions’ and the ‘shaping of powerful knowledge’ are usually largely underestimated and poorly or not at all organized. The necessary ‘effort’ is shied away from, one underestimates the necessary ‘duration’ of such processes. Within knowledge there is additionally the general problem that the ‘short time spans’ within an individual life are an obstacle to recognize and form such processes where larger time spans require it (this concerns almost all ‘important’ processes).

We must also note that ‘connected states’ of populations can also collapse again at any time, if those behaviors that make them possible are weakened or disappear altogether. Connections in the realm of biological populations are largely ‘undetermined’! They are based on complex processes within and between the individual actors. Whole societies can ‘topple overnight’ if an event destroys ‘trust in context’. Without trust no context is possible. The emergence and the passing away of trust should be part of the basic concern of every society in a state of interconnectedness.

Political rules of the game

‘Politics’ encompasses the totality of arrangements that members of a human population agree to organize jointly binding decision-making processes.[2] On a rough scale, one could place two extremes: (i) On the one hand, a population with a ‘democratic system’ [3] and a population with a maximally un-democratic system.[4]

As already noted in general for ‘connected systems’: the success of democratic systems is in no way determinate. Enabling and sustaining it requires the total commitment of all participants ‘by their own conviction’.

Basic reality ‘corporeality’

Biological populations are fundamentally characterized by a ‘corporeality’ which is determined through and through by ‘regularities’ of the known material structures. In their ‘complex formations’ biological systems manifest also ‘complex properties’, which cannot be derived simply from their ‘individual parts’, but the respective identifiable ‘material components’ of their ‘body’ together with many ‘functional connections’ are fundamentally subject to a multiplicity of ‘laws’ which are ‘given’. To ‘change’ these is – if at all – only possible under certain limited conditions.

All biological actors consist of ‘biological cells’ which are the same for all. In this, human actors are part of the total development of (biological) life on planet Earth. The totality of (biological) life is also called ‘biome’ and the total habitat of a biome is also called ‘biosphere’. [5] The population of homo sapiens is only a vanishingly small part of the biome, but with the homo sapiens typical way of life it claims ever larger parts of the biosphere for itself at the expense of all other life forms.

(Biological) life has been taking place on planet Earth for about 3.5 billion years.[6] Earth, as part of the solar system [7], has had a very eventful history and shows strong dynamics until today, which can and does have a direct impact on the living conditions of biological life (continental plate displacement, earthquakes, volcanic eruptions, magnetic field displacement, ocean currents, climate, …).

Biological systems generally require a continuous intake of material substances (with energy potentials) to enable their own metabolic processes. They also excrete substances. Human populations need certain amounts of ‘food’, ‘water’, ‘dwellings’, ‘storage facilities’, ‘means of transport’, ‘energy’, … ‘raw materials’, … ‘production processes’, ‘exchange processes’ … As the sheer size of a population grows, the material quantities required (and also wastes) multiply to orders of magnitude that can destroy the functioning of the biosphere.

Predictive knowledge

If a coherent population does not want to leave possible future states to pure chance, then it needs a ‘knowledge’ which is suitable to construct ‘predictions’ (‘prognoses’) for a possible future (or even many ‘variants of future’) from the knowledge about the present and about the past.

In the history of homo sapiens so far, there is only one form of knowledge that has been demonstrably demonstrated to be suitable for resilient sustainable forecasts: the knowledge form of empirical sciences. [8] This form of knowledge is so far not perfect, but a better alternative is actually not known. At its core, ’empirical knowledge’ comprises the following elements: (i) A description of a baseline situation that is assumed to be ’empirically true’; (ii) A set of ‘descriptions of change processes’ that one has been able to formulate over time, and from which one knows that it is ‘highly probable’ that the described changes will occur again and again under known conditions; (iii) An ‘inference concept’ that describes how to apply to the description of a ‘given current situation’ the known descriptions of change processes in such a way that one can modify the description of the current situation to produce a ‘modified description’ that describes a new situation that can be considered a ‘highly probable continuation’ of the current situation in the future. [9]

The just sketched ‘basic idea’ of an empirical theory with predictive ability can be realized concretely in many ways. To investigate and describe this is the task of ‘philosophy of science’. However, the vagueness found in dealing with the notion of an ’empirical theory’ is also found in the understanding of what is meant by ‘philosophy of science.'[9]

In the present text, the view is taken that the ‘basic concept’ of an empirical theory can be fully realized in normal everyday action using everyday language. This concept of a ‘General Empirical Theory’ can be extended by any special languages, methods and sub-theories as needed. In this way, the hitherto unsolved problem of the many different individual empirical disciplines could be solved almost by itself.[10]

Sustainable knowledge

In the normal case, an empirical theory can, at best, generate forecasts that can be said to have a certain empirically based probability. In ‘complex situations’ such a prognosis can comprise many ‘variants’: A, B, …, Z. Now which of these variants is ‘better’ or ‘worse’ in the light of an ‘assumable criterion’ cannot be determined by an empirical theory itself. Here the ‘producers’ and the ‘users’ of the theory are asked: Do they have any ‘preferences’ why e.g. variant ‘B’ should be preferred to variant ‘C”: “Bicycle, subway, car or plane?” , “Genetic engineering or not?”, “Pesticides or not?”, “Nuclear energy or not?”, “Uncontrolled fishing or not?” …

The ‘evaluation criteria’ to be applied actually themselves require ‘explicit knowledge’ for the estimation of a possible ‘benefit’ on the one hand, on the other hand the concept of ‘benefit’ is anchored in the feeling and wanting of human actors: Why exactly do I want something? Why does something ‘feel good’? …

Current discussions worldwide show that the arsenal of ‘evaluation criteria’ and their implementation offer anything but a clear picture.

COMMENTS

[1] For the typical use of the term ‘grammar’ see the English Wikipedia: https://en.wikipedia.org/wiki/Grammar. In the text here in the blog I transfer this concept of ‘language’ to that ‘complex process’ in which the population of the life form ‘homo sapiens’ tries to achieve an ‘overall state’ on planet earth that allows a ‘maximally good future’ for as much ‘life’ as possible (with humans as a sub-population). A ‘grammar of sustainability’ presupposes a certain set of basic conditions, factors, which ‘interact’ with each other in a dynamic process, in order to realize as many states as possible in a ‘sequence of states’, which enable as good a life as possible for as many as possible.

[2] For the typical usage of the term politics, see the English Wikipedia: https://en.wikipedia.org/wiki/Politics . This meaning is also assumed in the present text here.

[3] A very insightful project on empirical research on the state and development of ’empirical systems’democracies’ on planet Earth is the V-dem Institut:: https://www.v-dem.net/

[4] Of course, one could also choose completely different basic concepts for a scale. However, the concept of a ‘democratic system’ (with all its weaknesses) seems to me to be the ‘most suitable’ system in the light of the requirements for sustainable development; at the same time, however, it makes the highest demands of all systems on all those involved. That it came to the formation of ‘democracy-like’ systems at all in the course of history, actually borders almost on a miracle. The further development of such democracy-like systems fluctuates constantly between preservation and decay. Positively, one could say that the constant struggle for preservation is a kind of ‘training’ to enable sustainable development.

[5]  For typical uses of the terms ‘biome’ and ‘biosphere’, see the corresponding entries in the English Wikipedia: ‘biome’: https://en.wikipedia.org/wiki/Biome, ‘biosphere’: https://en.wikipedia.org/wiki/Biosphere

[6] Some basic data for planet Earth: https://en.wikipedia.org/wiki/Earth

[7] Some basic data for the solar system: https://en.wikipedia.org/wiki/Solar_System

[8] If you will search for he term ‘Empirical Science’ you ill be disappointed, because the English Wikipedia (as well as the German Version) does not provide such a term. You have either to accept the term ‘Science’ ( https://en.wikipedia.org/wiki/Science ) or the term ‘Empiricism’ (https://en.wikipedia.org/wiki/Empiricism), but both do not cover the general properties of an Empirical theory.

[9] If you have a clock with hour and minute hands, which currently shows 11:04h, and you know from everyday experience that the minute hand advances by one stroke every minute, then you can conclude with a fairly high probability that the minute hand will advance by one stroke ‘very soon’. The initial description ‘The clock shows 11:04h’ would then be changed to that of the new description ‘The clock shows 11:05h’. Before the ’11:05h event’ the statement ‘The clock shows 11:05h’ would have the status of a ‘forecast’.

[10] A single discipline (physics, chemistry, biology, psychology, …) cannot conceptually grasp ‘the whole’ ‘out of itself’; it does not have to. The various attempts to ‘reduce’ any single discipline to another (physics is especially popular here) have all failed so far. Without a suitable ‘meta-theory’ no single discipline can free itself from its specialization. The concept of a ‘General Empirical Theory’ is such a meta-theory. Such a meta-theory fits into the concept of a modern philosophical thinking.

OKSIMO MEETS POPPER. Popper’s Position

eJournal: uffmm.org
ISSN 2567-6458, 31.March – 31.March  2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

POPPERs POSITION IN THE CHAPTERS 1-17

In my reading of the chapters 1-17 of Popper’s The Logic of Scientific Discovery [1] I see the following three main concepts which are interrelated: (i) the concept of a scientific theory, (ii) the point of view of a meta-theory about scientific theories, and (iii) possible empirical interpretations of scientific theories.

Scientific Theory

A scientific theory is according to Popper a collection of universal statements AX, accompanied by a concept of logical inference , which allows the deduction of a certain theorem t  if one makes  some additional concrete assumptions H.

Example: Theory T1 = <AX1,>

AX1= {Birds can fly}

H1= {Peter is  a bird}

: Peter can fly

Because  there exists a concrete object which is classified as a bird and this concrete bird with the name ‘Peter’ can  fly one can infer that the universal statement could be verified by this concrete bird. But the question remains open whether all observable concrete objects classifiable as birds can fly.

One could continue with observations of several hundreds of concrete birds but according to Popper this would not prove the theory T1 completely true. Such a procedure can only support a numerical universality understood as a conjunction of finitely many observations about concrete birds   like ‘Peter can fly’ & ‘Mary can fly’ & …. &’AH2 can fly’.(cf. p.62)

The only procedure which is applicable to a universal theory according to Popper is to falsify a theory by only one observation like ‘Doxy is a bird’ and ‘Doxy cannot fly’. Then one could construct the following inference:

AX1= {Birds can fly}

H2= {Doxy is  a bird, Doxy cannot fly}

: ‘Doxy can fly’ & ~’Doxy can fly’

If a statement A can be inferred and simultaneously the negation ~A then this is called a logical contradiction:

{AX1, H2}  ‘Doxy can fly’ & ~’Doxy can fly’

In this case the set {AX1, H2} is called inconsistent.

If a set of statements is classified as inconsistent then you can derive from this set everything. In this case you cannot any more distinguish between true or false statements.

Thus while the increase of the number of confirmed observations can only increase the trust in the axioms of a scientific theory T without enabling an absolute proof  a falsification of a theory T can destroy the ability  of this  theory to distinguish between true and false statements.

Another idea associated with this structure of a scientific theory is that the universal statements using universal concepts are strictly speaking speculative ideas which deserve some faith that these concepts will be provable every time one will try  it.(cf. p.33, 63)

Meta Theory, Logic of Scientific Discovery, Philosophy of Science

Talking about scientific theories has at least two aspects: scientific theories as objects and those who talk about these objects.

Those who talk about are usually Philosophers of Science which are only a special kind of Philosophers, e.g. a person  like Popper.

Reading the text of Popper one can identify the following elements which seem to be important to describe scientific theories in a more broader framework:

A scientific theory from a point of  view of Philosophy of Science represents a structure like the following one (minimal version):

MT=<S, A[μ], E, L, AX, , ET, E+, E-, true, false, contradiction, inconsistent>

In a shared empirical situation S there are some human actors A as experts producing expressions E of some language L.  Based on their built-in adaptive meaning function μ the human actors A can relate  properties of the situation S with expressions E of L.  Those expressions E which are considered to be observable and classified to be true are called true expressions E+, others are called false expressions  E-. Both sets of expressions are true subsets of E: E+ ⊂ E  and E- ⊂ E. Additionally the experts can define some special  set of expressions called axioms  AX which are universal statements which allow the logical derivation of expressions called theorems of the theory T  ET which are called logically true. If one combines the set of axioms AX with some set of empirically true expressions E+ as {AX, E+} then one can logically derive either  only expressions which are logically true and as well empirically true, or one can derive logically true expressions which are empirically true and empirically false at the same time, see the example from the paragraph before:

{AX1, H2}  ‘Doxy can fly’ & ~’Doxy can fly’

Such a case of a logically derived contradiction A and ~A tells about the set of axioms AX unified with the empirical true expressions  that this unified set  confronted with the known true empirical expressions is becoming inconsistent: the axioms AX unified with true empirical expressions  can not  distinguish between true and false expressions.

Popper gives some general requirements for the axioms of a theory (cf. p.71):

  1. Axioms must be free from contradiction.
  2. The axioms  must be independent , i.e . they must not contain any axiom deducible from the remaining axioms.
  3. The axioms should be sufficient for the deduction of all statements belonging to the theory which is to be axiomatized.

While the requirements (1) and (2) are purely logical and can be proved directly is the requirement (3) different: to know whether the theory covers all statements which are intended by the experts as the subject area is presupposing that all aspects of an empirical environment are already know. In the case of true empirical theories this seems not to be plausible. Rather we have to assume an open process which generates some hypothetical universal expressions which ideally will not be falsified but if so, then the theory has to be adapted to the new insights.

Empirical Interpretation(s)

Popper assumes that the universal statements  of scientific theories   are linguistic representations, and this means  they are systems of signs or symbols. (cf. p.60) Expressions as such have no meaning.  Meaning comes into play only if the human actors are using their built-in meaning function and set up a coordinated meaning function which allows all participating experts to map properties of the empirical situation S into the used expressions as E+ (expressions classified as being actually true),  or E- (expressions classified as being actually false) or AX (expressions having an abstract meaning space which can become true or false depending from the activated meaning function).

Examples:

  1. Two human actors in a situation S agree about the  fact, that there is ‘something’ which  they classify as a ‘bird’. Thus someone could say ‘There is something which is a bird’ or ‘There is  some bird’ or ‘There is a bird’. If there are two somethings which are ‘understood’ as being a bird then they could say ‘There are two birds’ or ‘There is a blue bird’ (If the one has the color ‘blue’) and ‘There is a red bird’ or ‘There are two birds. The one is blue and the other is red’. This shows that human actors can relate their ‘concrete perceptions’ with more abstract  concepts and can map these concepts into expressions. According to Popper in this way ‘bottom-up’ only numerical universal concepts can be constructed. But logically there are only two cases: concrete (one) or abstract (more than one).  To say that there is a ‘something’ or to say there is a ‘bird’ establishes a general concept which is independent from the number of its possible instances.
  2. These concrete somethings each classified as a ‘bird’ can ‘move’ from one position to another by ‘walking’ or by ‘flying’. While ‘walking’ they are changing the position connected to the ‘ground’ while during ‘flying’ they ‘go up in the air’.  If a human actor throws a stone up in the air the stone will come back to the ground. A bird which is going up in the air can stay there and move around in the air for a long while. Thus ‘flying’ is different to ‘throwing something’ up in the air.
  3. The  expression ‘A bird can fly’ understood as an expression which can be connected to the daily experience of bird-objects moving around in the air can be empirically interpreted, but only if there exists such a mapping called meaning function. Without a meaning function the expression ‘A bird can fly’ has no meaning as such.
  4. To use other expressions like ‘X can fly’ or ‘A bird can Y’ or ‘Y(X)’  they have the same fate: without a meaning function they have no meaning, but associated with a meaning function they can be interpreted. For instance saying the the form of the expression ‘Y(X)’ shall be interpreted as ‘Predicate(Object)’ and that a possible ‘instance’ for a predicate could be ‘Can Fly’ and for an object ‘a bird’ then we could get ‘Can Fly(a Bird)’ translated as ‘The object ‘a Bird’ has the property ‘can fly” or shortly ‘A Bird can fly’. This usually would be used as a possible candidate for the daily meaning function which relates this expression to those somethings which can move up in the air.
Axioms and Empirical Interpretations

The basic idea with a system of axioms AX is — according to Popper —  that the axioms as universal expressions represent  a system of equations where  the  general terms   should be able to be substituted by certain values. The set of admissible values is different from the set of  inadmissible values. The relation between those values which can be substituted for the terms  is called satisfaction: the values satisfy the terms with regard to the relations! And Popper introduces the term ‘model‘ for that set of admissible terms which can satisfy the equations.(cf. p.72f)

But Popper has difficulties with an axiomatic system interpreted as a system of equations  since it cannot be refuted by the falsification of its consequences ; for these too must be analytic.(cf. p.73) His main problem with axioms is,  that “the concepts which are to be used in the axiomatic system should be universal names, which cannot be defined by empirical indications, pointing, etc . They can be defined if at all only explicitly, with the help of other universal names; otherwise they can only be left undefined. That some universal names should remain undefined is therefore quite unavoidable; and herein lies the difficulty…” (p.74)

On the other hand Popper knows that “…it is usually possible for the primitive concepts of an axiomatic system such as geometry to be correlated with, or interpreted by, the concepts of another system , e.g . physics …. In such cases it may be possible to define the fundamental concepts of the new system with the help of concepts which were originally used in some of the old systems .”(p.75)

But the translation of the expressions of one system (geometry) in the expressions of another system (physics) does not necessarily solve his problem of the non-empirical character of universal terms. Especially physics is using also universal or abstract terms which as such have no meaning. To verify or falsify physical theories one has to show how the abstract terms of physics can be related to observable matters which can be decided to be true or not.

Thus the argument goes back to the primary problem of Popper that universal names cannot not be directly be interpreted in an empirically decidable way.

As the preceding examples (1) – (4) do show for human actors it is no principal problem to relate any kind of abstract expressions to some concrete real matters. The solution to the problem is given by the fact that expressions E  of some language L never will be used in isolation! The usage of expressions is always connected to human actors using expressions as part of a language L which consists  together with the set of possible expressions E also with the built-in meaning function μ which can map expressions into internal structures IS which are related to perceptions of the surrounding empirical situation S. Although these internal structures are processed internally in highly complex manners and  are — as we know today — no 1-to-1 mappings of the surrounding empirical situation S, they are related to S and therefore every kind of expressions — even those with so-called abstract or universal concepts — can be mapped into something real if the human actors agree about such mappings!

Example:

Lets us have a look to another  example.

If we take the system of axioms AX as the following schema:  AX= {a+b=c}. This schema as such has no clear meaning. But if the experts interpret it as an operation ‘+’ with some arguments as part of a math theory then one can construct a simple (partial) model m  as follows: m={<1,2,3>, <2,3,5>}. The values are again given as  a set of symbols which as such must not ave a meaning but in common usage they will be interpreted as sets of numbers   which can satisfy the general concept of the equation.  In this secondary interpretation m is becoming  a logically true (partial) model for the axiom Ax, whose empirical meaning is still unclear.

It is conceivable that one is using this formalism to describe empirical facts like the description of a group of humans collecting some objects. Different people are bringing  objects; the individual contributions will be  reported on a sheet of paper and at the same time they put their objects in some box. Sometimes someone is looking to the box and he will count the objects of the box. If it has been noted that A brought 1 egg and B brought 2 eggs then there should according to the theory be 3 eggs in the box. But perhaps only 2 could be found. Then there would be a difference between the logically derived forecast of the theory 1+2 = 3  and the empirically measured value 1+2 = 2. If one would  define all examples of measurement a+b=c’ as contradiction in that case where we assume a+b=c as theoretically given and c’ ≠ c, then we would have with  ‘1+2 = 3′ & ~’1+2 = 3’ a logically derived contradiction which leads to the inconsistency of the assumed system. But in reality the usual reaction of the counting person would not be to declare the system inconsistent but rather to suggest that some unknown actor has taken against the agreed rules one egg from the box. To prove his suggestion he had to find this unknown actor and to show that he has taken the egg … perhaps not a simple task … But what will the next authority do: will the authority belief  the suggestion of the counting person or will the authority blame the counter that eventually he himself has taken the missing egg? But would this make sense? Why should the counter write the notes how many eggs have been delivered to make a difference visible? …

Thus to interpret some abstract expression with regard to some observable reality is not a principal problem, but it can eventually be unsolvable by purely practical reasons, leaving questions of empirical soundness open.

SOURCES

[1] Karl Popper, The Logic of Scientific Discovery, First published 1935 in German as Logik der Forschung, then 1959 in English by  Basic Books, New York (more editions have been published  later; I am using the eBook version of Routledge (2002))

 

 

PHILOSOPHY OF SCIENCE

eJournal: uffmm.org
ISSN 2567-6458, 15.March 2021 – 23.February 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This post is part of the uffmm science blog.

PREFACE

The topic Philosophy of Science [PoS] in the context of modern science has  a history of   more then 100 years and — in the view of the author — this topic has not yet settled in one grand view of science which is globally accepted.[1]-[7] [*]

CONTRIBUTIONS
A Global Public Theory Machine (with Collective Intelligence)
Encounter with Popper
  1. POPPER and EMPIRICAL THEORY. A conceptual Experiment (Last change: March 16, 2022)
  2. POPPER – Objective Knowledge (1971). Summary, Comments, how to develop further (Last change: March 12, 2022)
  3. OKSIMO MEETS POPPER. The Generalized Oksimo Theory Paradigm (Last change: April 5, 2021)
  4. OKSIMO MEETS POPPER. The Oksimo Theory Paradigm (Last change: April 2, 2021)
  5. OKSIMO MEETS POPPER. Popper’s Position (Last Change: March 31, 2021⁾
  6. THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 5. Oksimo as Theory? (Last change: March 24, 2021)
  7. THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 4. Describing Change (Last change: March 24, 2021)
  8. THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 3. Generate a Vision (last change: March 24, 2021)
  9. THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 2. makedecidable() (last change: March 23, 2021)
  10. THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE (last change: March 23, 2021)
    John Dewey’s Logic
    1. LOGIC. The Theory Of Inquiry (1938) by John Dewey – An oksimo Review – Part 1 (Last change: Aug 18, 2021)
    2. LOGIC. The Theory Of Inquiry (1938) by John Dewey – An oksimo Review – Part 2 (Last change: Aug 18, 2021)
    3. LOGIC. The Theory Of Inquiry (1938) by John Dewey – An oksimo Review – Part 3 (Last change: Aug 20, 2021)
    4. To be continued …
Encounter with Nicholas Bourbaki
  1. OKSIMO and BOURBAKI. A Metamathematical Perspective on Oksimo. Part 1 (Last Change: 24.Sept 2021)
  2. To be continued
Nice to have: Poincaré [12]

Encounter with Günter Wagner

EMPIRICAL MEASUREMENT: Molecules and Atoms. Late Encounter with Günter Wagner: The ‘man-in-the-middle’ (Last Change: 28.December 2022)

COMMENTS

[*] From the many books the one which I like most as a good first introduction is that entitled The Structure of Scienctific Theories edited by Frederick Suppe (1977). [5]  In the German philosophical discourse there exists the distinction between ‘Philosophy of Science’ (‘Wissenschaftsphilosophie’) and ‘Theory of Science’ (‘Wissenschaftstheorie’). [7] In this text this distinction will not be used.

[1] Wikipedia EN, Philosophy of Science: https://en.wikipedia.org/wiki/Philosophy_of_science

[2] Enyclopaedia Britannica, Philosophy of Science: https://www.britannica.com/topic/philosophy-of-science /* Very broad overview */

[3] Journal Philosophy of Science (Since 1934), published by the University of Chicago Press: https://www.journals.uchicago.edu/toc/phos/current

[4] Stanford Encylopedia of Philosophy, Philosophy of Science in Latin America: https://plato.stanford.edu/entries/phil-science-latin-america/ /* There exists no general topic of Philosophy of Science! */

[5] Frederick Suppe (Ed.), The Structure of Scientific Theories,  University of Illinois Press, Urbana, 1977, 2nd edition 1979

[6] Jürgen Mittelstraß (Ed.), Enzylopädie Philosophie und Wissenschaftstheorie, Bd.1-4, Publisher J.Metzler, Stuttgart – Weimar (Germany), 1995 – 1996

[7] Hans Jörg Sandkühler (Ed.), Enzylopädie Philosophie, Bd. 1-3, Publisher Felix Meiner Verlag, Hamburg (Germany), 2010. Stichworte ‘Wissenschaftsphilosophie‘ und ‘Wissenschaftstheorie‘ in Bd.3

[8] Karl Popper, The Logic of Scientific Discovery, First published 1935 in German as Logik der Forschung, then 1959 in English by  Basic Books, New York (more editions have been published  later; I am using the eBook version of Routledge (2002))

[9] Jules Henri Poincaré (1854 – 1912),https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9,  La science et l’hypothèse, Paris 1902, English: Science and Hypothesis, New York 1905, publisher The Walter Scott Publishing CO., LTD (See wikisource: https://en.wikisource.org/wiki/Science_and_Hypothesis )

[10] N.Bourbaki (1970), Theory of Sets, Series: ELEMENTS OF MATHEMATICS, Springer, Berlin — Heidelberg — New York (Engl. Translation from the French edition 1970)

[11] Bourbaki group in Wikipedia [EN]: https://en.wikipedia.org/wiki/Nicolas_Bourbaki

[12] Jules Henri Poincaré (1854 – 1912),https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9,  La science et l’hypothèse, Paris 1902, English: Science and Hypothesis, New York 1905, publisher The Walter Scott Publishing CO., LTD (See wikisource: https://en.wikisource.org/wiki/Science_and_Hypothesis )

 

OKSIMO APPLICATION BLOG

eJournal: uffmm.org
ISSN 2567-6458

17.May 2021 – 29.December 2022, 09:35h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This post is part of the uffmm science blog.

EXPLANATION

To support the development of exciting applications with the oksimo.R software as part of the general concept of ‘Citizen Science 2.0’ the oksimo  team is running a blog [1] dedicated to all questions around the usage of the oksimo.R software. [2] Due to the dynamic development process there are different phases of different kinds of examples. Examples related to Level 1 of the oksimo.R software appeared before spring 2022. Examples with Level 2 appeared since spring 2022. Examples of Level 3 will start to appear  during spring 2023. When  examples of Level 3 will be available we will start  working for Level 4.

More Recent oksimo.R Examples

With the writing of the first book related to the oksimo.R software all further examples will be published through this book accompanied with a webpage collecting all these examples. It is planned to finish a first experimental version of the text of the book (oksimo.org, uffmm.org) about summer 2023. After that it is planned to publish an official book with an international publisher.

Oksimo.R Examples with Level 2

Here a list of oksimo examples starting with simple examples with the oksimo software level 2 (while level 3 is already in preparation).

  1. Citizens of a County (Last change: 27.March 2022)
  2. Citizens of a County, Example 2 (Last change: 31.March 2022)

Oksimo.R Examples with Level 1

oksimo-v1-part1-v2

(Last change: July 30 – Aug 1, 2021)

Oksimo.R Structures for Level 1-2

  1. GENERAL OUTLINE OF OKSIMO (RELOADAD) from March 2021 (Last change 1.April 2022)
  2. THE OKSIMO WORKFLOW (Last change: April 6, 2022)

COMMENTs

[1] The blog of the oksimo.R Team is primarily in German. But parts of the blog will also be reported or even directly translated into English texts as part of the uffmm.blog.

[2] The oksimo.R book can also be read as a ‘philosophical’ book, because the oksimo.R software is using everyday languages to deal with everyday problems (including typical ‘ordinary science’ cases as ‘sub-cases’ of everyday problems). There exists a great bulk of books and articles related to philosophical topics which until now have only a poor connection with the concepts of ‘software’, ’empirical theory’, ‘cognitive sciences’ as well as the different concepts of ‘intelligence’ outside philosophy. Thus the development of the oksimo.R paradigm and software is a great opportunity to bring all these different aspects of reality together to enable a more integrated (inter-disciplinary as well as trans-disciplinary) view.

HMI Analysis for the CM:MI paradigm. Part 1

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, February 25, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Last change: March 16, 2021 (Some minor corrections)
HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 1
Introduction

Since January 2021 an intense series of posts has been published how the new ideas manifested in the new software published in this journal  can adequately be reflected in the DAAI theoretical framework. Because these ideas included in the beginning parts of philosophy, philosophy of science, philosophy of engineering, these posts have been first published in the German Blog of the author (cognitiveagent.org). This series of posts started with an online lecture for students of the University of Leipzig together with students of the ‘Hochschule für Technik, Wirtschaft und Kultur (HTWK)’ January 12, 2021.  Here is the complete list of posts:

In what follows in this text is an English version of the following 5 posts. This is not a 1-to-1 translation but rather a new version:

HMI Analysis as Part of Systems Engineering

HMI analysis as pat of systems engineering illustrated with the oksimo software
HMI analysis for the CM:MI paradigm illustrated with the oksimo software concept

As described in the original DAAI theory paper the whole topic of HMI is here understood as a job within the systems engineering paradigm.

The specification process is a kind of a ‘test’ whether the DAAI format of the HMI analysis works with this new  application too.

To remember, the main points of the integrated engineering concept are the following ones:

  1. A philosophical  framework (Philosophy of Science, Philosophy of Engineering, …), which gives the fundamentals for such a process.
  2. The engineering process as such where managers and engineers start the whole process and do it.
  3. After the clarification of the problem to be solved and a minimal vision, where to go, it is the job of the HMI analysis to clarify which requirements have to be fulfilled, to find an optimal solution for the intended product/ service. In modern versions of the HMI analysis substantial parts of the context, i.e. substantial parts of the surrounding society, have to be included in the analysis.
  4. Based on the HMI analysis  in  the logical design phase a mathematical structure has to be identified, which integrates all requirements sufficiently well. This mathematical structure has to be ‘map-able’ into a set of algorithms written in  appropriate programming languages running on  an appropriate platform (the mentioned phases Problem, Vision, HMI analysis, Logical Design are in reality highly iterative).
  5. During the implementation phase the algorithms will be translated into a real working system.
Which Kinds of Experts?

While the original version of the DAAI paper is assuming as ‘experts’ only the typical manager and engineers of an engineering process including all the typical settings, the new extended version under the label CM:MI (Collective Man-Machine Intelligence) has been generalized to any kind of human person as an expert, which allows a maximum of diversity. No one is the ‘absolute expert’.

Collective Intelligence

As ‘intelligence’ is understood here the whole of knowledge, experience, and motivations which can be the moving momentum inside of a human person. As ‘collective’  is meant  the situation, where more than one person is communicating with other persons to share it’s intelligence.

Man-Machine Symbiosis

Today there are discussions going around  about the future of man and (intelligent) machines. Most of these discussions are very weak because they are lacking clear concepts of intelligent machines as well of what is a human person. In the CM:MI paradigm the human person (together with all other biological systems)  is seen at the center of the future  (by  reasons based on modern theories of biological evolution) and the  intelligent machines are seen as supporting devices (although it is assumed here to use ‘strong’ intelligence compared to the actual ‘weak’ machine intelligence today).

CM:MI by Design

Although we know, that groups of many people are ‘in principal’ capable of sharing intelligence to define problems, visions, constructing solutions, testing the solutions etc., we know too, that the practical limits of the brains and the communication are quite narrow. For special tasks a computer can be much, much better. Thus the CM:MI paradigm provides an environment for groups of people to do the shared planning and testing in a new way, only using normal language. Thus the software is designed to enable new kinds of shared knowledge about shared common modes of future worlds. Only with such a truly general framework the vision of a sustainable society as pointed out by the United Nations since 1992 can become real.

Continuation

Look here.

From Men to Philosophy, to Empirical Sciences, to Real Systems. A Conceptual Network

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, Nov 8, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

DAILY LIFE

In daily life we experience today a multitude of perspectives in all areas. While our bodies are embedded in real world scenarios our minds are filled up with perceptions, emotions, ideas, memories of all kinds. What links us to each other is language. Language gives us the power to overcome the isolation of our individual brains located in  individual bodies. And by this, our language, we can distribute and share the inner states of our brains, pictures of life as we see it. And it is this open web of expressions which spreads to the air, to the newspapers and books, to the data bases in which the different views of the world are manifested.

SORTING IDEAS SCIENTIFICALLY

While our bodies touching reality outside the bodies, our brains are organizing different kinds of order, finally expressed — only some part of it — in expressions of some language. While our daily talk is following mostly automatically some naive patterns of ordering does empirical science try to order the expressions more consciously following some self-defined rules called methods, called scientific procedures to enable transparency, repeatability, decidability of the hypothesized truth of is symbolic structures.

But because empirical science wants to be rational by being transparent, repeatable, measurable, there must exist an open discourse which is dealing with science as an object: what are the ingredients of science? Under which conditions can science work? What does it mean to ‘measure’ something? And other questions like these.

PHILOSOPHY OF SCIENCE

That discipline which is responsible for such a discourse about science is not science itself but another instance of thinking and speaking which is called Philosophy of Science.  Philosophy of science deals with all aspects of science from the outside of science.

PHILOSOPHY

Philosophy of Science dealing with empirical sciences as an object has a special focus and  it can be reflected too from another point of view dealing with Philosophy of Science as an object. This relationship reflects a general structure of human thinking: every time we have some object of our thinking we are practicing a different point of view talking about the actual object. While everyday thinking leads us directly to Philosophy as our active point of view  an object like empirical science does allow an intermediate point of view called Philosophy of Science leading then to Philosophy again.

Philosophy is our last point of reflection. If we want to reflect the conditions of our philosophical thinking than our thinking along with the used language tries to turn back on itself  but this is difficult. The whole history of Philosophy shows this unending endeavor as a consciousness trying to explain itself by being inside itself. Famous examples of this kind of thinking are e.g. Descartes, Kant, Fichte, Schelling, Hegel, and Husserl.

These examples show there exists no real way out.

PHILOSOPHY ENHANCED BY EMPIRICAL SCIENCES ? !

At a first glance it seems contradictory that Philosophy and Empirical Sciences could work ‘hand in hand’. But history has shown us, that this is to a certain extend possible; perhaps it is a major break through for the philosophical understanding of the world, especially also of men themselves.

Modern empirical sciences like Biology and Evolutionary Biology in cooperation with many other empirical disciplines have shown us, that the actual biological systems — including homo sapiens — are products of a so-called evolutionary process. And supported by modern empirical disciplines like Ethology, Psychology, Physiology, and Brain Sciences we could gain some first knowledge how our body works, how our brain, how our observable behavior is connected to this body and its brain.

While  Philosopher like Kant or Hegel could  investigate their own thinking only from the inside of their consciousness, the modern empirical sciences can investigate the human thinking from the outside. But until now there is a gap: We have no elaborated theory about the relationship between the inside of the consciousness and the outside knowledge about body and brain.

Thus what we need is a hybrid  theory mapping the inside to the outside and revers.  There are some first approaches headed under labels like Neuro-Psychology or Neuro-Phenomenology, but these are not yet completely clarified in their methodology in their relationship to Philosophy.

If one can describe to some extend the Phenomena of the consciousness from the inside as well as the working of the brain translated to its behavioral properties, then one can start first mappings like those, which have been used in this blog to establish  the theory for the komega software.

SOCIOLOGY

Sociology is only one empirical discipline  between many others. Although the theory of this blog is using many disciplines simultaneously Sociology is of special interest because it is that kind of empirical disciplines which is explicitly dealing with human societies with subsystems called cities.

The komega software which we are developing is understood here as enabling a system of interactions as part of a city understood as a system. If we understand Sociology as an empirical science according to some standard view of empirical science then it is possible to describe a city as an input-output system whose dynamics can become influenced by this komega software if citizens are using this software as part of their behavior.

STANDARD VIEW OF EMPIRICAL SCIENCE

Without some kind of a Standard View of Empirical Science it is not possible to design a discipline — e.g. Sociology — as an empirical discipline. Although it seems that everybody thinks that we have  such a ‘Standard View of Empirical Science’, in the real world of today one must state that we do not have such a view. In the 80ties of the20th century it looked for some time as if  we have it, but if you start searching the papers, books and schools today You will perceive a very fuzzy field called Philosophy of Science and within the so-called empirical sciences you will not found any coherent documented view of a ‘Standard View of Empirical Science’.

Because it is difficult to see how a process can  look like which enables such a ‘Standard View of Empirical Science’ again, we will try to document the own assumptions for our theory as good as possible. Inevitably this will mostly  have the character of only a ‘fragment’, an ‘incomplete outline’. Perhaps there will again be a time where sciences is back to have a commonly accepted view how  science should look like to be called empirical science.

 

 

 

 

THE BIG PICTURE: HCI – HMI – AAI in History – Engineering – Society – Philosophy

eJournal: uffmm.org,
ISSN 2567-6458, 20.April 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

A first draft version …

CONTEXT

The context for this text is the whole block dedicated to the AAI (Actor-Actor Interaction)  paradigm. The aim of this text is to give the big picture of all dimensions and components of this subject as it shows up during April 2019.

The first dimension introduced is the historical dimension, because this allows a first orientation in the course of events which lead  to the actual situation. It starts with the early days of real computers in the thirties and forties of the 20 century.

The second dimension is the engineering dimension which describes the special view within which we are looking onto the overall topic of interactions between human persons and computers (or machines or technology or society). We are interested how to transform a given problem into a valuable solution in a methodological sound way called engineering.

The third dimension is the whole of society because engineering happens always as some process within a society.  Society provides the resources which can be used and spends the preferences (values) what is understood as ‘valuable’, as ‘good’.

The fourth dimension is Philosophy as that kind of thinking which takes everything into account which can be thought and within thinking Philosophy clarifies conditions of thinking, possible tools of thinking and has to clarify when some symbolic expression becomes true.

HISTORY

In history we are looking back in the course of events. And this looking back is in a first step guided by the  concepts of HCI (Human-Computer Interface) and  HMI (Human-Machine Interaction).

It is an interesting phenomenon how the original focus of the interface between human persons and the early computers shifted to  the more general picture of interaction because the computer as machine developed rapidly on account of the rapid development of the enabling hardware (HW)  the enabling software (SW).

Within the general framework of hardware and software the so-called artificial intelligence (AI) developed first as a sub-topic on its own. Since the last 10 – 20 years it became in a way productive that it now  seems to become a normal part of every kind of software. Software and smart software seem to be   interchangeable. Thus the  new wording of augmented or collective intelligence is emerging intending to bridge the possible gap between humans with their human intelligence and machine intelligence. There is some motivation from the side of society not to allow the impression that the smart (intelligent) machines will replace some day the humans. Instead one is propagating the vision of a new collective shape of intelligence where human and machine intelligence allows a symbiosis where each side gives hist best and receives a maximum in a win-win situation.

What is revealing about the actual situation is the fact that the mainstream is always talking about intelligence but not seriously about learning! Intelligence is by its roots a static concept representing some capabilities at a certain point of time, while learning is the more general dynamic concept that a system can change its behavior depending from actual external stimuli as well as internal states. And such a change includes real changes of some of its internal states. Intelligence does not communicate this dynamics! The most demanding aspect of learning is the need for preferences. Without preferences learning is impossible. Today machine learning is a very weak example of learning because the question of preferences is not a real topic there. One assumes that some reward is available, but one does not really investigate this topic. The rare research trying to do this job is stating that there is not the faintest idea around how a general continuous learning could happen. Human society is of no help for this problem while human societies have a clash of many, often opposite, values, and they have no commonly accepted view how to improve this situation.

ENGINEERING

Engineering is the art and the science to transform a given problem into a valuable and working solution. What is valuable decides the surrounding enabling society and this judgment can change during the course of time.  Whether some solution is judged to be working can change during the course of time too but the criteria used for this judgment are more stable because of their adherence to concrete capabilities of technical solutions.

While engineering was and is  always  a kind of an art and needs such aspects like creativity, innovation, intuition etc. it is also and as far as possible a procedure driven by defined methods how to do things, and these methods are as far as possible backed up by scientific theories. The real engineer therefore synthesizes art, technology and science in a unique way which can not completely be learned in the schools.

In the past as well as in the present engineering has to happen in teams of many, often many thousands or even more, people which coordinate their brains by communication which enables in the individual brains some kind of understanding, of emerging world pictures,  which in turn guide the perception, the decisions, and the concrete behavior of everybody. And these cognitive processes are embedded — in every individual team member — in mixtures of desires, emotions, as well as motivations, which can support the cognitive processes or obstruct them. Therefore an optimal result can only be reached if the communication serves all necessary cognitive processes and the interactions between the team members enable the necessary constructive desires, emotions, and motivations.

If an engineering process is done by a small group of dedicated experts  — usually triggered by the given problem of an individual stakeholder — this can work well for many situations. It has the flavor of a so-called top-down approach. If the engineering deals with states of affairs where different kinds of people, citizens of some town etc. are affected by the results of such a process, the restriction to  a small group of experts  can become highly counterproductive. In those cases of a widespread interest it seems promising to include representatives of all the involved persons into the executing team to recognize their experiences and their kinds of preferences. This has to be done in a way which is understandable and appreciative, showing esteem for the others. This manner of extending the team of usual experts by situative experts can be termed bottom-up approach. In this usage of the term bottom-up this is not the opposite to top-down but  is reflecting the extend in which members of a society are included insofar they are affected by the results of a process.

SOCIETY

Societies in the past and the present occur in a great variety of value systems, organizational structures, systems of power etc.  Engineering processes within a society  are depending completely on the available resources of a society and of its value systems.

The population dynamics, the needs and wishes of the people, the real territories, the climate, housing, traffic, and many different things are constantly producing demands to be solved if life shall be able and continue during the course of time.

The self-understanding and the self-management of societies is crucial for their ability to used engineering to improve life. This deserves communication and education to a sufficient extend, appropriate public rules of management, otherwise the necessary understanding and the freedom to act is lacking to use engineering  in the right way.

PHILOSOPHY

Without communication no common constructive process can happen. Communication happens according to many  implicit rules compressed in the formula who when can speak how about what with whom etc. Communication enables cognitive processes of for instance  understanding, explanations, lines of arguments.  Especially important for survival is the ability to make true descriptions and the ability to decide whether a statement is true or not. Without this basic ability communication will break down, coordination will break down, life will break down.

The basic discipline to clarify the rules and conditions of true communication, of cognition in general, is called Philosophy. All the more modern empirical disciplines are specializations of the general scope of Philosophy and it is Philosophy which integrates all the special disciplines in one, coherent framework (this is the ideal; actually we are far from this ideal).

Thus to describe the process of engineering driven by different kinds of actors which are coordinating themselves by communication is primarily the task of philosophy with all their sub-disciplines.

Thus some of the topics of Philosophy are language, text, theory, verification of a  theory, functions within theories as algorithms, computation in general, inferences of true statements from given theories, and the like.

In this text I apply Philosophy as far as necessary. Especially I am introducing a new process model extending the classical systems engineering approach by including the driving actors explicitly in the formal representation of the process. Learning machines are included as standard tools to improve human thinking and communication. You can name this Augmented Social Learning Systems (ASLS). Compared to the wording Augmented Intelligence (AI) (as used for instance by the IBM marketing) the ASLS concept stresses that the primary point of reference are the biological systems which created and create machine intelligence as a new tool to enhance biological intelligence as part of biological learning systems. Compared to the wording Collective Intelligence (CI) (as propagated by the MIT, especially by Thomas W.Malone and colleagues) the spirit of the CI concept seems to be   similar, but perhaps only a weak similarity.

AAI THEORY V2 –EPISTEMOLOGY OF THE AAI-EXPERTS

eJournal: uffmm.org,
ISSN 2567-6458, 26.Januar 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

An overview to the enhanced AAI theory  version 2 you can find here.  In this post we talk about the fourth chapter dealing with the epistemology of actors within an AAI analysis process.

EPISTEMOLOGY AND THE EMPIRICAL SCIENCES

Epistemology is a sub-discipline of general philosophy. While a special discipline in empirical science is defined by a certain sub-set of the real world RW  by empirical measurement methods generating empirical data which can be interpreted by a formalized theory,  philosophy  is not restricted to a sub-field of the real world. This is important because an empirical discipline has no methods to define itself.  Chemistry e.g. can define by which kinds of measurement it is gaining empirical data   and it can offer different kinds of formal theories to interpret these data including inferences to forecast certain reactions given certain configurations of matters, but chemistry is not able  to explain the way how a chemist is thinking, how the language works which a chemist is using etc. Thus empirical science presupposes a general framework of bodies, sensors, brains, languages etc. to be able to do a very specialized  — but as such highly important — job. One can define ‘philosophy’ then as that kind of activity which tries to clarify all these  conditions which are necessary to do science as well as how cognition works in the general case.

Given this one can imagine that philosophy is in principle a nearly ‘infinite’ task. To get not lost in this conceptual infinity it is recommended to start with concrete processes of communications which are oriented to generate those kinds of texts which can be shown as ‘related to parts of the empirical world’ in a decidable way. This kind of texts   is here called ’empirically sound’ or ’empirically true’. It is to suppose that there will be texts for which it seems to be clear that they are empirically sound, others will appear ‘fuzzy’ for such a criterion, others even will appear without any direct relation to empirical soundness.

In empirical sciences one is using so-called empirical measurement procedures as benchmarks to decided whether one has empirical data or not, and it is commonly assumed that every ‘normal observer’ can use these data as every other ‘normal observer’. But because individual, single data have nearly no meaning on their own one needs relations, sets of relations (models) and even more complete theories, to integrate the data in a context, which allows some interpretation and some inferences for forecasting. But these relations, models, or theories can not directly be inferred from the real world. They have to be created by the observers as ‘working hypotheses’ which can fit with the data or not. And these constructions are grounded in  highly complex cognitive processes which follow their own built-in rules and which are mostly not conscious. ‘Cognitive processes’ in biological systems, especially in human person, are completely generated by a brain and constitute therefore a ‘virtual world’ on their own.  This cognitive virtual world  is not the result of a 1-to-1 mapping from the real world into the brain states.  This becomes important in that moment where the brain is mapping this virtual cognitive world into some symbolic language L. While the symbols of a language (sounds or written signs or …) as such have no meaning the brain enables a ‘coding’, a ‘mapping’ from symbolic expressions into different states of the brain. In the light’ of such encodings the symbolic expressions have some meaning.  Besides the fact that different observers can have different encodings it is always an open question whether the encoded meaning of the virtual cognitive space has something to do with some part of the empirical reality. Empirical data generated by empirical measurement procedures can help to coordinate the virtual cognitive states of different observers with each other, but this coordination is not an automatic process. Empirically sound language expressions are difficult to get and therefore of a high value for the survival of mankind. To generate empirically sound formal theories is even more demanding and until today there exists no commonly accepted concept of the right format of an empirically sound theory. In an era which calls itself  ‘scientific’ this is a very strange fact.

EPISTEMOLOGY OF THE AAI-EXPERTS

Applying these general considerations to the AAI experts trying to construct an actor story to describe at least one possible path from a start state to a goal state, one can pick up the different languages the AAI experts are using and asking back under which conditions these languages have some ‘meaning’ and under which   conditions these meanings can be called ’empirically sound’?

In this book three different ‘modes’ of an actor story will be distinguished:

  1. A textual mode using some ordinary everyday language, thus using spoken language (stored in an audio file) or written language as a text.
  2. A pictorial mode using a ‘language of pictures’, possibly enhanced by fragments of texts.
  3. A mathematical mode using graphical presentations of ‘graphs’ enhanced by symbolic expressions (text) and symbolic expressions only.

For every mode it has to be shown how an AAI expert can generate an actor story out of the virtual cognitive world of his brain and how it is possible to decided the empirical soundness of the actor story.

 

 

THE BETTER WORLD PROJECT IDEA

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org

Last changes: 9.Oct.2018 (Engineering part)

Author: Gerd Doeben-Henisch

Enhanced version of the 'Better World Project' Idea by making explicit the engineering part touching all other aspects
Enhanced version of the ‘Better World Project’ Idea by making explicit the engineering part touching all other aspects

 

The online-book project published on the uffmm.org website has to be seen within a bigger idea which can be named ‘The better world project’.

As outlined in the figure above you can see that the AAIwSE theory is the nucleus of a project which intends to enable a global learning space which connects individual persons as well as schools, universities, cities as well as companies, and even more if wanted.

There are other ideas around using the concept ‘better world’, butt these other concepts are targeting other subjects. In this view here the engineering perspective is laying the ground to build new more effective systems to enhance all aspects of life.

As you already can detect in the AAAIwSE theory published so far there exists a new and enlarged vision of the acting persons, the engineers as the great artists of the real world. Taking this view seriously there will be a need for a new kind of spirituality too which is enabling the acting persons to do all this with a vital interest in the future of life in the universe.

Actually the following websites are directly involved in the ‘Better World Project Idea’: this site ‘uffmm.org’ (in English)  and (in German)  ‘cognitiveagent.org‘ and ‘Kommunalpolitik & eGaming‘. The last link points to an official project of the Frankfurt University of Applied Sciences (FRA-UAS) which will apply the AAI-Methods to all communities in Germany (about 11.000).

ACTOR-ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP). An Actor Centered Approach to Problem Solving

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

ATTENTION: The actual Version  you will find HERE.

Draft version 22.June 2018

Update 26.June 2018 (Chapter AS-AM Summary)

Update 4.July 2018 (Chapter 4 Actor Model; improving the terminology of environments with actors, actors as input-output systems, basic and real interface, a first typology of input-output systems…)

Update 17.July 2018 (Preface, Introduction new)

Update 19.July 2018 (Introduction final paragraph!, new chapters!)

Update 20.July 2018 (Disentanglement of chapter ‘Simulation & Verification’ into two independent chapters; corrections in the chapter ‘Introduction’; corrections in chapter ‘AAI Analysis’; extracting ‘Simulation’ from chapter ‘Actor Story’ to new chapter ‘Simulation’; New chapter ‘Simulation’; Rewriting of chapter ‘Looking Forward’)

Update 22.July 2018 (Rewriting the beginning of the chapter ‘Actor Story (AS)’, not completed; converting chapter ‘AS+AM Summary’ to ‘AS and AM Philosophy’, not completed)

Update 23.July 2018 (Attaching a new chapter with a Case Study illustrating an actor story (AS). This case study is still unfinished. It is a case study of  a real project!)

Update 7.August 2018 (Modifying chapter Actor Story, the introduction)

Update 8.August 2018 (Modifying chapter  AS as Text, Comic, Graph; especially section about the textual mode and the pictorial mode; first sketch for a mapping from the textual mode into the pictorial mode)

Update 9.August 2018 (Modification of the section ‘Mathematical Actor Story (MAS) in chapter 4).

Update 11.August 2018 (Improving chapter 3 ‘Actor Story; nearly complete rewriting of chapter 4 ‘AS as text, comic, graph’.)

Update 12.August 2018 (Minor corrections in the chapters 3+4)

Update 13.August 2018 (I am still catched by the chapters 3+4. In chapter  the cognitive structure of the actors has been further enhanced; in chapter 4 a complete example of a mathematical actor story could now been attached.)

Update 14.August 2018 (minor corrections to chapter 4 + 5; change-statements define for each state individual combinatorial spaces (a little bit like a quantum state); whether and how these spaces will be concretized/ realized depends completely from the participating actors)

Update 15.August 2018 (Canceled the appendix with the case study stub and replaced it with an overview for  a supporting software tool which is needed for the real usage of this theory. At the moment it is open who will write the software.)

Update 2.October 2018 (Configuring the whole book now with 3 parts: I. Theory, II. Application, III. Software. Gerd has his focus on part I, Zeynep will focus on part II and ‘somebody’ will focus on part III (in the worst case we will — nevertheless — have a minimal version :-)). For a first quick overview about everything read the ‘Preface’ and the ‘Introduction’.

Update 4.November 2018 (Rewriting the Introduction (and some minor corrections in the Preface). The idea of the rewriting was to address all the topics which will be discussed in the book and pointing out to the logical connections between them. This induces some wrong links in the following chapters, which are not yet updated. Some chapters are yet completely missing. But to improve the clearness of the focus and the logical inter-dependencies helps to elaborate the missing texts a lot. Another change is the wording of the title. Until now it is difficult to find a title which is exactly matching the content. The new proposal shows the focus ‘AAI’ but lists the keywords of the main topics within AAA analysis because these topics are usually not necessarily associated with AAI.)

ACTOR-ACTOR INTERACTION [AAI]. An Actor Centered Approach to Problem Solving. Combining Engineering and Philosophy

by

GERD DOEBEN-HENISCH in cooperation with  LOUWRENCE ERASMUS, ZEYNEP TUNCER

LATEST  VERSION AS PDF

BACKGROUND INFORMATION 19.Dec.2018: Application domain ‘Communal Planning and e-Gaming’

BACKGROUND INFORMATION 24.Dec.2018: The AAI-paradigm and Quantum Logic

PRE-VIEW: NEW EXPANDED AAI THEORY 23.January 2019: Outline of the new expanded  AAI Paradigm. Before re-writing the main text with these ideas the new advanced AAI theory will first be tested during the summer 2019 within a lecture with student teams as well as in  several workshops outside the Frankfurt University of Applied Sciences with members of different institutions.

AASE – Actor-Actor Systems Engineering. Theory & Applications. Micro-Edition (Vers.9)

eJournal: uffmm.org, ISSN 2567-6458
13.June  2018
Email: info@uffmm.org
Authors: Gerd Doeben-Henisch, Zeynep Tuncer,  Louwrence Erasmus
Email: doeben@fb2.fra-uas.de
Email: gerd@doeben-henisch.de

PDF

CONTENTS

1 History: From HCI to AAI …
2 Different Views …
3 Philosophy of the AAI-Expert …
4 Problem (Document) …
5 Check for Analysis …
6 AAI-Analysis …
6.1 Actor Story (AS) . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1 Textual Actor Story (TAS) . . . . . . . . . . . . . . .
6.1.2 Pictorial Actor Story (PAT) . . . . . . . . . . . . . .
6.1.3 Mathematical Actor Story (MAS) . . . . . . . . . . .
6.1.4 Simulated Actor Story (SAS) . . . . . . . . . . . . .
6.1.5 Task Induced Actor Requirements (TAR) . . . . . . .
6.1.6 Actor Induced Actor Requirements (UAR) . . . . . .
6.1.7 Interface-Requirements and Interface-Design . . . .
6.2 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Actor and Actor Story . . . . . . . . . . . . . . . . .
6.2.2 Actor Model . . . . . . . . . . . . . . . . . . . . . .
6.2.3 Actor as Input-Output System . . . . . . . . . . . .
6.2.4 Learning Input-Output Systems . . . . . . . . . . . .
6.2.5 General AM . . . . . . . . . . . . . . . . . . . . . .
6.2.6 Sound Functions . . . . . . . . . . . . . . . . . . .
6.2.7 Special AM . . . . . . . . . . . . . . . . . . . . . .
6.2.8 Hypothetical Model of a User – The GOMS Paradigm
6.2.9 Example: An Electronically Locked Door . . . . . . .
6.2.10 A GOMS Model Example . . . . . . . . . . . . . . .
6.2.11 Further Extensions . . . . . . . . . . . . . . . . . .
6.2.12 Design Principles; Interface Design . . . . . . . . .
6.3 Simulation of Actor Models (AMs) within an Actor Story (AS) .
6.4 Assistive Actor-Demonstrator . . . . . . . . . . . . . . . . . .
6.5 Approaching an Optimum Result . . . . .
7 What Comes Next: The Real System
7.1 Logical Design, Implementation, Validation . . . .
7.2 Conceptual Gap In Systems Engineering? . . .
8 The AASE-Paradigm …
References

Abstract

This text is based on the the paper “AAI – Actor-Actor Interaction. A Philosophy of Science View” from 3.Oct.2017 and version 11 of the paper “AAI – Actor-Actor Interaction. An Example Template” and it   transforms these views in the new paradigm ‘Actor- Actor Systems Engineering’ understood as a theory as well as a paradigm for and infinite set of applications. In analogy to the slogan ’Object-Oriented Software Engineering (OO SWE)’ one can understand the new acronym AASE as a systems engineering approach where the actor-actor interactions are the base concepts for the whole engineering process. Furthermore it is a clear intention to view the topic AASE explicitly from the point of view of a theory (as understood in Philosophy of Science) as well as from the point of view of possible applications (as understood in systems engineering). Thus the classical term of Human-Machine Interaction (HMI) or even the older Human-Computer Interaction (HCI) is now embedded within the new AASE approach. The same holds for the fuzzy discipline of Artificial Intelligence (AI) or the subset of AI called Machine Learning (ML). Although the AASE-approach is completely in its beginning one can already see how powerful this new conceptual framework  is.

 

 

AAI – Actor-Actor Interaction. A Toy-Example, No.1

eJournal: uffmm.org, ISSN 2567-6458
13.Dec.2017
Email: info@uffmm.org

Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Contents

1 Problem ….. 3
2 AAI-Check ….. 3
3 Actor-Story (AS) …..  3
3.1 AS as a Text . . . . . . . . . . . . . . . . . .3
3.2 Translation of a Textual AS into a Formal AS …… 4
3.3 AS as a Formal Expression . . . . . . . . . .4
3.4 Translation of a Formal AS into a Pictorial AS… 5
4 Actor-Model (AM) …..  5
4.1 AM for the User as a Text . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .6
4.2 AM for the System as a Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Combined AS and AM as a Text …..  6
5.1 AM as an Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Simulation …..  7
6.1 Simulating the AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
6.2 Simulating the AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
6.3 Simulating AS with AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Appendix: Formalisms ….. 8
7.1 Set of Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
7.2 Predicate Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8 Appendix: The Meaning of Expressions …11
8.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.2 Changes by Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Abstract

Following the general concepts of the paper ’AAI – Actor-Actor Interaction. A Philosophy of Science View’ from 3.Oct.2017 this paper illustrates a simple application where the difference as well as the
interaction between an actor story and several actor models is shown. The details of interface-design as well as the usability-testing are not part of this example.(This example replaces the paper with the title
’AAI – Case Study Actor Story with Actor Model. Simple Grid-Environment’ from 15.Nov.2017). One special point is the meaning of the formal expressions of the actor story.

Attention: This toy example is not yet in fully conformance with the newly published Case-Study-Template

To read the full text see PDF

Clearly, one can debate whether a ‘toy-example’ makes sens, but the complexity of the concepts in this AAI-approach is to great to illustrate these in the beginning  with a realistic example without loosing the idea. The author of the paper has tried many — also very advanced — versions in the last years and this is the first time that he himself has the feeling that at least the idea is now clear enough. And from teaching students it is very clear, if you cannot explain an idea in a toy-example you never will be able to apply it to real big problems…

 

AAI – Actor-Actor Interaction. A Philosophy of Science View

AAI – Actor-Actor Interaction.
A Philosophy of Science View
eJournal: uffmm.org, ISSN 2567-6458

Gerd Doeben-Henisch
info@uffmm.org
gerd@doeben-henisch.de

PDF

ABSTRACT

On the cover page of this blog you find a first general view on the subject matter of an integrated engineering approach for the future. Here we give a short description of the main idea of the analysis phase of systems engineering how this will be realized within the actor-actor interaction paradigm as described in this text.

INTRODUCTION

Overview of the analysis phase of systems engineering as realized within an actor-actor interaction paradigm
Overview of the analysis phase of systems engineering as realized within an actor-actor interaction paradigm

As you can see in figure Nr.1 there are the following main topics within the Actor-Actor Interaction (AAI) paradigm as used in this text (Comment: The more traditional formula is known as Human-Machine Interaction (HMI)):

Triggered by a problem document D_p from the problem phase (P) of the engineering process the AAI-experts have to analyze, what are the potential requirements following from this document, all the time also communicating with the stakeholder to keep in touch with the hidden intentions of the stakeholder.

The idea is to identify at least one task (T) with at least one goal state (G) which shall be arrived after running a task.

A task is assumed to represent a sequence of states (at least a start state and a goal state) which can have more than one option in every state, not excluding repetitions.

Every task presupposes some context (C) which gives the environment for the task.

The number of tasks and their length is in principle not limited, but their can be certain constraints (CS) given which have to be fulfilled required by the stakeholder or by some other important rules/ laws. Such constraints will probably limit the number of tasks as well as their length.

Actor Story

Every task as a sequence of states can be viewed as a story which describes a process. A story is a text (TXT) which is static and hides the implicit meaning in the brains of the participating actors. Only if an actor has some (learned) understanding of the used language then the actor is able to translate the perceptions of the process in an appropriate text and vice versa the text into corresponding perceptions or equivalently ‘thoughts’ representing the perceptions.

In this text it is assumed that a story is describing only the observable behavior of the participating actors, not their possible internal states (IS). For to describe the internal states (IS) it is further assumed that one describes the internal states in a new text called actor model (AM). The usual story is called an actor story (AS). Thus the actor story (AS) is the environment for the actor models (AM).

In this text three main modes of actor stories are distinguished:

  1. An actor story written in some everyday language L_0 called AS_L0 .
  2. A translation of the everyday language L_0 into a mathematical language L_math which can represent graphs, called AS_Lmath.
  3. A translation of the hidden meaning which resides in the brains of the AAI-experts into a pictorial language L_pict (like a comic strip), called AS_Lpict.

To make the relationship between the graph-version AS_Lmath and the pictorial version AS_Lpict visible one needs an explicit mapping Int from one version into the other one, like: Int : AS_Lmath <—> AS_Lpict. This mapping Int works like a lexicon from one language into another one.

From a philosophy of science point of view one has to consider that the different kinds of actor stories have a meaning which is rooted in the intended processes assumed to be necessary for the realization of the different tasks. The processes as such are dynamic, but the stories as such are static. Thus a stakeholder (SH) or an AAI-expert who wants to get some understanding of the intended processes has to rely on his internal brain simulations associated with the meaning of these stories. Because every actor has its own internal simulation which can not be perceived from the other actors there is some probability that the simulations of the different actors can be different. This can cause misunderstandings, errors, and frustrations.(Comment: This problem has been discussed in [DHW07])

One remedy to minimize such errors is the construction of automata (AT) derived from the math mode AS_Lmath of the actor stories. Because the math mode represents a graph one can derive Der from this version directly (and automatically) the description of an automaton which can completely simulate the actor story, thus one can assume Der(AS_Lmath) = AT_AS_Lmath.

But, from the point of view of Philosophy of science this derived automaton AT_AS_Lmath is still only a static text. This text describes the potential behavior of an automaton AT. Taking a real computer (COMP) one can feed this real computer with the description of the automaton AT AT_AS_Lmath and make the real computer behave like the described automaton. If we did this then we have a real simulation (SIM) of the theoretical behavior of the theoretical automaton AT realized by the real computer COMP. Thus we have SIM = COMP(AT_AS_Lmath). (Comment: These ideas have been discussed in [EDH11].)

Such a real simulation is dynamic and visible for everybody. All participating actors can see the same simulation and if there is some deviation from the intention of the stakeholder then this can become perceivable for everybody immediately.

Actor Model

As mentioned above the actor story (AS) describes only the observable behavior of some actor, but not possible internal states (IS) which could be responsible for the observable behavior.

If necessary it is possible to define for every actor an individual actor model; indeed one can define more than one model to explore the possibilities of different internal structures to enable a certain behavior.

The general pattern of actor models follows in this text the concept of input-output systems (IOSYS), which are in principle able to learn. What the term ‘learning’ designates concretely will be explained in later sections. The same holds of the term ‘intelligent’ and ‘intelligence’.

The basic assumptions about input-output systems used here reads a follows:

Def: Input-Output System (IOSYS)

IOSYS(x) iff x=< I, O, IS, phi>
phi : I x IS —> IS x O
I := Input
O := Output
IS := Internal

As in the case of the actor story (AS) the primary descriptions of actor models (AM) are static texts. To make the hidden meanings of these descriptions ‘explicit’, ‘visible’ one has again to convert the static texts into descriptions of automata, which can be feed into real computers which in turn then simulate the behavior of these theoretical automata as a real process.

Combining the real simulation of an actor story with the real simulations of all the participating actors described in the actor models can show a dynamic, impressive process which is full visible to all collaborating stakeholders and AAI-experts.

Testing

Having all actor stories and actor models at hand, ideally implemented as real simulations, one has to test the interaction of the elaborated actors with real actors, which are intended to work within these explorative stories and models. This is done by actor tests (former: usability tests) where (i) real actors are confronted with real tasks and have to perform in the intended way; (ii) real actors are interviewed with questionnaires about their subjective feelings during their task completion.

Every such test will yield some new insights how to change the settings a bit to gain eventually some improvements. Repeating these cycles of designing, testing, and modifying can generate a finite set of test-results T where possibly one subset is the ‘best’ compared to all the others. This can give some security that this design is probably the ‘relative best design’ with regards to T.

Further Readings:

  1. Analysis
  2. Simulation
  3. Testing
  4. User Modeling
  5. User Modeling and AI

For a newer version of the AAi-text see HERE..

REFERENCES

[DHW07] G. Doeben-Henisch and M. Wagner. Validation within safety critical systems engineering from a computation semiotics point of view.
Proceedings of the IEEE Africon2007 Conference, pages Pages: 1 – 7, 2007.
[EDH11] Louwrence Erasmus and Gerd Doeben-Henisch. A theory of the
system engineering process. In ISEM 2011 International Conference. IEEE, 2011.

EXAMPLE

For a toy-example to these concepts please see the post AAI – Actor-Actor Interaction. A Toy-Example, No.1

uffmm – RESTART AS SCIENTIFIC WORKPLACE

RESTART OF UFFMM AS SCIENTIFIC WORKPLACE.
For the Integrated Engineering of the Future (SW4IEF)
Campaining the Actor-Actor Systems Engineering (AASE) paradigm

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org

Last Update June-22, 2018, 15:32 CET.  See below: Case Studies —  Templates – AASE Micro Edition – and Scheduling 2018 —

RESTART

This is a complete new restart of the old uffmm-site. It is intended as a working place for those people who are interested in an integrated engineering of the future.

SYSTEMS ENGINEERING

A widely known and useful concept for a general approach to the engineering of problems is systems engineering (SE).

Open for nearly every kind of a possible problem does a systems engineering process (SEP) organize the process how to analyze the problem, and turn this analysis into a possible design for a solution. This proposed solution will be examined by important criteria and, if it reaches an optimal version, it will be implemented as a real working system. After final evaluations this solution will start its carrier in the real world.

PHILOSOPHY OF SCIENCE

In a meta-scientific point of view the systems engineering process can become itself the object of an analysis. This is usually done by a discipline called philosophy of science (PoS). Philosophy of science is asking, e.g., what the ‘ingredients’ of an systems-engineering process are, or how these ingredients do interact? How can such a process ‘fail’? ‘How can such a process be optimized’? Therefore a philosophy of science perspective can help to make a systems engineering process more transparent and thereby supports an optimization of these processes.

AAI (KNOWN AS HMI, HCI …)

A core idea of the philosophy of science perspective followed in this text is the assumption, that a systems engineering process is primarily based on different kinds of actors (AC) whose interactions enable and direct the whole process. These assumptions are also valid in that case, where the actors are not any more only biological systems like human persons and non-biological systems called machines, but also in that case where the traditional machines (M) are increasingly replaced by ‘intelligent machines (IM)‘. Therefore the well know paradigm of human-machine interaction (HMI) — or earlier ‘human-computer interaction (HCI)’  will be replaced in this text by the new paradigm of Actor-Actor Interaction (AAI). In this new version the main perspective is not the difference of man on one side and machines on the other but the kind of interactions between actors of all kind which are necessary and possible.

INTELLIGENT MACHINES

The  concept of intelligent machines (IM) is understood here as a special case of the general Actor (A) concept which includes as other sub-cases biological systems, predominantly humans as instantiations of the species Homo Sapiens. While until today the question of biological intelligence and machine intelligence is usually treated separately and differently it is intended in this text to use one general concept of intelligence for all actors. This allows then more direct comparisons and evaluations. Whether biological actors are in some sense better than the non-biological actors or vice versa can seriously only be discussed when the used concept of intelligence is the same.

ACTOR STORY AND ACTOR MODELS

And, as it will be explained in the following sections, the used paradigm of actor-actor interactions uses the two main concepts of actor story (AS) as well as actor model (AM). Actor models are embedded in the actor stories. Whether an actor model describes biological or non-biological actors does not matter. Independent of the inner structures of an actor model (which can be completely different) the actor story is always  completely described in terms of observable behavior which are the same for all kinds of actors (Comment: The major scientific disciplines for the analysis of behavior are biology, psychology, and sociology).

AASE PARADIGM

In analogy to the so-called ‘Object-Oriented (OO) approach in Software-Engineering (SWE)’ we campaign here the ‘Actor-Actor (AA) Systems Engineering (SE)’ approach. This takes the systems Engineering approach as a base concepts and re-works the whole framework from the point of view of the actor-actor paradigm.  AASE is seen here as a theory as well as an   domain of applications.

Ontologies of the AASE paradigm
Figure: Ontologies of the AASE paradigm

To understand the different perspectives of the used theory it can help to the figure ‘AASE-Paradigm Ontologies’. Within the systems engineering process (SEP) we have AAI-experts as acting actors. To describe these we need a ‘meta-level’ realized by a ‘philosophy of the actor’. The AAI-experts themselves are elaborating within an AAI-analysis an actor story (AS) as framework for different kinds of intended actors. To describe the inner structures of these intended actors one needs different kinds of ‘actor models’. The domain of actor-model structures overlaps with the domain of ‘machine learning (ML)’ and with ‘artificial intelligence (AI)’.

SOFTWARE

What will be described and developed separated from these theoretical considerations is an appropriate software environment which allows the construction of solutions within the AASE approach including e.g. the construction of intelligent machines too. This software environment is called in this text emerging-mind lab (EML) and it will be another public blog as well.

 

THEORY MICRO EDITION & CASE STUDIES

How we proceed

Because the overall framework of the intended integrated theory is too large to write it down in one condensed text with  all the necessary illustrating examples we decided in Dec 2017 to follow a bottom-up approach by writing primarily case studies from different fields. While doing this we can introduce stepwise the general theory by developing a Micro Edition of the Theory in parallel to the case studies. Because the Theory Micro Edition has gained a sufficient minimal completeness already in April 2018 we do not need anymore a separate   template for case studies. We will use the Theory Micro Edition  as  ‘template’ instead.

To keep the case studies readable as far as possible all needed mathematical concepts and formulas will be explained in a separate appendix section which is central for all case studies. This allows an evolutionary increase in the formal apparatus used for the integrated theory.

THEORY IN A BOOK FORMAT

(Still not final)

Here you can find the actual version of the   theory which will continuously be updated and extended by related topics.

At the end of the text you find a list of ToDos where everybody is invited to collaborate. The main editor is Gerd Doeben-Henisch deciding whether the proposal fits into the final text or not.

Last Update 22.June 2018

Philosophy of the Actor

This sections describes basic assumptions about the cognitive structure of the human AAI expert.

From HCI to AAI. Some Bits of History

This sections describes main developments in the history from HCI to AAI.

SCHEDULE 2018

The Milestone for a first outline in a book format has been reached June-22, 2018. The   milestone for a first final version   is  scheduled   for October-4, 2018.