Category Archives: meaning

CHATGPT4 – PHILOSOPHY : Digging into the Human Meaning Space

Last Change: Aug 14, 2024

Inquirer: Gerd Doeben-Henisch

Email: info@uffmm.org

CONTEXT

This post is part of the section Dialogues with chatGPT4.

SUMMARY

Inquirer to chatGPT4: I will take the following short summary as bridge to the follow-up ideas : (1) Language expressions are composed of symbols wich are determined by rules and structures; (2) The inner states related to meaning are diverse and involve various cognitive, emotional, and sensory processes; (3) At the core are mental models that represent our understanding of the world. These models include abstract ideas, concrete objects, and complex scenarios. Furthermore the mind organizes concepts, emotions, sensory experiences, and language expressions into a network of associations. (4) Cognitive processes like inference and reasoning help us by connecting existing knowledge with knowledge about possible changes, to derive possible new states. Can you agree with this?

ChatGPT4: Yes, I agree with your summary. You’ve captured the essential points about how language expressions, inner states, mental models, and cognitive processes interact to create and understand meaning.

CHATGPT4 – PHILOSOPHY : Digging into the Human Meaning Space

Hi Chat, three days ago we reached the following conclusion centering around the ‘human meaning space’ : “Philosophical texts themselves are important, but they gain their true significance within the human meaning space that individuals create through their interactions with these texts and with each other. This meaning space, rooted in the experiences and interpretations of individual persons, is what ultimately forms the building blocks of a unified philosophical tradition. The tradition is not a static collection of texts, but a dynamic, evolving process of meaning-making that is constantly being enriched and redefined by those who engage with it.” Do you know something about the structure and dynamics of this meaning space?

The concept of a **human meaning space** is a fascinating and complex idea, touching on cognitive science, linguistics, philosophy, and social theory. While the idea isn’t always explicitly framed in these terms, we can explore the structure and dynamics of this meaning space by drawing on various theories and concepts from these fields.

### 1. **Structure of the Human Meaning Space**:
The structure of the human meaning space can be understood as a multi-layered, interconnected web of meanings, built up through individual and collective experiences, language, and cultural practices. Here are some key elements:

– **Conceptual Frameworks**: At the core of the meaning space are conceptual frameworks—sets of basic concepts and categories that individuals and cultures use to organize and interpret the world. These include ideas about time, space, causality, identity, morality, and so on. Different cultures and individuals may have different conceptual frameworks, but they often share certain universal elements.

– **Language**: Language plays a central role in structuring the meaning space. Words, sentences, and narratives are the tools through which we express and communicate our thoughts and experiences. The structure of language, including grammar, syntax, and semantics, shapes how we perceive and describe the world (?)

– **Cultural Symbols and Norms**: Beyond language (?), cultural symbols (like religious icons, flags, or even corporate logos) and social norms (like laws or customs) contribute to the structure of the meaning space. These elements provide shared references and guide behavior, helping individuals navigate the social world.

– **Individual and Collective Memory**: The meaning space is also shaped by memory—both individual memories of personal experiences and collective memories shared by a community or society. These memories influence how we interpret new experiences and how we understand our place in the world.

### 2. **Dynamics of the Human Meaning Space**:
The meaning space is not static; it is constantly evolving as individuals and communities interact with the world and each other. Here are some key dynamics:

– **Interpretation and Reinterpretation**: Individuals continuously interpret and reinterpret experiences and texts. New experiences, ideas, and cultural influences can lead to shifts in how concepts are understood, how language is used, and how meaning is constructed. This process of reinterpretation is central to the evolution of philosophical traditions.

– **Dialogue and Discourse**: Meaning is often shaped and reshaped through dialogue and discourse. When individuals engage in conversation or debate, they exchange ideas, challenge assumptions, and co-create new understandings. This dynamic exchange helps to refine and expand the meaning space.

– **Cultural Evolution and Adaptation**: As cultures evolve, so too does the meaning space. New technologies, social movements, and global interactions introduce new concepts and symbols into the cultural lexicon, which can alter or expand the collective meaning space. For example, the advent of digital technology has introduced new concepts like “virtual reality” and “cyberspace” that reshape our understanding of reality and communication.

– **Learning and Education**: The transmission of knowledge through education plays a crucial role in the dynamics of the meaning space. As individuals learn from teachers, texts, and experiences, they internalize and modify the existing meaning space, contributing to its continuity and transformation.

– **Emergence of New Concepts**: Sometimes, entirely new concepts emerge within the meaning space, often as a response to new challenges or discoveries. These emergent concepts can reshape the structure of the meaning space, leading to new ways of thinking and understanding.

### 3. **Philosophical Implications**:
– **Hermeneutics**: The study of interpretation, especially of texts, is central to understanding the dynamics of the meaning space. Hermeneutics explores how meanings are constructed, how texts are understood, and how interpretations evolve over time.

– **Social Constructivism**: This theory posits that much of what we consider reality is socially constructed through language, culture, and shared practices. The meaning space, in this view, is a collective construction, shaped by social interactions and cultural norms.

– **Phenomenology**: This philosophical approach focuses on the structures of experience and consciousness. It emphasizes how individuals perceive and make sense of the world, highlighting the subjective aspect of the meaning space.

### Conclusion:
The **human meaning space** is a dynamic, multi-layered structure shaped by language, culture, memory, and individual experiences. It evolves through interpretation, dialogue, cultural change, and the emergence of new ideas. Understanding this space requires considering both its structural elements and the dynamic processes that continuously shape and reshape it. This concept helps explain how philosophical traditions remain vibrant and relevant, constantly adapting to new contexts and challenges through the interplay of shared meanings and individual interpretations.

Hi Chat, it seems to me, that I have to differentiate my question a bit more: Yes, the ‘human meaning space’ includes some ‘common feature’ between different individual humans which is manifested by the shared language. But the ‘meaning’ of a languag expression is bound to the inner processes of each individual person. Therefore the usage of the samelanguage expression does not garantee that different individual persons associate automatically the ‘same meaning’ with a certain language expresseion. Would you agree?

Yes, I completely agree with your differentiation. The idea that the meaning of a language expression is tied to the internal processes of each individual person is crucial. Here’s how this distinction can be understood:

### 1. **Shared Language vs. Individual Interpretation**:
– **Shared Language**: Language provides a common framework or set of symbols that allows individuals to communicate. This shared aspect of language is what enables us to exchange ideas, convey information, and engage in dialogue.
– **Individual Interpretation**: However, the **meaning** that each person associates with a particular language expression is deeply influenced by their personal experiences, emotions, memories, and cognitive processes. As a result, even though two people might use the same word or phrase, they might not associate it with exactly the same meaning.

### 2. **The Gap Between Expression and Interpretation**:
– **Subjectivity of Meaning**: Meaning is inherently subjective because it’s constructed within the mind of each individual. When someone hears or reads a word, their brain processes it based on their unique set of experiences and mental associations. For example, the word “home” might evoke a sense of warmth and security in one person but might bring up feelings of discomfort or displacement in another, depending on their personal history.
– **Context and Nuance**: The context in which a word or phrase is used also plays a significant role in how it’s interpreted. The same word can carry different meanings in different situations, and individuals might pick up on different nuances depending on their personal context.

### 3. **Communication and Miscommunication**:
– **Potential for Misunderstanding**: Because of these individual differences in interpretation, there is always the potential for misunderstanding or miscommunication. People might think they are conveying a certain meaning when using a word, but the listener or reader might interpret it differently based on their own mental framework.
– **Clarification Through Dialogue**: This is why dialogue and conversation are so important. By engaging in discussion, individuals can clarify their meanings, ask questions, and work toward a shared understanding, even if their initial interpretations were different.

### 4. **Philosophical Perspectives**:
– **Hermeneutics**: This branch of philosophy, particularly associated with thinkers like Hans-Georg Gadamer, emphasizes the importance of interpretation in understanding meaning. Hermeneutics suggests that every act of communication involves a process of interpretation, and this process is influenced by the interpreter’s historical and cultural context.
– **Wittgenstein’s Language Games**: Ludwig Wittgenstein introduced the idea of “language games,” where the meaning of words is understood through their use in specific contexts or activities. This highlights how meaning can vary depending on the “game” being played, and how understanding is often a matter of grasping the rules of that particular game, which can differ from one person to another.

### 5. **Implications for the Human Meaning Space**:
– The **human meaning space** is not a monolithic or uniform entity. It’s made up of countless individual meaning spaces that overlap and intersect in complex ways. The shared language provides a bridge between these individual spaces, but the meanings that cross this bridge are filtered through each person’s unique interpretive framework.
– **Interpersonal Interaction**: The richness of human communication comes from this diversity of meaning, but it also requires effort to navigate and understand. Building a shared understanding often involves recognizing and respecting these differences, and finding ways to connect across them.

### Conclusion:
While language gives us a shared set of symbols and expressions, the meanings attached to those expressions are deeply personal and subjective. The usage of the same language expression does not guarantee that different individuals will associate the same meaning with it, due to the influence of their unique internal processes and experiences. This complexity is both a challenge and a richness in human communication, requiring ongoing effort to achieve mutual understanding.

OK, let us take the following statement as starting point for the next ideas: “The human meaning space is made up of countless individual meaning spaces that overlap and intersect in complex ways. … Building a shared understanding often involves recognizing and respecting these differences, and finding ways to connect across them.” Here one follow-up question : How can a human actor A with his individual meaning space coordinate his individual meaning space with the individul meaning space of another human actor B?

Coordinating individual meaning spaces between two human actors, A and B, involves a dynamic process of communication, negotiation, and mutual understanding. This process requires both actors to engage in various strategies that allow them to bridge the differences in their interpretations and experiences. Here are some key ways in which this coordination can occur:

### 1. **Active Communication and Dialogue**:
– **Expressing and Clarifying Meanings**: Actor A can express their thoughts, feelings, and interpretations clearly (?) to Actor B, and vice versa. This involves articulating not just what they think, but why they think it, including the experiences or reasoning behind their interpretations. Clarification questions, paraphrasing, and feedback loops are critical in ensuring that both parties understand each other’s intended meanings.
– **Active Listening**: Effective coordination requires not just speaking but also listening. Actor A needs to actively listen to Actor B’s explanations and interpretations, and vice versa. Active listening involves paying close attention, avoiding assumptions, and being open to understanding the other’s perspective without immediately judging or dismissing it.

### 2. **Contextualization**:
– **Providing Context**: Often, misunderstandings arise because different contexts or background information shape each actor’s interpretation. By providing context—explaining the background, the circumstances, or the specific meaning of terms as they understand them—Actor A can help Actor B align with their meaning space, and vice versa.
– **Shared Experiences**: Drawing on shared experiences can help align meaning spaces. If Actors A and B have a common history or have shared certain experiences, referencing these can create a common ground for understanding.

### 3. **Negotiation of Meaning**:
– **Negotiation and Compromise**: Sometimes, coordination requires negotiation, where both actors adjust their interpretations to reach a common understanding. This might involve redefining terms, agreeing on certain interpretations, or finding middle ground that accommodates both perspectives.
– **Iterative Refinement**: Actor A might initially explain something, Actor B might respond with their interpretation, and through back-and-forth exchanges, both actors refine their understanding until they reach a shared meaning.

### 4. **Use of Metaphors and Analogies**:
– **Metaphors and Analogies**: These tools can be powerful for bridging gaps in meaning spaces. By comparing a concept to something familiar to both actors, they can better align their interpretations. For example, Actor A might use an analogy that resonates with Actor B’s experiences, helping to convey a concept in a way that B can relate to more easily.

### 5. **Empathy and Perspective-Taking**:
– **Empathy**: Empathy involves trying to understand the other actor’s feelings and perspective. By empathizing with Actor B, Actor A can better grasp why B interprets things in a certain way, and this understanding can help in coordinating their meaning spaces.
– **Perspective-Taking**: This is the cognitive aspect of empathy, where Actor A consciously attempts to see things from Actor B’s viewpoint. By mentally putting themselves in B’s shoes, A can adjust their communication to better resonate with B’s meaning space.

### 6. **Cultural and Social Awareness**:
– **Awareness of Cultural Differences**: If Actors A and B come from different cultural backgrounds, their meaning spaces may differ significantly. Being aware of these cultural differences and how they might influence interpretation can help in adjusting communication strategies to better align meaning spaces.
– **Social Norms and Conventions**: Understanding and utilizing social norms that both actors share can also help in coordinating meaning spaces. These norms provide a framework for expected behaviors and interpretations, making it easier to find common ground.

### 7. **Feedback Mechanisms**:
– **Seeking and Providing Feedback**: Actor A can ask Actor B whether their message was understood as intended, and B can do the same. This feedback helps identify where misalignments in meaning might exist and provides an opportunity to correct them.
– **Continuous Adjustment**: Feedback allows for continuous adjustment. As Actors A and B continue to interact, they can refine their communication and interpretation strategies, leading to better alignment over time.

### 8. **Language and Conceptual Framing**:
– **Shared Vocabulary**: Developing a shared vocabulary, where both actors agree on the meanings of key terms, can facilitate coordination. This might involve explicitly defining terms or agreeing on certain concepts before proceeding with a discussion.
– **Conceptual Framing**: Framing discussions in terms of concepts or ideas that are familiar to both actors can help in aligning their meaning spaces. If both actors understand a concept similarly, they can use it as a reference point for further discussion.

### Conclusion:
Coordinating individual meaning spaces between two human actors involves a complex interplay of communication, empathy, negotiation, and shared context. By engaging in active dialogue, providing context, using metaphors, exercising empathy, and seeking feedback, Actors A and B can bridge their differences and build a shared understanding. This process is iterative and dynamic, requiring ongoing effort and adjustment as both actors navigate their individual meaning spaces and work toward alignment.

FRAGE: OK, I like to keep the following statements as minimal requirements : (1) Effective coordination requires not just speaking but also listening. (2) If Actors A and B have a common history or have shared experiences, referencing these can create a common ground for understanding. Feedback allows for continuous adjustment. (3) (1) – (2) can support the development of a shared vocabulary. Would you agree?

Yes, I agree with your summary. The three statements you’ve outlined capture essential aspects of how effective coordination between individual meaning spaces can occur. Here’s a brief reflection on each point:

1. **Effective coordination requires not just speaking but also listening**:
– This emphasizes the importance of active, two-way communication. Listening is crucial for understanding the other person’s perspective, which is necessary for aligning meaning spaces.

2. **If Actors A and B have a common history or have shared experiences, referencing these can create a common ground for understanding. Feedback allows for continuous adjustment**:
– Shared experiences and history provide a foundation for mutual understanding. When actors reference these shared elements, they can more easily connect their meaning spaces. Feedback mechanisms allow both actors to continuously refine and adjust their understanding, ensuring that misalignments are addressed.

3. **(1) – (2) can support the development of a shared vocabulary**:
– Through effective communication and the use of shared experiences, Actors A and B can gradually develop a shared vocabulary. This shared vocabulary helps streamline future interactions by establishing common definitions and meanings for key terms, reducing potential misunderstandings.

These statements encapsulate the core processes that enable individuals to coordinate their meaning spaces and build a deeper, more effective understanding with each other.

Hi Chat, let us take a look into the ‘inner structure’ of an individual meaning space: (i) On the one side of meaning we habe the ‘expressions of some language’ which is ‘internally represented’. (ii) On the other side we have a rich diversity of inner states of the human actor which deliver the ‘stuff’ which we call ‘meaning’ and which is ‘related’ to the ‘internally represented expressions’ of the used language. Can you describe a bit the ‘structure’ of these inner states related to language expressions?

The **inner structure** of an individual meaning space, especially how it relates to language expressions, is a complex and layered system. This system involves the interaction between **internally represented language expressions** (i.e., words, sentences, symbols) and the **inner states** of the human actor that give rise to meaning. Let’s explore this in more detail:

### 1. **Language Expressions and Internal Representations**:
– **Symbols and Words**: Language expressions are composed of symbols (letters, words, sounds) that are internally represented in the brain. These representations are tied to specific neural patterns or cognitive structures that store and process linguistic information.
– **Syntax and Grammar**: These internal representations are not just individual words but also the rules and structures (syntax, grammar) that determine how these words can be combined to form meaningful sentences. This layer of structure helps the mind organize language into coherent thoughts and communications.

### 2. **Inner States and Their Structure**:
The **inner states** related to meaning are diverse and involve various cognitive, emotional, and sensory processes. Here are some key components:

– **Conceptual Structures**:
– **Mental Models and Concepts**: At the core of the meaning-making process are **conceptual structures**—the mental models and concepts that represent our understanding of the world. These models include abstract ideas (like justice or beauty), concrete objects (like a tree or a car), and complex scenarios (like a conversation or a journey).
– **Schemas and Frames**: These are cognitive structures that organize knowledge and guide interpretation. A schema might represent a typical event (like “going to a restaurant”), while a frame provides a perspective or context for understanding a situation (like seeing an argument as a debate or a conflict).

– **Emotional and Affective States**:
– **Emotions**: Emotions play a significant role in the meaning space. When we process language, the meaning we derive is often colored by our emotional state. For instance, the word “home” might trigger feelings of warmth and safety for one person, while for another, it might evoke feelings of sadness or loss.
– **Affective Associations**: These are the emotional responses tied to specific concepts or experiences. They contribute to how strongly or weakly certain meanings resonate with us and can influence how we interpret language.

– **Sensory and Perceptual Experiences**:
– **Sensory Memories**: Sensory experiences (like sights, sounds, smells) are often tied to language expressions. For example, the word “ocean” might bring up the smell of saltwater, the sound of waves, and the feeling of sand underfoot, all of which contribute to the word’s meaning.
– **Imagery**: The mind often creates mental images in response to language. These images are not just visual but can involve other senses as well. This sensory component enriches the meaning associated with language expressions.

– **Cognitive Processes**:
– **Inference and Reasoning**: Cognitive processes like inference and reasoning help us make sense of language by connecting new information with existing knowledge. When we hear a sentence, we use reasoning to infer the speaker’s intent, predict outcomes, or draw connections with other ideas.
– **Attention and Focus**: The focus of attention determines which aspects of a language expression we emphasize and how we interpret its meaning. What we pay attention to can shape the meaning we derive from a given expression.

### 3. **Relational and Associative Networks**:
– **Associative Networks**: The mind organizes concepts, emotions, sensory experiences, and language expressions into a network of associations. For example, the word “winter” might be associated with cold weather, snow, holidays, and feelings of coziness. These associations form a web of meaning that influences how language expressions are understood.
– **Relational Dynamics**: Meaning is often understood in terms of relationships between concepts. For instance, understanding the concept of “parent” is related to understanding “child,” “family,” and “care.” These relational dynamics are part of the inner structure that gives rise to meaning.

### 4. **Integration of Inner States and Language**:
– **Embodied Cognition**: This theory suggests that our cognition is deeply rooted in bodily experiences. The meaning of language is not just an abstract mental process but is also tied to how we physically interact with the world. For instance, understanding the word “grasp” involves not just the mental concept but also the sensory-motor experience of physically grasping something.
– **Contextual Integration**: The meaning of a language expression is often determined by the context in which it is used. This context includes both external factors (like the situation or environment) and internal states (like emotions or prior knowledge). The integration of these contextual factors is crucial in shaping meaning.

### Conclusion:
The inner structure of an individual meaning space is a complex system where **language expressions** are connected to a rich diversity of **inner states**. These inner states include conceptual structures, emotional and sensory experiences, cognitive processes, and associative networks. Together, these elements create a dynamic and multi-dimensional web of meaning that allows individuals to interpret and understand language in highly personalized ways. The interaction between these inner states and language is what gives rise to the meaning that individuals derive from their linguistic experiences.

I will take the following short summary as bridge to the follow-up ideas : (1) Language expressions are composed of symbols wich are determined by rules and structures; (2) The inner states related to meaning are diverse and involve various cognitive, emotional, and sensory processes; (3) At the core are mental models that represent our understanding of the world. These models include abstract ideas, concrete objects, and complex scenarios. Furthermore the mind organizes concepts, emotions, sensory experiences, and language expressions into a network of associations. (4) Cognitive processes like inference and reasoning help us by connecting existing knowledge with knowledge about possible changes, to derive possible new states. Can you agree with this?

Yes, I agree with your summary. You’ve captured the essential points about how language expressions, inner states, mental models, and cognitive processes interact to create and understand meaning. Here’s a brief recap:

1. **Language Expressions**: These are composed of symbols (words, phrases) that are structured according to the rules of grammar and syntax, enabling coherent communication.

2. **Diverse Inner States**: Meaning arises from a complex interplay of cognitive, emotional, and sensory processes within the mind. These processes influence how we interpret and understand language.

3. **Mental Models and Associations**: At the core of meaning-making are mental models, which represent our understanding of the world. These models include abstract concepts, concrete objects, and complex scenarios. The mind organizes these elements into a network of associations, connecting various concepts, emotions, and sensory experiences.

4. **Cognitive Processes**: Inference, reasoning, and other cognitive processes allow us to connect existing knowledge with new information or hypothetical changes, enabling us to derive new states or understand potential outcomes.

This summary effectively bridges the foundational ideas we’ve discussed, setting the stage for deeper exploration into how these components work together in more complex scenarios or applications.

OK, let us stop here for today. I will come back to this issue to continue. Best regards

That sounds great! I’m glad we could delve into these ideas together. Feel free to reach out anytime you’re ready to continue. Best regards, and take care! 😊

CHATGPT4 : PHILOSOPHY – What it is? Role of Humans writing Texts

Last Change: Aug 11, 2024

Inquirer: Gerd Doeben-Henisch

Email: info@uffmm.org

CONTEXT

This post is part of the section Dialogues with chatGPT4.

Conclusion

Philosophical texts themselves are important, but they gain their true significance within the **human meaning space** that individuals create through their interactions with these texts and with each other. This meaning space, rooted in the experiences and interpretations of individual persons, is what ultimately forms the building blocks of a unified philosophical tradition. The tradition is not a static collection of texts, but a dynamic, evolving process of meaning-making that is constantly being enriched and redefined by those who engage with it.

QUESTION: PHILOSOPHY – What it is? Role of Humans writing Texts

Hi Chat, yesterday we had a dialogue about Philosophy. Can you repeat your statement about the concept ‘Philosophy’?

Certainly! Here’s a recap of what we discussed about the concept of “Philosophy”:

Philosophy is a broad field that explores fundamental questions about existence, knowledge, values, reason, mind, and language. It delves into concepts like the nature of reality (metaphysics), the basis of knowledge (epistemology), moral values and ethics, and the principles of logic and reasoning.

Philosophy encourages critical thinking and questioning, often challenging assumptions that we take for granted. It’s divided into various branches, such as:

1. **Metaphysics**: Explores the nature of reality, existence, and the universe.
2. **Epistemology**: Concerned with knowledge, belief, and the nature of truth.
3. **Ethics**: Focuses on morality and what constitutes right or wrong behavior.
4. **Logic**: Studies the principles of valid reasoning and argumentation.
5. **Aesthetics**: Examines the nature of beauty, art, and taste.

Philosophy also influences many other fields, such as science, religion, and politics, by providing foundational frameworks and questioning the underlying principles in these areas. It’s both an academic discipline and a practical approach to thinking about life’s big questions.

OK, you describe Philosophy as a “a broad field that explores fundamental questions” while it is organized in ‘thematic branches’ like ‘Epistemology’, ‘Logic’ and ‘Ethics’. Are these different branches completely ‘separated from each other’?

The branches of philosophy, like **Epistemology**, **Logic**, **Ethics**, and others, are not completely separated from each other. In fact, they often overlap and intersect in significant ways. Here’s how they relate to and influence each other:

### 1. **Interconnectedness of Themes:**
– **Epistemology and Logic**: Epistemology, which deals with the nature of knowledge, often relies on principles from logic to determine what counts as valid reasoning or justified belief. Logical methods are crucial in analyzing how we form knowledge, make inferences, and reach conclusions.
– **Ethics and Epistemology**: Ethical theories often depend on epistemological questions about how we know what is right or wrong. For instance, moral realism (the belief that there are objective moral facts) involves epistemological questions about how we can know these facts.
– **Metaphysics and Ethics**: Questions in metaphysics about the nature of reality, free will, or the self can have direct implications for ethics. For example, if one believes that free will is an illusion, this might influence their views on moral responsibility.
– **Aesthetics and Ethics**: Aesthetics, the study of beauty and art, can intersect with ethics when considering the moral implications of art or the ethical responsibilities of artists.

### 2. **Philosophical Questions Across Branches:**
– Some philosophical questions naturally span multiple branches. For instance, the question “What is the nature of the good life?” can involve metaphysical questions about human nature, ethical questions about what makes life valuable, and epistemological questions about how we come to know these values.
– The concept of “truth” is central to both epistemology (what is truth and how do we know it?) and logic (how do we reason truthfully?).

### 3. **Unified Inquiry:**
– While philosophy is divided into thematic branches for organizational purposes, the discipline as a whole is unified by its commitment to inquiry and the pursuit of wisdom. Philosophers often draw on insights from multiple branches to address complex questions.
– Many philosophical theories are interdisciplinary by nature, requiring an understanding of several branches to be fully appreciated. For example, existentialism combines metaphysical, epistemological, and ethical concerns to explore the human condition.

### 4. **Philosophers and Cross-Branch Work:**
– Many philosophers work across multiple branches, contributing to more than one area of philosophy. For example, Immanuel Kant made significant contributions to metaphysics, epistemology, ethics, and aesthetics, with his work in each area influencing the others.

### Conclusion:
The branches of philosophy are interconnected and often inform and enrich one another. While they each focus on different aspects of philosophical inquiry, they are not isolated; instead, they contribute to a larger, integrated understanding of complex philosophical issues.

OK, your main statement is, that “the branches of philosophy are interconnected”, which is manifested e.g. by “philosophical theories which are interdisciplinary by nature” or by individual philosophers which “work across multiple branches”. Therefore the different branches “contribute to a larger, integrated understanding of complex philosophical issues”. Do you agree?

Yes, I agree with that summary! The branches of philosophy are indeed interconnected, and this interconnectedness allows for a richer and more integrated understanding of complex philosophical issues. Philosophical theories often draw from multiple branches, and many philosophers contribute to more than one area, showing how these branches work together to address broader questions and challenges. This collaboration across branches is key to the depth and complexity of philosophical inquiry.

Then let us talk about the ‘interconnectedness’ of these branches. You mention ‘theories’ as ‘formats of knowledge’, which can ‘combine’ understanding from different branches as well as ‘individual philosophers’ which work across different branches. Can you make this a litle bit more precise?

Certainly! Let’s break down the idea of interconnectedness in philosophy, focusing on how **theories** and **individual philosophers** contribute to this interconnectedness across different branches.

### 1. **Theories as Formats of Knowledge:**
Philosophical theories often serve as bridges between different branches by incorporating concepts, methods, and insights from multiple areas of philosophy. Here’s how this works:

– **Interdisciplinary Theories**: Some philosophical theories are explicitly interdisciplinary, meaning they draw on and contribute to multiple branches simultaneously.
– **Example: Existentialism**: Existentialism combines **metaphysics** (questions about existence and the nature of being), **ethics** (questions about how to live and what gives life meaning), and **epistemology** (questions about subjective experience and how we know ourselves and the world). It’s a philosophical movement that cannot be fully understood without considering its impact on and its reliance on these multiple branches.
– **Example: Utilitarianism**: Utilitarianism is primarily an ethical theory, but it also engages with **epistemology** (how we know what actions will result in the greatest happiness) and **logic** (how we reason about consequences and moral decisions).

– **Integration of Concepts**: Philosophical theories often integrate concepts from different branches to address a particular problem.
– **Example: Kant’s Categorical Imperative**: Immanuel Kant’s ethical theory, the categorical imperative, integrates ideas from **metaphysics** (the nature of moral law and duty), **epistemology** (how we come to know moral duties), and **logic** (the universalizability of moral principles). This theory shows how understanding in ethics can be deeply connected to and dependent on insights from other branches.

### 2. **Philosophers Working Across Multiple Branches:**
Individual philosophers often contribute to more than one branch of philosophy, thereby creating links between these areas. Here’s how some notable philosophers have done this:

– **Immanuel Kant**: Kant is known for his work in **epistemology** (Critique of Pure Reason), **ethics** (Critique of Practical Reason), and **aesthetics** (Critique of Judgment). His philosophy is deeply interconnected; for instance, his epistemology (how we know things) influences his metaphysics (what exists), and both of these impact his ethical theories (how we should act).

– **Aristotle**: Aristotle’s work spans **metaphysics** (the study of being), **ethics** (Nicomachean Ethics), **logic** (Organon), **politics** (Politics), and **aesthetics** (Poetics). He doesn’t treat these areas as isolated fields; instead, his understanding of ethics is informed by his metaphysics, and his logic underpins all his philosophical investigations.

– **John Stuart Mill**: Mill’s contributions to **ethics** (utilitarianism), **political philosophy** (liberty and justice), and **epistemology** (empiricism and the nature of knowledge) show how his work in one area influenced his thinking in others. His utilitarian ethical theory, for example, is closely tied to his empiricist approach to knowledge.

### 3. **Philosophical Integration Leading to Broader Understanding:**
– **Comprehensive Philosophical Systems**: Some philosophers create comprehensive systems that attempt to integrate all branches of philosophy into a coherent whole.
– **Example: Hegel’s System**: G.W.F. Hegel’s philosophy integrates **logic**, **metaphysics**, **ethics**, **politics**, and **aesthetics** into a single, comprehensive system. His dialectical method connects these areas, showing how they evolve and interact over time.

– **Influence Across Fields**: Philosophical ideas developed in one branch can have significant implications for others.
– **Example: Descartes**: René Descartes’ epistemological skepticism (Cogito, ergo sum) had profound effects on metaphysics (the nature of reality) and ethics (how one should live based on what can be known for certain).

### Conclusion:
The interconnectedness of the branches of philosophy is evident in the way theories often draw on multiple areas to address complex questions, and in how individual philosophers contribute across different branches. This interplay enriches philosophical inquiry, allowing for a more holistic and integrated understanding of the issues at hand. Theories and philosophers serve as the threads that weave the various branches of philosophy into a unified, though diverse, intellectual tradition.

OK, let us continue with your final statement “Theories and philosophers serve as the threads that weave the various branches of philosophy into a unified, though diverse, intellectual tradition.” If we understand a ‘theory’ as a ‘text’, written in some ‘language L’. Would you agree that a ‘text as such’ has no meaning at all. ‘Meaning’ is connected to human persons, which have learned to ‘associate’ certain expressions of the used language L with different kinds of experience, which ist typical for human persons?

Yes, I agree with the idea that a **text**—in this case, a philosophical theory written in a language L—does not inherently possess meaning on its own. The meaning arises through the interaction between the text and human persons who interpret it. Let’s unpack this idea:

### 1. **Text as a Medium**:
– A text, in its most basic form, is a sequence of symbols or words arranged according to the rules of a language (L). On its own, it’s just a collection of characters, and it doesn’t hold any intrinsic meaning.

### 2. **Meaning and Interpretation**:
– **Meaning** emerges when human beings engage with the text. Humans bring their experiences, knowledge, and understanding of language to bear when they read a text. Through this process of interpretation, they assign meaning to the words, sentences, and ideas expressed in the text.
– **Association with Experience**: The meaning of a text is closely tied to the experiences and cognitive frameworks of the reader. When someone reads a philosophical theory, they interpret the words based on their own experiences, cultural background, and understanding of the concepts involved. For example, the concept of “justice” might evoke different associations and interpretations depending on the reader’s background and experiences.

### 3. **Language and Shared Understanding**:
– Language (L) functions as a shared system of symbols that allows people to communicate and share ideas. However, the effectiveness of this communication depends on the shared understanding between the writer and the reader. The more closely aligned their experiences and conceptual frameworks are, the more effectively meaning can be communicated.
– **Contextual Interpretation**: The meaning of a text is often shaped by the context in which it is read. This includes the historical, cultural, and intellectual context of both the writer and the reader. A philosophical text written centuries ago may be interpreted differently today because the context in which it is read has changed.

### 4. **Role of Philosophers and Theories**:
– Philosophers, when writing a theory, encode their ideas in the text using language L. Their intention is to communicate complex concepts and arguments. However, the interpretation of those ideas depends on the reader’s ability to decode and understand the text.
– Theories serve as a medium through which philosophical ideas are communicated, but the meaning of those ideas is realized only through the process of interpretation by readers who engage with the text.

### 5. **Implications for Philosophical Inquiry**:
– This understanding highlights the importance of interpretation in philosophical inquiry. Different readers might interpret the same text in different ways, leading to a diversity of meanings and perspectives.
– Philosophical debate often involves discussing and refining these interpretations, seeking to understand the underlying ideas more clearly and explore their implications more fully.

### Conclusion:
In summary, a **text** itself is a neutral medium without intrinsic meaning. **Meaning** is a dynamic process that occurs when human persons, equipped with their experiences and knowledge of language, engage with the text and interpret its symbols. This process of interpretation is what allows philosophical theories to contribute to the broader intellectual tradition, as different interpretations and understandings are woven together to form a richer and more diverse tapestry of thought.

OK, would you then agree with the conclusion, that not the philosophical ‘texts as such’ are the building blocks of a unified tradition but the philosophical texts as ‘connected to’ a ‘humand meaning space’, which is finally ‘rooted in individual persons’ wich have ‘built up’ their individual meaning space by interacting with their environment, including other human persons using he same language system.

Yes, I would agree with that conclusion. The **philosophical texts** themselves are not the true building blocks of a unified intellectual tradition. Instead, it is the **philosophical texts as they are connected to a human meaning space** that forms the foundation of this tradition. Here’s how this understanding comes together:

### 1. **Human Meaning Space**:
– The **human meaning space** refers to the collective web of meanings, interpretations, and understandings that individuals create as they interact with their environment, including other people and cultural artifacts like texts. This meaning space is deeply personal, yet also shared and communal because it is developed through interaction with others who use the same language and cultural symbols.

### 2. **Texts as Tools for Meaning-Making**:
– Philosophical texts are tools or mediums through which ideas are communicated, debated, and developed. However, their significance and role in the tradition depend on how they are interpreted and understood within this human meaning space.
– The **”building blocks”** of a philosophical tradition are not the texts themselves but the meanings and ideas that people extract from, discuss, and build upon through their engagement with these texts.

### 3. **Rooted in Individual Persons**:
– This meaning space is ultimately **rooted in individual persons**, each of whom brings their own experiences, background, and understanding to their interpretation of philosophical texts. As individuals interact with these texts, they build up their own understanding and contribute to the broader philosophical dialogue.
– **Interpersonal Interaction**: Individuals also shape their meaning space by interacting with others, discussing and debating the meanings they derive from texts. This collective process further enriches the shared human meaning space and the philosophical tradition as a whole.

### 4. **Unified Tradition Through Shared Interpretation**:
– The **unified tradition** of philosophy is thus a product of shared interpretations, discussions, and debates that take place within this human meaning space. While the texts provide a common reference point, it is the collective engagement with these texts—rooted in individual and shared meaning-making—that creates and sustains the tradition.
– **Cultural and Historical Context**: The meanings attributed to philosophical texts are also influenced by the cultural and historical context in which they are read and interpreted, leading to an evolving tradition that reflects the changing concerns and understandings of different eras.

### Conclusion:
Philosophical texts themselves are important, but they gain their true significance within the **human meaning space** that individuals create through their interactions with these texts and with each other. This meaning space, rooted in the experiences and interpretations of individual persons, is what ultimately forms the building blocks of a unified philosophical tradition. The tradition is not a static collection of texts, but a dynamic, evolving process of meaning-making that is constantly being enriched and redefined by those who engage with it.

OK Chat, thanks again for this inspiring dialogue 🙂

You’re very welcome! I’m glad you found the conversation inspiring. It was a pleasure to explore these ideas with you. If you ever want to discuss more or dive into new topics, I’m here anytime. Have a great day! 😊

Talking about the world

This text is part of the text “Rebooting Humanity”

(The German Version can be found HERE)

Author No. 1 (Gerd Doeben-Henisch)

Contact: info@uffmm.org

(Start: June 5, 2024, Last change: June 7, 2024)

Starting Point

A ‘text’ shall be written that speaks about the world, including all living beings, with ‘humans’ as the authors in the first instance. So far, we know of no cases where animals or plants write texts themselves: their view of life. We only know of humans who write from ‘their human perspective’ about life, animals, and plants. Much can be criticized about this approach. Upon further reflection, one might even realize that ‘humans writing about other humans and themselves’ is not so trivial either. Even humans writing ‘about themselves’ is prone to errors, can go completely ‘awry,’ can be entirely ‘wrong,’ which raises the question of what is ‘true’ or ‘false.’ Therefore, we should spend some thoughts on how we humans can talk about the world and ourselves in a way that gives us a chance not just to ‘fantasize,’ but to grasp something that is ‘real,’ something that describes what truly characterizes us as humans, as living beings, as inhabitants of this planet… but then the question pops up again, what is ‘real’? Are we caught in a cycle of questions with answers, where the answers themselves are again questions upon closer inspection?

First Steps

Life on Planet Earth

At the start of writing, we assume that there is a ‘Planet Earth’ and on this planet there is something we call ‘life,’ and we humans—belonging to the species Homo sapiens—are part of it.

Language

We also assume that we humans have the ability to communicate with each other using sounds. These sounds, which we use for communication, we call here ‘speech sounds’ to indicate that the totality of sounds for communication forms a ‘system’ which we ultimately call ‘language.’

Meaning

Since we humans on this planet can use completely different sounds for the ‘same objects’ in the same situation, it suggests that the ‘meaning’ of speech sounds is not firmly tied to the speech sounds themselves, but somehow has to do with what happens ‘in our minds.’ Unfortunately, we cannot look ‘into our minds.’ It seems a lot happens there, but this happening in the mind is ‘invisible.’ Nevertheless, in ‘everyday life,’ we experience that we can ‘agree’ with others whether it is currently ‘raining’ or if it smells ‘bad’ or if there is a trash bin on the sidewalk blocking the way, etc. So somehow, the ‘happenings in the mind’ seem to have certain ‘agreements’ among different people, so that not only I see something specific, but the other person does too, and we can even use the same speech sounds for it. And since a program like chatGPT can translate my German speech sounds, e.g., into English speech sounds, I can see that another person who does not speak German, instead of my word ‘Mülltonne,’ uses the word ‘trash bin’ and then nods in agreement: ‘Yes, there is a trash bin.’ Would that be a case for a ‘true statement’?

Changes and Memories

Since we experience daily how everyday life constantly ‘changes,’ we know that something that just found agreement may no longer find it the next moment because the trash bin is no longer there. We can only notice these changes because we have something called ‘memory’: we can remember that just now at a specific place there was a trash bin, but now it’s not. Or is this memory just an illusion? Can I trust my memory? If now everyone else says there was no trash bin, but I remember there was, what does that mean?

Concrete Body

Yes, and then my body: time and again I need to drink something, eat something, I’m not arbitrarily fast, I need some space, … my body is something very concrete, with all sorts of ‘sensations,’ ‘needs,’ a specific ‘shape,’ … and it changes over time: it grows, it ages, it can become sick, … is it like a ‘machine’?

Galaxies of Cells

Today we know that our human body resembles less a ‘machine’ and more a ‘galaxy of cells.’ Our body has about 37 trillion (10¹²) body cells with another 100 trillion cells in the gut that are vital for our digestive system, and these cells together form the ‘body system.’ The truly incomprehensible thing is that these approximately 140 trillion cells are each completely autonomous living beings, with everything needed for life. And if you know how difficult it is for us as humans to maintain cooperation among just five people over a long period, then you can at least begin to appreciate what it means that 140 trillion beings manage to communicate and coordinate actions every second—over many years, even decades—so that the masterpiece ‘human body’ exists and functions.

Origin as a Question

And since there is no ‘commander’ who constantly tells all the cells what to do, this ‘miracle of the human system’ expands further into the dimension of where the concept comes from that enables this ‘super-galaxy of cells’ to be as they are. How does this work? How did it arise?

Looking Behind Phenomena

In the further course, it will be important to gradually penetrate the ‘surface of everyday phenomena’ starting from everyday life, to make visible those structures that are ‘behind the phenomena,’ those structures that hold everything together and at the same time constantly move, change everything.

Fundamental Dimension of Time

All this implies the phenomenon ‘time’ as a basic category of all reality. Without time, there is also no ‘truth’…

[1] Specialists in brain research will of course raise their hand right away, and will want to say that they can indeed ‘look into the head’ by now, but let’s wait and see what this ‘looking into the head’ entails.

[2] If we assume for the number of stars in our home galaxy, the Milky Way, with an estimated 100 – 400 billion stars that there are 200 billion, then our body system would correspond to the scope of 700 galaxies in the format of the Milky Way, one cell for one star.

[3] Various disciplines of natural sciences, especially certainly evolutionary biology, have illuminated many aspects of this mega-wonder partially over the last approx. 150 years. One can marvel at the physical view of our universe, but compared to the super-galaxies of life on Planet Earth, the physical universe seems downright ‘boring’… Don’t worry: ultimately, both are interconnected: one explains the other…”

Telling Stories

Fragments of Everyday Life—Without Context

We constantly talk about something: the food, the weather, the traffic, shopping prices, daily news, politics, the boss, colleagues, sports events, music, … mostly, these are ‘fragments’ from the larger whole that we call ‘everyday life’. People in one of the many crisis regions on this planet, especially those in natural disasters or even in war…, live concretely in a completely different world, a world of survival and death.

These fragments in the midst of life are concrete, concern us, but they do not tell a story by themselves about where they come from (bombs, rain, heat,…), why they occur, how they are connected with other fragments. The rain that pours down is a single event at a specific place at a specific time. The bridge that must be closed because it is too old does not reveal from itself why this particular bridge, why now, why couldn’t this be ‘foreseen’? The people who are ‘too many’ in a country or also ‘too few’: Why is that? Could this have been foreseen? What can we do? What should we do?

The stream of individual events hits us, more or less powerfully, perhaps even simply as ‘noise’: we are so accustomed to it that we no longer even perceive certain events. But these events as such do not tell a ‘story about themselves’; they just happen, seemingly irresistibly; some say ‘It’s fate’.

Need for Meaning

It is notable that we humans still try to give the whole a ‘meaning’, to seek an ‘explanation’ for why things are the way they are. And everyday life shows that we have a lot of ‘imagination’ concerning possible ‘connections’ or ’causes’. Looking back into the past, we often smile at the various attempts at explanation by our ancestors: as long as nothing was known about the details of our bodies and about life in general, any story was possible. In our time, with science established for about 150 years, there are still many millions of people (possibly billions?) who know nothing about science and are willing to believe almost any story just because another person tells this story convincingly.

Liberation from the Moment through Words

Because of this ability, with the ‘power of imagination’ to pack things one experiences into a ‘story’ that suggests ‘possible connections’, through which events gain a ‘conceptual sense’, a person can try to ‘liberate’ themselves from the apparent ‘absoluteness of the moment’ in a certain way: an event that can be placed into a ‘context’ loses its ‘absoluteness’. Just by this kind of narrative, the experiencing person gains a bit of ‘power’: in narrating a connection, the narrator can make the experience ‘a matter’ over which they can ‘dispose’ as they see fit. This ‘power through the word’ can alleviate the ‘fear’ that an event can trigger. This has permeated the history of humanity from the beginning, as far as archaeological evidence allows.

Perhaps it is not wrong to first identify humans not as ‘hunters and gatherers’ or as ‘farmers’ but as ‘those who tell stories’.

[1] Such a magic word in Greek philosophy was the concept of ‘breath’ (Greek “pneuma”). The breath not only characterized the individually living but was also generalized to a life principle of everything that connected both body, soul, and spirit as well as permeated the entire universe. In the light of today’s knowledge, this ‘explanation’ could no longer be told, but about 2300 years ago, this belief was a certain ‘intellectual standard’ among all intellectuals, the prevailing ‘worldview’; it was ‘believed’. Anyone who thought differently was outside this ‘language game’.

Organization of an Order

Thinking Creates Relationships

As soon as one can ‘name’ individual events, things, processes, properties of things, and more through ‘language’, it is evident that humans have the ability to not only ‘name’ using language but to embed the ‘named’ through ‘arrangement of words in linguistic expression’ into ‘conceived relationships’, thereby connecting the individually named items not in isolation but in thought with others. This fundamental human ability to ‘think relationships in one’s mind’, which cannot be ‘seen’ but can indeed be ‘thought’ [1], is of course not limited to single events or a single relationship. Ultimately, we humans can make ‘everything’ a subject, and we can ‘think’ any ‘possible relationship’ in our minds; there are no fundamental restrictions here.

Stories as a Natural Force

Not only history is full of examples, but also our present day. Today, despite the incredible successes of modern science, almost universally, the wildest stories with ‘purely thought relationships’ are being told and immediately believed through all channels worldwide, which should give us pause. Our fundamental characteristic, that we can tell stories to break the absoluteness of the moment, obviously has the character of a ‘natural force’, deeply rooted within us, that we cannot ‘eradicate’; we might be able to ‘tame’ it, perhaps ‘cultivate’ it, but we cannot stop it. It is an ‘elemental characteristic’ of our thinking, that is: of our brain in the body.

Thought and Verified

The experience that we, the storytellers, can name events and arrange them into relationships—and ultimately without limit—may indeed lead to chaos if the narrated network of relationships is ultimately ‘purely thought’, without any real reference to the ‘real world around us’, but it is also our greatest asset. With it, humans can not only fundamentally free themselves from the apparent absoluteness of the present, but we can also create starting points with the telling of stories, ‘initially just thought relationships’, which we can then concretely ‘verify’ in our everyday lives.

A System of Order

When someone randomly sees another person who looks very different from what they are used to, all sorts of ‘assumptions’ automatically form in each person about what kind of person this might be. If one stops at these assumptions, these wild guesses can ‘populate the head’ and the ‘world in the head’ gets populated with ‘potentially evil people’; eventually, they might simply become ‘evil’. However, if one makes contact with the other, they might find that the person is actually nice, interesting, funny, or the like. The ‘assumptions in the head’ then transform into ‘concrete experiences’ that differ from what was initially thought. ‘Assumptions’ combined with ‘verification’ can thus lead to the formation of ‘reality-near ideas of relationships’. This gives a person the chance to transform their ‘spontaneous network of thought relationships’, which can be wrong—and usually are—into a ‘verified network of relationships’. Since ultimately the thought relationships as a network provide us with a ‘system of order’ in which everyday things are embedded, it appears desirable to work with as many ‘verified thought relationships’ as possible.

[1] The breath of the person opposite me, which for the Greeks connected my counterpart with the life force of the universe, which in turn is also connected with the spirit and the soul…

Hypotheses and Science

Challenge: Methodically Organized Guessing

The ability to think of possible relationships, and to articulate them through language, is innate [1], but the ‘use’ of this ability in everyday life, for example, to match thought relationships with the reality of everyday life, this ‘matching’/’verifying’ is not innate. We can do it, but we don’t have to. Therefore, it is interesting to realize that since the first appearance of Homo sapiens on this planet [2], 99.95% of the time has passed until the establishment of organized modern science about 150 years ago. This can be seen as an indication that the transition from ‘free guessing’ to ‘methodically organized systematic guessing’ must have been anything but easy. And if today still a large part of people—despite schooling and even higher education—[3] tend to lean towards ‘free guessing’ and struggle with organized verification, then there seems to be a not easy threshold that a person must overcome—and must continually overcome—to transition from ‘free’ to ‘methodically organized’ guessing.[4]

Starting Point for Science

The transition from everyday thinking to ‘scientific thinking’ is fluid. The generation of ‘thought relationships’ in conjunction with language, due to our ability of creativity/imagination, is ultimately also the starting point of science. While in everyday thinking we tend to spontaneously and pragmatically ‘verify’ ‘spontaneously thought relationships’, ‘science’ attempts to organize such verifications ‘systematically’ to then accept such ‘positively verified guesses’ as ’empirically verified guesses’ until proven otherwise as ‘conditionally true’. Instead of ‘guesses’, science likes to speak of ‘hypotheses’ or ‘working hypotheses’, but they remain ‘guesses’ through the power of our thinking and through the power of our imagination.[5]

[1] This means that the genetic information underlying the development of our bodies is designed so that our body with its brain is constructed during the growth phase in such a way that we have precisely this ability to ‘think of relationships’. It is interesting again to ask how it is possible that from a single cell about 13 trillion body cells (the approximately 100 trillion bacteria in the gut come ‘from outside’) can develop in such a way that they create the ‘impression of a human’ that we know.

[2] According to current knowledge, about 300,000 years ago in East Africa and North Africa, from where Homo sapiens then explored and conquered the entire world (there were still remnants of other human forms that had been there longer).

[3] I am not aware of representative empirical studies on how many people in a population tend to do this.

[4] Considering that we humans as the life form Homo sapiens only appeared on this planet after about 3.8 billion years, the 300,000 years of Homo sapiens make up roughly 0.008% of the total time since there has been life on planet Earth. Thus, not only are we as Homo sapiens a very late ‘product’ of the life process, but the ability to ‘systematically verify hypotheses’ also appears ‘very late’ in our Homo sapiens life process. Viewed across the entire life span, this ability seems to be extremely valuable, which is indeed true considering the incredible insights we as Homo sapiens have been able to gain with this form of thinking. The question is how we deal with this knowledge. This behavior of using systematically verified knowledge is not innate too.

[5] The ability of ‘imagination’ is not the opposite of ‘knowledge’, but is something completely different. ‘Imagination’ is a trait that ‘shows’ itself the moment we start to think, perhaps even in the fact ‘that’ we think at all. Since we can in principle think about ‘everything’ that is ‘accessible’ to our thinking, imagination is a factor that helps to ‘select’ what we think. In this respect, imagination is pre-posed to thinking.

There exists only one big Problem for the Future of Human Mankind: The Belief in false Narratives

Author: Gerd Doeben-Henisch

Time: Jan 5, 2024 – Jan 8, 2024 (09:45 a.m. CET)

Email: gerd@doeben-henisch.de

TRANSLATION: The following text is a translation from a German version into English. For the translation I am using the software deepL.com as well as chatGPT 4. The English version is a slightly revised version of the German text.

This blog entry will be completed today. However, it has laid the foundations for considerations that will be pursued further in a new blog entry.

CONTEXT

This text belongs to the topic Philosophy (of Science).

Introduction

Triggered by several reasons I started some investigation in the phenomenon of ‘propaganda’ to sharpen my understanding. My strategy was first to try to characterize the phenomenon of ‘general communication’ in order to find some ‘harder criteria’ that would allow to characterize the concept of ‘propaganda’ to stand out against this general background in a somewhat comprehensible way.

The realization of this goal then actually led to an ever more fundamental examination of our normal (human) communication, so that forms of propaganda become recognizable as ‘special cases’ of our communication. The worrying thing about this is that even so-called ‘normal communication’ contains numerous elements that can make it very difficult to recognize and pass on ‘truth’ (*). ‘Massive cases of propaganda’ therefore have their ‘home’ where we communicate with each other every day. So if we want to prevent propaganda, we have to start in everyday life.

(*) The concept of ‘truth’ is examined and explained in great detail in the following long text below. Unfortunately, I have not yet found a ‘short formula’ for it. In essence, it is about establishing a connection to ‘real’ events and processes in the world – including one’s own body – in such a way that they can, in principle, be understood and verified by others.

DICTATORIAL CONTEXT

However, it becomes difficult when there is enough political power that can set the social framework conditions in such a way that for the individual in everyday life – the citizen! – general communication is more or less prescribed – ‘dictated’. Then ‘truth’ becomes less and less or even non-existent. A society is then ‘programmed’ for its own downfall through the suppression of truth. ([3], [6]).

EVERYDAY LIFE AS A DICTATOR ?
The hour of narratives

But – and this is the far more dangerous form of ‘propaganda’ ! – even if there is not a nationwide apparatus of power that prescribes certain forms of ‘truth’, a mutilation or gross distortion of truth can still take place on a grand scale. Worldwide today, in the age of mass media, especially in the age of the internet, we can see that individuals, small groups, special organizations, political groups, entire religious communities, in fact all people and their social manifestations, follow a certain ‘narrative’ [*11] when they act.

Typical for acting according to a narrative is that those who do so individually believe that it is ‘their own decision’ and that their narrative is ‘true’, and that they are therefore ‘in the right’ when they act accordingly. This ‘feeling to be right’ can go as far as claiming the right to kill others because they ‘act wrongly’ in the light of their own ‘narrative’. We should therefore speak here of a ‘narrative truth’: Within the framework of the narrative, a picture of the world is drawn that ‘as a whole’ enables a perspective that ‘as such’ is ‘found to be good’ by the followers of the narrative, as ‘making sense’. Normally, the effect of a narrative, which is experienced as ‘meaningful’, is so great that the ‘truth content’ is no longer examined in detail.

RELIGIOUS NARRATIVES

This has existed at all times in the history of mankind. Narratives that appeared as ‘religious beliefs’ were particularly effective. It is therefore no coincidence that almost all governments of the last millennia have adopted religious beliefs as state doctrines; an essential component of religious beliefs is that they are ‘unprovable’, i.e. ‘incapable of truth’. This makes a religious narrative a wonderful tool in the hands of the powerful to motivate people to behave in certain ways without the threat of violence.

POPULAR NARRATIVES

In recent decades, however, we have experienced new, ‘modern forms’ of narratives that do not come across as religious narratives, but which nevertheless have a very similar effect: People perceive these narratives as ‘giving meaning’ in a world that is becoming increasingly confusing and therefore threatening for everyone today. Individual people, the citizens, also feel ‘politically helpless’, so that – even in a ‘democracy’ – they have the feeling that they cannot directly influence anything: the ‘people up there’ do what they want. In such a situation, ‘simplistic narratives’ are a blessing for the maltreated soul; you hear them and have the feeling: yes, that’s how it is; that’s exactly how I ‘feel’!

Such ‘popular narratives’, which enable ‘good feelings’, are gaining ever greater power. What they have in common with religious narratives is that the ‘followers’ of popular narratives no longer ask the ‘question of truth’; most of them are also not sufficiently ‘trained’ to be able to clarify the truth of a narrative at all. It is typical for supporters of narratives that they are generally hardly able to explain their own narrative to others. They typically send each other links to texts/videos that they find ‘good’ because these texts/videos somehow seem to support the popular narrative, and tend not to check the authors and sources because they are in the eyes of the followers such ‘decent people’, which always say exactly the ‘same thing’ as the ‘popular narrative’ dictates.

NARRATIVES ARE SEXY FOR POWER

If you now take into account that the ‘world of narratives’ is an extremely tempting offer for all those who have power over people or would like to gain power over people, then it should come as no surprise that many governments in this world, many other power groups, are doing just that today: they do not try to coerce people ‘directly’, but they ‘produce’ popular narratives or ‘monitor’ already existing popular narratives’ in order to gain power over the hearts and minds of more and more people via the detour of these narratives. Some speak here of ‘hybrid warfare’, others of ‘modern propaganda’, but ultimately, I guess, these terms miss the core of the problem.

THE NARRATIVE AS A BASIC CULTURAL PATTERN
The ‘irrational’ defends itself against the ‘rational’

The core of the problem is the way in which human communities have always organized their collective action, namely through narratives; we humans have no other option. However, such narratives – as the considerations further down in the text will show – are extremely susceptible to ‘falsity’, to a ‘distortion of the picture of the world’. In the context of the development of legal systems, approaches have been developed during at least the last 7000 years to ‘improve’ the abuse of power in a society by supporting truth-preserving mechanisms. Gradually, this has certainly helped, with all the deficits that still exist today. Additionally, about 500 years ago, a real revolution took place: humanity managed to find a format with the concept of a ‘verifiable narrative (empirical theory)’ that optimized the ‘preservation of truth’ and minimized the slide into untruth. This new concept of ‘verifiable truth’ has enabled great insights that before were beyond imagination .

The ‘aura of the scientific’ has meanwhile permeated almost all of human culture, almost! But we have to realize that although scientific thinking has comprehensively shaped the world of practicality through modern technologies, the way of scientific thinking has not overridden all other narratives. On the contrary, the ‘non-truth narratives’ have become so strong again that they are pushing back the ‘scientific’ in more and more areas of our world, patronizing it, forbidding it, eradicating it. The ‘irrationality’ of religious and popular narratives is stronger than ever before. ‘Irrational narratives’ are for many so appealing because they spare the individual from having to ‘think for themselves’. Real thinking is exhausting, unpopular, annoying and hinders the dream of a simple solution.

THE CENTRAL PROBLEM OF HUMANITY

Against this backdrop, the widespread inability of people to recognize and overcome ‘irrational narratives’ appears to be the central problem facing humanity in mastering the current global challenges. Before we need more technology (we certainly do), we need more people who are able and willing to think more and better, and who are also able to solve ‘real problems’ together with others. Real problems can be recognized by the fact that they are largely ‘new’, that there are no ‘simple off-the-shelf’ solutions for them, that you really have to ‘struggle’ together for possible insights; in principle, the ‘old’ is not enough to recognize and implement the ‘true new’, and the future is precisely the space with the greatest amount of ‘unknown’, with lots of ‘genuinely new’ things.

The following text examines this view in detail.

MAIN TEXT FOR EXPLANATION

MODERN PROPAGANDA ?

As mentioned in the introduction the trigger for me to write this text was the confrontation with a popular book which appeared to me as a piece of ‘propaganda’. When I considered to describe my opinion with own words I detected that I had some difficulties: what is the difference between ‘propaganda’ and ‘everyday communication’? This forced me to think a little bit more about the ingredients of ‘everyday communication’ and where and why a ‘communication’ is ‘different’ to our ‘everyday communication’. As usual in the beginning of some discussion I took a first look to the various entries in Wikipedia (German and English). The entry in the English Wikipedia on ‘Propaganda [1b] attempts a very similar strategy to look to ‘normal communication’ and compared to this having a look to the phenomenon of ‘propaganda’, albeit with not quite sharp contours. However, it provides a broad overview of various forms of communication, including those forms that are ‘special’ (‘biased’), i.e. do not reflect the content to be communicated in the way that one would reproduce it according to ‘objective, verifiable criteria’.[*0] However, the variety of examples suggests that it is not easy to distinguish between ‘special’ and ‘normal’ communication: What then are these ‘objective verifiable criteria’? Who defines them?

Assuming for a moment that it is clear what these ‘objectively verifiable criteria’ are, one can tentatively attempt a working definition for the general (normal?) case of communication as a starting point:

Working Definition:

The general case of communication could be tentatively described as a simple attempt by one person – let’s call them the ‘author’ – to ‘bring something to the attention’ of another person – let’s call them the ‘interlocutor’. We tentatively call what is to be brought to their attention ‘the message’. We know from everyday life that an author can have numerous ‘characteristics’ that can affect the content of his message.

Here is a short list of properties that characterize the author’s situation in a communication. Then corresponding properties for the interlocutor.

The Author:

  1. The available knowledge of the author — both conscious and unconscious — determines the kind of message the author can create.
  2. His ability to discern truth determines whether and to what extent he can differentiate what in his message is verifiable in the real world — present or past — as ‘accurate’ or ‘true’.
  3. His linguistic ability determines whether and how much of his available knowledge can be communicated linguistically.
  4. The world of emotions decides whether he wants to communicate anything at all, for example, when, how, to whom, how intensely, how conspicuously, etc.
  5. The social context can affect whether he holds a certain social role, which dictates when he can and should communicate what, how, and with whom.
  6. The real conditions of communication determine whether a suitable ‘medium of communication’ is available (spoken sound, writing, sound, film, etc.) and whether and how it is accessible to potential interlocutors.
  7. The author’s physical constitution decides how far and to what extent he can communicate at all.

The Interlocutor:

  1. In general, the characteristics that apply to the author also apply to the interlocutor. However, some points can be particularly emphasized for the role of the interlocutor:
  2. The available knowledge of the interlocutor determines which aspects of the author’s message can be understood at all.
  3. The ability of the interlocutor to discern truth determines whether and to what extent he can also differentiate what in the conveyed message is verifiable as ‘accurate’ or ‘true’.
  4. The linguistic ability of the interlocutor affects whether and how much of the message he can absorb purely linguistically.
  5. Emotions decide whether the interlocutor wants to take in anything at all, for example, when, how, how much, with what inner attitude, etc.
  6. The social context can also affect whether the interlocutor holds a certain social role, which dictates when he can and should communicate what, how, and with whom.
  7. Furthermore, it can be important whether the communication medium is so familiar to the interlocutor that he can use it sufficiently well.
  8. The physical constitution of the interlocutor can also determine how far and to what extent the interlocutor can communicate at all.

Even this small selection of factors shows how diverse the situations can be in which ‘normal communication’ can take on a ‘special character’ due to the ‘effect of different circumstances’. For example, an actually ‘harmless greeting’ can lead to a social problem with many different consequences in certain roles. A seemingly ‘normal report’ can become a problem because the contact person misunderstands the message purely linguistically. A ‘factual report’ can have an emotional impact on the interlocutor due to the way it is presented, which can lead to them enthusiastically accepting the message or – on the contrary – vehemently rejecting it. Or, if the author has a tangible interest in persuading the interlocutor to behave in a certain way, this can lead to a certain situation not being presented in a ‘purely factual’ way, but rather to many aspects being communicated that seem suitable to the author to persuade the interlocutor to perceive the situation in a certain way and to adopt it accordingly. These ‘additional’ aspects can refer to many real circumstances of the communication situation beyond the pure message.

Types of communication …

Given this potential ‘diversity’, the question arises as to whether it will even be possible to define something like normal communication?

In order to be able to answer this question meaningfully, one should have a kind of ‘overview’ of all possible combinations of the properties of author (1-7) and interlocutor (1-8) and one should also have to be able to evaluate each of these possible combinations with a view to ‘normality’.

It should be noted that the two lists of properties author (1-7) and interlocutor (1-8) have a certain ‘arbitrariness’ attached to them: you can build the lists as they have been constructed here, but you don’t have to.

This is related to the general way in which we humans think: on one hand, we have ‘individual events that happen’ — or that we can ‘remember’ —, and on the other hand, we can ‘set’ ‘arbitrary relationships’ between ‘any individual events’ in our thinking. In science, this is called ‘hypothesis formation’. Whether or not such formation of hypotheses is undertaken, and which ones, is not standardized anywhere. Events as such do not enforce any particular hypothesis formations. Whether they are ‘sensible’ or not is determined solely in the later course of their ‘practical use’. One could even say that such hypothesis formation is a rudimentary form of ‘ethics’: the moment one adopts a hypothesis regarding a certain relationship between events, one minimally considers it ‘important’, otherwise, one would not undertake this hypothesis formation.

In this respect, it can be said that ‘everyday life’ is the primary place for possible working hypotheses and possible ‘minimum values’.

The following diagram demonstrates a possible arrangement of the characteristics of the author and the interlocutor:

FIGURE : Overview of the possible overlaps of knowledge between the author and the interlocutor, if everyone can have any knowledge at its disposal.

What is easy to recognize is the fact that an author can naturally have a constellation of knowledge that draws on an almost ‘infinite number of possibilities’. The same applies to the interlocutor. In purely abstract terms, the number of possible combinations is ‘virtually infinite’ due to the assumptions about the properties Author 1 and Interlocutor 2, which ultimately makes the question of ‘normality’ at the abstract level undecidable.


However, since both authors and interlocutors are not spherical beings from some abstract angle of possibilities, but are usually ‘concrete people’ with a ‘concrete history’ in a ‘concrete life-world’ at a ‘specific historical time’, the quasi-infinite abstract space of possibilities is narrowed down to a finite, manageable set of concretes. Yet, even these can still be considerably large when related to two specific individuals. Which person, with their life experience from which area, should now be taken as the ‘norm’ for ‘normal communication’?


It seems more likely that individual people are somehow ‘typified’, for example, by age and learning history, although a ‘learning history’ may not provide a clear picture either. Graduates from the same school can — as we know — possess very different knowledge afterwards, even though commonalities may be ‘minimally typical’.

Overall, the approach based on the characteristics of the author and the interlocutor does not seem to provide really clear criteria for a norm, even though a specification such as ‘the humanistic high school in Hadamar (a small German town) 1960 – 1968’ would suggest rudimentary commonalities.


One could now try to include the further characteristics of Author 2-7 and Interlocutor 3-8 in the considerations, but the ‘construction of normal communication’ seems to lead more and more into an unclear space of possibilities based on the assumptions of Author 1 and Interlocutor 2.

What does this mean for the typification of communication as ‘propaganda’? Isn’t ultimately every communication also a form of propaganda, or is there a possibility to sufficiently accurately characterize the form of ‘propaganda’, although it does not seem possible to find a standard for ‘normal communication’? … or will a better characterization of ‘propaganda’ indirectly provide clues for ‘non-propaganda’?

TRUTH and MEANING: Language as Key

The spontaneous attempt to clarify the meaning of the term ‘propaganda’ to the extent that one gets a few constructive criteria for being able to characterize certain forms of communication as ‘propaganda’ or not, gets into ever ‘deeper waters’. Are there now ‘objective verifiable criteria’ that one can work with, or not? And: Who determines them?

Let us temporarily stick to working hypothesis 1, that we are dealing with an author who articulates a message for an interlocutor, and let us expand this working hypothesis by the following addition 1: such communication always takes place in a social context. This means that the perception and knowledge of the individual actors (author, interlocutor) can continuously interact with this social context or ‘automatically interacts’ with it. The latter is because we humans are built in such a way that our body with its brain just does this, without ‘us’ having to make ‘conscious decisions’ for it.[*1]

For this section, I would like to extend the previous working hypothesis 1 together with supplement 1 by a further working hypothesis 2 (localization of language) [*4]:

  1. Every medium (language, sound, image, etc.) can contain a ‘potential meaning’.
  2. When creating the media event, the ‘author’ may attempt to ‘connect’ possible ‘contents’ that are to be ‘conveyed’ by him with the medium (‘putting into words/sound/image’, ‘encoding’, etc.). This ‘assignment’ of meaning occurs both ‘unconsciously/automatically’ and ‘(partially) consciously’.
  3. In perceiving the media event, the ‘interlocutor’ may try to assign a ‘possible meaning’ to this perceived event. This ‘assignment’ of meaning also happens both ‘unconsciously/automatically’ and ‘(partially) consciously’.
  4. The assignment of meaning requires both the author and the interlocutor to have undergone ‘learning processes’ (usually years, many years) that have made it possible to link certain ‘events of the external world’ as well as ‘internal states’ with certain media events.
  5. The ‘learning of meaning relationships’ always takes place in social contexts, as a media structure meant to ‘convey meaning’ between people belongs to everyone involved in the communication process.
  6. Those medial elements that are actually used for the ‘exchange of meanings’ all together form what is called a ‘language’: the ‘medial elements themselves’ form the ‘surface structure’ of the language, its ‘sign dimension’, and the ‘inner states’ in each ‘actor’ involved, form the ‘individual-subjective space of possible meanings’. This inner subjective space comprises two components: (i) the internally available elements as potential meaning content and (ii) a dynamic ‘meaning relationship’ that ‘links’ perceived elements of the surface structure and the potential meaning content.


To answer the guiding question of whether one can “characterize certain forms of communication as ‘propaganda’ or not,” one needs ‘objective, verifiable criteria’ on the basis of which a statement can be formulated. This question can be used to ask back whether there are ‘objective criteria’ in ‘normal everyday dialogue’ that we can use in everyday life to collectively decide whether a ‘claimed fact’ is ‘true’ or not; in this context, the word ‘true’ is also used. Can this be defined a bit more precisely?

For this I propose an additional working hypotheses 3:

  1. At least two actors can agree that a certain meaning, associated with the media construct, exists as a sensibly perceivable fact in such a way that they can agree that the ‘claimed fact’ is indeed present. Such a specific occurrence should be called ‘true 1’ or ‘Truth 1.’ A ‘specific occurrence’ can change at any time and quickly due to the dynamics of the real world (including the actors themselves), for example: the rain stops, the coffee cup is empty, the car from before is gone, the empty sidewalk is occupied by a group of people, etc.
  2. At least two actors can agree that a certain meaning, associated with the media construct, is currently not present as a real fact. Referring to the current situation of ‘non-occurrence,’ one would say that the statement is ‘false 1’; the claimed fact does not actually exist contrary to the claim.
  3. At least two actors can agree that a certain meaning, associated with the media construct, is currently not present, but based on previous experience, it is ‘quite likely’ to occur in a ‘possible future situation.’ This aspect shall be called ‘potentially true’ or ‘true 2’ or ‘Truth 2.’ Should the fact then ‘actually occur’ at some point in the future, Truth 2 would transform into Truth 1.
  4. At least two actors can agree that a certain meaning associated with the media construct does not currently exist and that, based on previous experience, it is ‘fairly certain that it is unclear’ whether the intended fact could actually occur in a ‘possible future situation’. This aspect should be called ‘speculative true’ or ‘true 3’ or ‘truth 3’. Should the situation then ‘actually occur’ at some point, truth 3 would change into truth 1.
  5. At least two actors can agree that a certain meaning associated with the medial construct does not currently exist, and on the basis of previous experience ‘it is fairly certain’ that the intended fact could never occur in a ‘possible future situation’. This aspect should be called ‘speculative false’ or ‘false 2’.

A closer look at these 5 assumptions of working hypothesis 3 reveals that there are two ‘poles’ in all these distinctions, which stand in certain relationships to each other: on the one hand, there are real facts as poles, which are ‘currently perceived or not perceived by all participants’ and, on the other hand, there is a ‘known meaning’ in the minds of the participants, which can or cannot be related to a current fact. This results in the following distribution of values:

REAL FACTsRelationship to Meaning
Given1Fits (true 1)
Given2Doesn’t fit (false 1)
Not given3Assumed, that it will fit in the future (true 2)
Not given4Unclear, whether it would fit in the future (true 3)
Not given5Assumed, that it would not fit in the future (false 2)

In this — still somewhat rough — scheme, ‘the meaning of thoughts’ can be qualified in relation to something currently present as ‘fitting’ or ‘not fitting’, or in the absence of something real as ‘might fit’ or ‘unclear whether it can fit’ or ‘certain that it cannot fit’.

However, it is important to note that these qualifications are ‘assessments’ made by the actors based on their ‘own knowledge’. As we know, such an assessment is always prone to error! In addition to errors in perception [*5], there can be errors in one’s own knowledge [*6]. So contrary to the belief of an actor, ‘true 1’ might actually be ‘false 1’ or vice versa, ‘true 2’ could be ‘false 2’ and vice versa.

From all this, it follows that a ‘clear qualification’ of truth and falsehood is ultimately always error-prone. For a community of people who think ‘positively’, this is not a problem: they are aware of this situation and they strive to keep their ‘natural susceptibility to error’ as small as possible through conscious methodical procedures [*7]. People who — for various reasons — tend to think negatively, feel motivated in this situation to see only errors or even malice everywhere. They find it difficult to deal with their ‘natural error-proneness’ in a positive and constructive manner.

TRUTH and MEANING : Process of Processes

In the previous section, the various terms (‘true1,2’, ‘false 1,2’, ‘true 3’) are still rather disconnected and are not yet really located in a tangible context. This will be attempted here with the help of working hypothesis 4 (sketch of a process space).

FIGURE 1 Process : The process space in the real world and in thinking, including possible interactions

The basic elements of working hypothesis 4 can be characterized as follows:

  1. There is the real world with its continuous changes, and within an actor which includes a virtual space for processes with elements such as perceptions, memories, and imagined concepts.
  2. The link between real space and virtual space occurs through perceptual achievements that represent specific properties of the real world for the virtual space, in such a way that ‘perceived contents’ and ‘imagined contents’ are distinguishable. In this way, a ‘mental comparison’ of perceived and imagined is possible.
  3. Changes in the real world do not show up explicitly but are manifested only indirectly through the perceivable changes they cause.
  4. It is the task of ‘cognitive reconstruction’ to ‘identify’ changes and to describe them linguistically in such a way that it is comprehensible, based on which properties of a given state, a possible subsequent state can arise.
  5. In addition to distinguishing between ‘states’ and ‘changes’ between states, it must also be clarified how a given description of change is ‘applied’ to a given state in such a way that a ‘subsequent state’ arises. This is called here ‘successor generation rule’ (symbolically: ⊢). An expression like Z ⊢V Z’ would then mean that using the successor generation rule ⊢ and employing the change rule V, one can generate the subsequent state Z’ from the state Z. However, more than one change rule V can be used, for example, ⊢{V1, V2, …, Vn} with the change rules V1, …, Vn.
  6. When formulating change rules, errors can always occur. If certain change rules have proven successful in the past in derivations, one would tend to assume for the ‘thought subsequent state’ that it will probably also occur in reality. In this case, we would be dealing with the situation ‘true 2’. If a change rule is new and there are no experiences with it yet, we would be dealing with the ‘true 3’ case for the thought subsequent state. If a certain change rule has failed repeatedly in the past, then the case ‘false 2’ might apply.
  7. The outlined process model also shows that the previous cases (1-5 in the table) only ever describe partial aspects. Suppose a group of actors manages to formulate a rudimentary process theory with many states and many change rules, including a successor generation instruction. In that case, it is naturally of interest how the ‘theory as a whole’ ‘proves itself’. This means that every ‘mental construction’ of a sequence of possible states according to the applied change rules under the assumption of the process theory must ‘prove itself’ in all cases of application for the theory to be said to be ‘generically true’. For example, while the case ‘true 1’ refers to only a single state, the case ‘generically true’ refers to ‘very many’ states, as many until an ‘end state’ is reached, which is supposed to count as a ‘target state’. The case ‘generically contradicted’ is supposed to occur when there is at least one sequence of generated states that keeps generating an end state that is false 1. As long as a process theory has not yet been confirmed as true 1 for an end state in all possible cases, there remains a ‘remainder of cases’ that are unclear. Then a process theory would be called ‘generically unclear’, although it may be considered ‘generically true’ for the set of cases successfully tested so far.

FIGURE 2 Process : The individual extended process space with an indication of the dimension ‘META-THINKING’ and ‘EVALUATION’.

If someone finds the first figure of the process room already quite ‘challenging’, they he will certainly ‘break into a sweat’ with this second figure of the ‘expanded process room’.

Everyone can check for himself that we humans have the ability — regardless of what we are thinking — to turn our thinking at any time back onto our own thinking shortly before, a kind of ‘thinking about thinking’. This opens up an ‘additional level of thinking’ – here called the ‘meta-level’ – on which we thinkers ‘thematize’ everything that is noticeable and important to us in the preceding thinking. [*8] In addition to ‘thinking about thinking’, we also have the ability to ‘evaluate’ what we perceive and think. These ‘evaluations’ are fueled by our ’emotions’ [*9] and ‘learned preferences’. This enables us to ‘learn’ with the help of our emotions and learned preferences: If we perform certain actions and suffer ‘pain’, we will likely avoid these actions next time. If we go to restaurant X to eat because someone ‘recommended’ it to us, and the food and/or service were really bad, then we will likely not consider this suggestion in the future. Therefore, our thinking (and our knowledge) can ‘make possibilities visible’, but it is the emotions that comment on what happens to be ‘good’ or ‘bad’ when implementing knowledge. But beware, emotions can also be mistaken, and massively so.[*10]

TRUTH AND MEANING – As a collective achievement

The previous considerations on the topic of ‘truth and meaning’ in the context of individual processes have outlined that and how ‘language’ plays a central role in enabling meaning and, based on this, truth. Furthermore, it was also outlined that and how truth and meaning must be placed in a dynamic context, in a ‘process model’, as it takes place in an individual in close interaction with the environment. This process model includes the dimension of ‘thinking’ (also ‘knowledge’) as well as the dimension of ‘evaluations’ (emotions, preferences); within thinking there are potentially many ‘levels of consideration’ that can relate to each other (of course they can also take place ‘in parallel’ without direct contact with each other (the unconnected parallelism is the less interesting case, however).

As fascinating as the dynamic emotional-cognitive structure within an individual actor can be, the ‘true power’ of explicit thinking only becomes apparent when different people begin to coordinate their actions by means of communication. When individual action is transformed into collective action in this way, a dimension of ‘society’ becomes visible, which in a way makes the ‘individual actors’ ‘forget’, because the ‘overall performance’ of the ‘collectively connected individuals’ can be dimensions more complex and sustainable than any one individual could ever realize. While a single person can make a contribution in their individual lifetime at most, collectively connected people can accomplish achievements that span many generations.

On the other hand, we know from history that collective achievements do not automatically have to bring about ‘only good’; the well-known history of oppression, bloody wars and destruction is extensive and can be found in all periods of human history.

This points to the fact that the question of ‘truth’ and ‘being good’ is not only a question for the individual process, but also a question for the collective process, and here, in the collective case, this question is even more important, since in the event of an error not only individuals have to suffer negative effects, but rather very many; in the worst case, all of them.

To be continued …

COMMENTS

[*0] The meaning of the terms ‘objective, verifiable’ will be explained in more detail below.

[*1] In a system-theoretical view of the ‘human body’ system, one can formulate the working hypothesis that far more than 99% of the events in a human body are not conscious. You can find this frightening or reassuring. I tend towards the latter, towards ‘reassurance’. Because when you see what a human body as a ‘system’ is capable of doing on its own, every second, for many years, even decades, then this seems extremely reassuring in view of the many mistakes, even gross ones, that we can make with our small ‘consciousness’. In cooperation with other people, we can indeed dramatically improve our conscious human performance, but this is only ever possible if the system performance of a human body is maintained. After all, it contains 3.5 billion years of development work of the BIOM on this planet; the building blocks of this BIOM, the cells, function like a gigantic parallel computer, compared to which today’s technical supercomputers (including the much-vaunted ‘quantum computers’) look so small and weak that it is practically impossible to express this relationship.

[*2] An ‘everyday language’ always presupposes ‘the many’ who want to communicate with each other. One person alone cannot have a language that others should be able to understand.

[*3] A meaning relation actually does what is mathematically called a ‘mapping’: Elements of one kind (elements of the surface structure of the language) are mapped to elements of another kind (the potential meaning elements). While a mathematical mapping is normally fixed, the ‘real meaning relation’ can constantly change; it is ‘flexible’, part of a higher-level ‘learning process’ that constantly ‘readjusts’ the meaning relation depending on perception and internal states.

[*4] The contents of working hypothesis 2 originate from the findings of modern cognitive sciences (neuroscience, psychology, biology, linguistics, semiotics, …) and philosophy; they refer to many thousands of articles and books. Working hypothesis 2 therefore represents a highly condensed summary of all this. Direct citation is not possible in purely practical terms.

[*5] As is known from research on witness statements and from general perception research, in addition to all kinds of direct perception errors, there are many errors in the ‘interpretation of perception’ that are largely unconscious/automated. The actors are normally powerless against such errors; they simply do not notice them. Only methodically conscious controls of perception can partially draw attention to these errors.

[*6] Human knowledge is ‘notoriously prone to error’. There are many reasons for this. One lies in the way the brain itself works. ‘Correct’ knowledge is only possible if the current knowledge processes are repeatedly ‘compared’ and ‘checked’ so that they can be corrected. Anyone who does not regularly check the correctness will inevitably confirm incomplete and often incorrect knowledge. As we know, this does not prevent people from believing that everything they carry around in their heads is ‘true’. If there is a big problem in this world, then this is one of them: ignorance about one’s own ignorance.

[*7] In the cultural history of mankind to date, it was only very late (about 500 years ago?) that a format of knowledge was discovered that enables any number of people to build up fact-based knowledge that, compared to all other known knowledge formats, enables the ‘best results’ (which of course does not completely rule out errors, but extremely minimizes them). This still revolutionary knowledge format has the name ’empirical theory’, which I have since expanded to ‘sustainable empirical theory’. On the one hand, we humans are the main source of ‘true knowledge’, but at the same time we ourselves are also the main source of ‘false knowledge’. At first glance, this seems like a ‘paradox’, but it has a ‘simple’ explanation, which at its root is ‘very profound’ (comparable to the cosmic background radiation, which is currently simple, but originates from the beginnings of the universe).

[*8] In terms of its architecture, our brain can open up any number of such meta-levels, but due to its concrete finiteness, it only offers a limited number of neurons for different tasks. For example, it is known (and has been experimentally proven several times) that our ‘working memory’ (also called ‘short-term memory’) is only limited to approx. 6-9 ‘units’ (whereby the term ‘unit’ must be defined depending on the context). So if we want to solve extensive tasks through our thinking, we need ‘external aids’ (sheet of paper and pen or a computer, …) to record the many aspects and write them down accordingly. Although today’s computers are not even remotely capable of replacing the complex thought processes of humans, they can be an almost irreplaceable tool for carrying out complex thought processes to a limited extent. But only if WE actually KNOW what we are doing!

[*9] The word ’emotion’ is a ‘collective term’ for many different phenomena and circumstances. Despite extensive research for over a hundred years, the various disciplines of psychology are still unable to offer a uniform picture, let alone a uniform ‘theory’ on the subject. This is not surprising, as much of the assumed emotions takes place largely ‘unconsciously’ or is only directly available as an ‘internal event’ in the individual. The only thing that seems to be clear is that we as humans are never ’emotion-free’ (this also applies to so-called ‘cool’ types, because the apparent ‘suppression’ or ‘repression’ of emotions is itself part of our innate emotionality).

[*10] Of course, emotions can also lead us seriously astray or even to our downfall (being wrong about other people, being wrong about ourselves, …). It is therefore not only important to ‘sort out’ the factual things in the world in a useful way through ‘learning’, but we must also actually ‘keep an eye on our own emotions’ and check when and how they occur and whether they actually help us. Primary emotions (such as hunger, sex drive, anger, addiction, ‘crushes’, …) are selective, situational, can develop great ‘psychological power’ and thus obscure our view of the possible or very probable ‘consequences’, which can be considerably damaging for us.

[*11] The term ‘narrative’ is increasingly used today to describe the fact that a group of people use a certain ‘image’, a certain ‘narrative’ in their thinking for their perception of the world in order to be able to coordinate their joint actions. Ultimately, this applies to all collective action, even for engineers who want to develop a technical solution. In this respect, the description in the German Wikipedia is a bit ‘narrow’: https://de.wikipedia.org/wiki/Narrativ_(Sozialwissenschaften)

REFERENCES

The following sources are just a tiny selection from the many hundreds, if not thousands, of articles, books, audio documents and films on the subject. Nevertheless, they may be helpful for an initial introduction. The list will be expanded from time to time.

[1a] Propaganda, in the German Wikipedia https://de.wikipedia.org/wiki/Propaganda

[1b] Propaganda in the English Wikipedia : https://en.wikipedia.org/wiki/Propaganda /*The English version appears more systematic, covers larger periods of time and more different areas of application */

[3] Propaganda der Russischen Föderation, hier: https://de.wikipedia.org/wiki/Propaganda_der_Russischen_F%C3%B6deration (German source)

[6] Mischa Gabowitsch, Mai 2022, Von »Faschisten« und »Nazis«, https://www.blaetter.de/ausgabe/2022/mai/von-faschisten-und-nazis#_ftn4 (German source)

REVIEW: Keith E.Stanovich, Richard F.West, Maggie E.Toplak, “The Rational Quotient. Towards a Test of Rational Thinking”, MIT Press, 2016

(Last change: Nov 1, 2023)

CONTEXT

This text belongs to the overall theme REVIEWS.

In the last months I was engaged with the topic of text-generating algorithms and the possible impact for a scientific discourse (some first notices to this discussion you can find here (https://www.uffmm.org/2023/08/24/homo-sapiens-empirical-and-sustained-empirical-theories-emotions-and-machines-a-sketch/)). In this context it is important to clarify the role and structure of human actors as well as the concept of Intelligence. Meanwhile I have abandoned the word Intelligence completely because the inflationary use in today mainstream pulverises any meaning. Even in one discipline — like psychology — you can find many different concepts. In this context I have read the book of Stanovich et.al to have a prominent example of using the concept of intelligence, there combined with the concept of rationality, which is no less vague.

Introduction

The book “The Rationality Quotient” from 2016 represents not the beginning of a discourse but is a kind of summary of a long lasting discourse with many publications before. This makes this book interesting, but also difficult to read in the beginning, because the book is using nearly on every page theoretical terms, which are assumed to be known to the reader and cites other publications without giving sufficient explanations why exactly these cited publications are important. This is no argument against this book but sheds some light on the reader, who has to learn a lot to understand the text.

A text with the character of summing up its subject is good, because it has a confirmed meaning about the subject which enables a kind of clarity which is typical for that state of elaborated point of view.

In the following review it is not the goal to give a complete account of every detail of this book but only to present the main thesis and then to analyze the used methods and the applied epistemological framework.

Main Thesis of the Book

The reviewing starts with the basic assumptions and the main thesis.

FIGURE 1 : The beginning. Note: the number ‘2015’ has to be corrected to ‘2016’.

FIGURE 2 : First outline of cognition. Note: the number ‘2015’ has to be corrected to ‘2016’.

As mentioned in the introduction you will in the book not find a real overview about the history of psychological research dealing with the concept of Intelligence and also no overview about the historical discourse to the concept of Rationality, whereby the last concept has also a rich tradition in Philosophy. Thus, somehow you have to know it.

There are some clear warnings with regard to the fuzziness of the concept rationality (p.3) as well as to the concept of intelligence (p.15). From a point of view of Philosophy of Science it could be interesting to know what the circumstances are which are causing such a fuzziness, but this is not a topic of the book. The book talks within its own selected conceptual paradigm. Being in the dilemma, of what kind of intelligence paradigm one wants to use, the book has decided to work with the Cattell-Horn-Carroll (CTC) paradigm, which some call a theory. [1]

Directly from the beginning it is explained that the discussion of Intelligence is missing a clear explanation of the full human model of cognition (p.15) and that intelligence tests therefore are mostly measuring only parts of human cognitive functions. (p.21)

Thus let us have a more detailed look to the scenario.

[1] For a first look to the Cattell–Horn–Carroll theory see: https://en.wikipedia.org/wiki/Cattell%E2%80%93Horn%E2%80%93Carroll_theory, a first overview.

Which point of View?

The book starts with a first characterization of the concept of Rationality within a point of view which is not really clear. From different remarks one gets some hints to modern Cognitive Science (4,6), to Decision Theory (4) and Probability Calculus (9), but a clear description is missing.

And it is declared right from the beginning, that the main aim of the book is the Construction of a rational Thinking Test (4), because for the authors the used Intelligence Tests — later reduced to the Carroll-Horn-Carroll (CHC) type of intelligence test (16) — are too narrow in what they are measuring (15, 16, 21).

Related to the term Rationality the book characterizes some requirements which the term rationality should fulfill (e.g. ‘Rationality as a continuum’ (4), ’empirically based’ (4), ‘operationally grounded’ (4), a ‘strong definition’ (5), a ‘normative one’ (5), ‘normative model of optimum judgment’ (5)), but it is more or less open, what these requirements imply and what tacit assumptions have to be fulfilled, that this will work.

The two requirements ’empirically based’ as well as ‘operationally grounded’ point in the direction of an tacitly assumed concept of an empirical theory, but exactly this concept — and especially in association with the term cognitive science — isn’t really clear today.

Because the authors make in the next pages a lot of statements which claim to be serious, it seems to be important for the discussion in this review text to clarify the conditions of the ‘meaning of language expressions’ and of being classified as ‘being true’.

If we assume — tentatively — that the authors assume a scientific theory to be primarily a text whose expressions have a meaning which can transparently be associated with an empirical fact and if this is the case, then the expression will be understood as being grounded and classified as true, then we have characterized a normal text which can be used in everyday live for the communication of meanings which can become demonstrated as being true.

Is there a difference between such a ‘normal text’ and a ‘scientific theory’? And, especially here, where the context should be a scientific theory within the discipline of cognitive science: what distinguishes a normal text from a ‘scientific theory within cognitive science’?

Because the authors do not explain their conceptual framework called cognitive science we recur here to a most general characterization [2,3] which tells us, that cognitive science is not a single discipline but an interdisciplinary study which is taking from many different disciplines. It has not yet reached a state where all used methods and terms are embedded in one general coherent framework. Thus the relationship of the used conceptual frameworks is mostly fuzzy, unclear. From this follows directly, that the relationship of the different terms to each other — e.g. like ‘underlying preferences’ and ‘well ordered’ — is within such a blurred context rather unclear.

Even the simple characterization of an expression as ‘having an empirical meaning’ is unclear: what are the kinds of empirical subjects and the used terms? According to the list of involved disciplines the disciplines linguistics [4], psychology [5] or neuroscience [6] — besides others — are mentioned. But every of these disciplines is itself today a broad field of methods, not integrated, dealing with a multifaceted subject.

Using an Auxiliary Construction as a Minimal Point of Reference

Instead of becoming somehow paralyzed from these one-and-all characterizations of the individual disciplines one can try to step back and taking a look to basic assumptions about empirical perspectives.

If we take a group of Human Observers which shall investigate these subjects we could make the following assumptions:

  1. Empirical Linguistics is dealing with languages, spoken as well as written by human persons, within certain environments, and these can be observed as empirical entities.
  2. Empirical Psychology is dealing with the behavior of human persons (a kind of biological systems) within certain environments, and these can be observed.
  3. Empirical Neuroscience is dealing with the brain as part of a body which is located in some environment, and this all can be observed.

The empirical observations of certain kinds of empirical phenomena can be used to define more abstract concepts, relations, and processes. These more abstract concepts, relations, and processes have ‘as such’ no empirical meaning! They constitute a formal framework which has to become correlated with empirical facts to get some empirical meaning. As it is known from philosophy of science [7] the combination of empirical concepts within a formal framework of abstracts terms can enable ‘abstract meanings’ which by logical conclusions can produce statements which are — in the moment of stating them — not empirically true, because ‘real future’ has not yet happened. And on account of the ‘generality’ of abstract terms compared to the finiteness and concreteness of empirical facts it can happen, that the inferred statements never will become true. Therefore the mere usage of abstract terms within a text called scientific theory does not guarantee valid empirical statements.

And in general one has to state, that a coherent scientific theory including e.g. linguistics, psychology and neuroscience, is not yet in existence.

To speak of cognitive science as if this represents a clearly defined coherent discipline seems therefore to be misleading.

This raises questions about the project of a constructing a coherent rational thinking test (CART).

[2] See ‘cognitive science’ in wikipedia: https://en.wikipedia.org/wiki/Cognitive_science

[3] See too ‘cognitive science’ in the Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/entries/cognitive-science/

[4] See ‘linguistics’ in wikipedia: https://en.wikipedia.org/wiki/Linguistics

[5] See ‘psychology’ in wikipedia: https://en.wikipedia.org/wiki/Psychology

[6] See ‘neuroscience’ in wikipedia: https://en.wikipedia.org/wiki/Neuroscience

[7] See ‘philosophy of science’ in wikipedia: https://en.wikipedia.org/wiki/Philosophy_of_science

‘CART’ TEST FRAMEWORK – A Reconstruction from the point of View of Philosophy of Science

Before I will dig deeper into the theory I try to understand the intended outcome of this theory as some point of reference. The following figure 3 gives some hints.

FIGURE 3 : Outline of the Test Framework based on the Appendix in Stanovich et.al 2016. This Outline is a Reconstruction by the author of this review.

It seems to be important to distinguish at least three main parts of the whole scientific endeavor:

  1. The group of scientists which has decided to process a certain problem.
  2. The generated scientific theory as a text.
  3. The description of a CART Test, which describes a procedure, how the abstract terms of the theory can be associated with real facts.

From the group of scientists (Stanovich et al.) we know that they understand themselves as cognitive scientists (without having a clear characterization, what this means concretely).

The intended scientific theory as a text is here assumed to be realized in the book, which is here the subject of a review.

The description of a CART Test is here taken from the appendix of the book.

To understand the theory it is interesting to see, that in the real test the test system (assumed here as a human person) has to read (and hear?) a instruction, how to proceed with a task form, and then the test system (a human person) has to process the test form in the way it has understood the instructions and the test form as it is.

The result is a completed test form.

And it is then this completed test form which will be rated according to the assumed CART theory.

This complete paradigm raises a whole bunch of questions which to answer here in full is somehow out of range.

Mix-Up of Abstract Terms

Because the Test Scenario presupposes a CART theory and within this theory some kind of a model of intended test users it can be helpful to have a more closer look to this assumed CART model, which is located in a person.

FIGURE 4 : General outline of the logic behind CART according to Stanovich et al. (2016).

The presented cognitive architecture shall present a framework for the CART (Comprehensive Assessment of Rational Thinking), whereby this framework is including a model. The model is not only assumed to contextualize and classify heuristics and tasks, but it also presents Rationality in a way that one can deduce mental characteristics included in rationality.(cf. 37)

Because the term Rationality is not an individual empirical fact but an abstract term of a conceptual framework, this term has as such no meaning. The meaning of this abstract term has to be arranged by relations to other abstract terms which themselves are sufficiently related to concrete empirical statements. And these relations between abstract terms and empirical facts (represented as language expressions) have to be represented in a manner, that it is transparent how the the measured facts are related to the abstract terms.

Here Stanovich et al. is using another abstract term Mind, which is associated with characteristics called mental characteristics: Reflective mind, Algorithmic Level, and Mindware.

And then the text tells that Rationality is presenting mental characteristics. What does this mean? Is rationality different from the mind, who has some characteristics, which can be presented from rationality using somehow the mind, or is rationality nevertheless part of the mind and manifests themself in these mental characteristics? But what kind of the meaning could this be for an abstract term like rationality to be part of the mind? Without an explicit model associated with the term Mind which arranges the other abstract term Rationality within this model there exists no meaning which can be used here.

These considerations are the effect of a text, which uses different abstract terms in a way, which is rather unclear. In a scientific theory this should not be the case.

Measuring Degrees of Rationality

In the beginning of chapter 4 Stanovich et al. are looking back to chapter 1. Here they built up a chain of arguments which illustrate some general perspective (cf. 63):

  1. Rationality has degrees.
  2. These degrees of rationality can be measured.
  3. Measurement is realized by experimental methods of cognitive science.
  4. The measuring is based on the observable behavior of people.
  5. The observable behavior can manifest whether the individual actor (a human person) follows assumed preferences related to an assumed axiom of choice.
  6. Observable behavior which is classified as manifesting assumed internal preferences according to an assumed internal axiom of choice can show descriptive and procedural invariance.
  7. Based on these deduced descriptive and procedural invariance, it can be inferred further, that these actors are behaving as if they are maximizing utility.
  8. It is difficult to assess utility maximization directly.
  9. It is much easier to assess whether one of the axioms of rational choice is being violated.

These statements characterize the Logic of the CART according to Stanovich et al. (cf.64)

A major point in this argumentation is the assumption, that observable behavior is such, that one can deduce from the properties of this behavior those attributes/ properties, which point (i) to an internal model of an axiom of choice, (ii) to internal processes, which manifest the effects of this internal model, (iii) to certain characteristics of these internal processes which allow the deduction of the property of maximizing utility or not.

These are very strong assumptions.

If one takes further into account the explanations from the pages 7f about the required properties for an abstract term axiom of choice (cf. figure 1) then these assumptions appear to be very demanding.

Can it be possible to extract the necessary meaning out of observable behavior in a way, which is clear enough by empirical standards, that this behavior shows property A and not property B ?

As we know from the description of the CART in the appendix of the book (cf. figure 3) the real behavior assumed for an CART is the (i) reading (or hearing?) of an instruction communicated by ordinary English, and then (ii) a behavior deduced from the understanding of the instruction, which (iii) manifests themself in the reading of a form with a text and filling out this form in predefined positions in a required language.

This described procedure is quite common throughout psychology and similar disciplines. But it is well known, that the understanding of language instructions is very error-prone. Furthermore, the presentation of a task as a text is inevitably highly biased and additionally too very error-prone with regard to the understanding (this is a reason why in usability testing purely text-based tests are rather useless).

The point is, that the empirical basis is not given as a protocol of observations of language free behavior but of a behavior which is nearly completely embedded in the understanding and handling of texts. This points to the underlying processes of text understanding which are completely internal to the actor. There exists no prewired connection between the observable strings of signs constituting a text and the possible meaning which can be organized by the individual processes of text understanding.

Stopping Here

Having reached this point of reading and trying to understand I decided to stop here: to many questions on all levels of a scientific discourse and the relationships between main concepts and terms appear in the book of Stanovich et al. to be not clear enough. I feel therefore confirmed in my working hypothesis from the beginning, that the concept of intelligence today is far too vague, too ambiguous to contain any useful kernel of meaning any more. And concepts like Rationality, Mind (and many others) seem to do not better.

Chatting with chatGPT4

Since April 2023 I have started to check the ability of chatGPT4 to contribute to a philosophical and scientific discourse. The working hypothesis is, that chatGPT4 is good in summarizing the common concepts, which are used in public texts, but chatGPT is not able for critical evaluations, not for really new creative ideas and in no case for systematic analysis of used methods, used frameworks, their interrelations, their truth-conditons and much more, what it cannot. Nevertheless, it is a good ‘common sense check’. Until now I couldn’t learn anything new from these chats.

If you have read this review with all the details and open questions you will be perhaps a little bit disappointed about the answers from chatGPT4. But keep calm: it is a bit helpful.

Protocol with chatGPT4

Collective human-machine intelligence and text generation. A transdisciplinary analysis.

Author: Gerd Doeben-Henisch

Email: info@uffmm.org

Time: Sept 25, 2023 – Oct 3, 2023

Translation: This text is a translation from the German Version into English with the aid of the software deepL.com as well as with chatGPT4, moderated by the author. The style of the two translators is different. The author is not good enough to classify which translator is ‘better’.

CONTEXT

This text is the outcome of a conference held at the Technical University of Darmstadt (Germany) with the title: Discourses of disruptive digital technologies using the example of AI text generators ( https://zevedi.de/en/topics/ki-text-2/ ). A German version of this article will appear in a book from de Gruyter as open access in the beginning of 2024.

Collective human-machine intelligence and text generation. A transdisciplinary analysis.

Abstract

Based on the conference theme “AI – Text and Validity. How do AI text generators change scientific discourse?” as well as the special topic “Collective human-machine intelligence using the example of text generation”, the possible interaction relationship between text generators and a scientific discourse will be played out in a transdisciplinary analysis. For this purpose, the concept of scientific discourse will be specified on a case-by-case basis using the text types empirical theory as well as sustained empirical theory in such a way that the role of human and machine actors in these discourses can be sufficiently specified. The result shows a very clear limitation of current text generators compared to the requirements of scientific discourse. This leads to further fundamental analyses on the example of the dimension of time with the phenomenon of the qualitatively new as well as on the example of the foundations of decision-making to the problem of the inherent bias of the modern scientific disciplines. A solution to the inherent bias as well as the factual disconnectedness of the many individual disciplines is located in the form of a new service of transdisciplinary integration by re-activating the philosophy of science as a genuine part of philosophy. This leaves the question open whether a supervision of the individual sciences by philosophy could be a viable path? Finally, the borderline case of a world in which humans no longer have a human counterpart is pointed out.

AUDIO: Keyword Sound

STARTING POINT

This text takes its starting point from the conference topic “AI – Text and Validity. How do AI text generators change scientific discourses?” and adds to this topic the perspective of a Collective Human-Machine Intelligence using the example of text generation. The concepts of text and validity, AI text generators, scientific discourse, and collective human-machine intelligence that are invoked in this constellation represent different fields of meaning that cannot automatically be interpreted as elements of a common conceptual framework.

TRANSDISCIPLINARY

In order to be able to let the mentioned terms appear as elements in a common conceptual framework, a meta-level is needed from which one can talk about these terms and their possible relations to each other. This approach is usually located in the philosophy of science, which can have as its subject not only single terms or whole propositions, but even whole theories that are compared or possibly even united. The term transdisciplinary [1] , which is often used today, is understood here in this philosophy of science understanding as an approach in which the integration of different concepts is redeemed by introducing appropriate meta-levels. Such a meta-level ultimately always represents a structure in which all important elements and relations can gather.

[1] Jürgen Mittelstraß paraphrases the possible meaning of the term transdisciplinarity as a “research and knowledge principle … that becomes effective wherever a solely technical or disciplinary definition of problem situations and problem solutions is not possible…”. Article Methodological Transdisciplinarity, in LIFIS ONLINE, www.leibniz-institut.de, ISSN 1864-6972, p.1 (first published in: Technology Assessment – Theory and Practice No.2, 14.Jg., June 2005, 18-23). In his text Mittelstrass distinguishes transdisciplinarity from the disciplinary and from the interdisciplinary. However, he uses only a general characterization of transdisciplinarity as a research guiding principle and scientific form of organization. He leaves the concrete conceptual formulation of transdisciplinarity open. This is different in the present text: here the transdisciplinary theme is projected down to the concreteness of the related terms and – as is usual in philosophy of science (and meta-logic) – realized by means of the construct of meta-levels.

SETTING UP A STRUCTURE

Here the notion of scientific discourse is assumed as a basic situation in which different actors can be involved. The main types of actors considered here are humans, who represent a part of the biological systems on planet Earth as a kind of Homo sapiens, and text generators, which represent a technical product consisting of a combination of software and hardware.

It is assumed that humans perceive their environment and themselves in a species-typical way, that they can process and store what they perceive internally, that they can recall what they have stored to a limited extent in a species-typical way, and that they can change it in a species-typical way, so that internal structures can emerge that are available for action and communication. All these elements are attributed to human cognition. They are working partially consciously, but largely unconsciously. Cognition also includes the subsystem language, which represents a structure that on the one hand is largely species-typically fixed, but on the other hand can be flexibly mapped to different elements of cognition.

In the terminology of semiotics [2] the language system represents a symbolic level and those elements of cognition, on which the symbolic structures are mapped, form correlates of meaning, which, however, represent a meaning only insofar as they occur in a mapping relation – also called meaning relation. A cognitive element as such does not constitute meaning in the linguistic sense. In addition to cognition, there are a variety of emotional factors that can influence both cognitive processes and the process of decision-making. The latter in turn can influence thought processes as well as action processes, consciously as well as unconsciously. The exact meaning of these listed structural elements is revealed in a process model [3] complementary to this structure.

[2] See, for example, Winfried Nöth: Handbuch der Semiotik. 2nd, completely revised edition. Metzler, Stuttgart/Weimar, 2000

[3] Such a process model is presented here only in partial aspects.

SYMBOLIC COMMUNICATION SUB-PROCESS

What is important for human actors is that they can interact in the context of symbolic communication with the help of both spoken and written language. Here it is assumed – simplistically — that spoken language can be mapped sufficiently accurately into written language, which in the standard case is called text. It should be noted that texts only represent meaning if the text producers involved, as well as the text recipients, have a meaning function that is sufficiently similar.
For texts by human text producers it is generally true that, with respect to concrete situations, statements as part of texts can be qualified under agreed conditions as now matching the situation (true) or as now not now matching the situation (false). However, a now-true can become a now-not-true again in the next moment and vice versa.

This dynamic fact refers to the fact that a punctual occurrence or non-occurrence of a statement is to be distinguished from a structural occurrence/ non-occurrence of a statement, which speaks about occurrence/ non-occurrence in context. This refers to relations which are only indirectly apparent in the context of a multitude of individual events, if one considers chains of events over many points in time. Finally, one must also consider that the correlates of meaning are primarily located within the human biological system. Meaning correlates are not automatically true as such, but only if there is an active correspondence between a remembered/thought/imagined meaning correlate and an active perceptual element, where an intersubjective fact must correspond to the perceptual element. Just because someone talks about a rabbit and the recipient understands what a rabbit is, this does not mean that there is also a real rabbit which the recipient can perceive.

TEXT-GENERATORS

When distinguishing between the two different types of actors – here biological systems of the type Homo sapiens and there technical systems of the type text-generators – a first fundamental asymmetry immediately strikes the eye: so-called text-generators are entities invented and built by humans; furthermore, it is humans who use them, and the essential material used by text-generators are furthermore texts, which are considered human cultural property, created and used by humans for a variety of discourse types, here restricted to scientific discourse.


In the case of text generators, let us first note that we are dealing with machines that have input and output, a minimal learning capability, and whose input and output can process text-like objects.
Insofar as text generators can process text-like objects as input and process them again as output, an exchange of texts between humans and text generators can take place in principle.

At the current state of development (September 2023), text generators do not yet have an independent real-world perception within the scope of their input, and the entire text generator system does not yet have such processes as those that enable species-typical cognitions in humans. Furthermore, a text generator does not yet have a meaning function as it is given with humans.

From this fact it follows automatically that text generators cannot decide about selective or structural correctness/not correctness in the case of statements of a text. In general, they do not have their own assignment of meaning as with humans. Texts generated by text generators only have a meaning if a human as a recipient automatically assigns a meaning to a text due to his species-typical meaning relation, because this is the learned behavior of a human. In fact, the text generator itself has never assigned any meaning to the generated text. Salopp one could also formulate that a technical text generator works like a parasite: it collects texts that humans have generated, rearranges them combinatorially according to formal criteria for the output, and for the receiving human a meaning event is automatically triggered by the text in the human, which does not exist anywhere in the text generator.
Whether this very restricted form of text generation is now in any sense detrimental or advantageous for the type of scientific discourse (with texts), that is to be examined in the further course.

SCIENTIFIC DISCOURSE

There is no clear definition for the term scientific discourse. This is not surprising, since an unambiguous definition presupposes that there is a fully specified conceptual framework within which terms such as discourse and scientific can be clearly delimited. However, in the case of a scientific enterprise with a global reach, broken down into countless individual disciplines, this does not seem to be the case at present (Sept 2023). For the further procedure, we will therefore fall back on core ideas of the discussion in philosophy of science since the 20th century [4]and we will introduce working hypotheses on the concept of empirical theory as well as sustainable empirical theory, so that a working hypothesis on the concept of scientific discourse will be possible, which has a minimal sharpness.

[4] A good place to start may be: F. Suppe, Editor. The Structure of Scientific Theories. University of Illinois Press, Urbana, 2 edition, 1979.

EMPIRICAL THEORY

The following assumptions are made for the notion of an empirical theory:

  1. an empirical theory is basically a text, written in a language that all participants understand.
  2. one part of the theory contains a description of an initial situation, the statements of which can be qualified by the theory users as now matching (true) or now not matching (false).
  3. another part of the theory contains a text that lists all changes that, to the knowledge of the participants, occur in the context of the initial situation and can change parts of the initial situation.
  4. changes in the initial situation are expressed by replacing certain statements of the initial situation with other statements. The resulting new text replaces the previous text.
  5. through the possibility of generating new initial situations, there is the possibility of making predictions (forming expectations) by applying rules of change to an applicable initial situation several times (at least once) in succession. The texts that are generated in each case induce in the minds of the participants, on the basis of the available meaning functions, the idea of a situation that is demanded to become qualified as now matching with intersubjective reality, should it occur. In the case of occurrence, the situation must correspond to the conception in the mind via perception. Whether such a correspondence can be established, after how long time and to what extent, this is basically open in the presence of the prediction making (the formation of an expectation) (autonomy of the object!).

SCIENTIFIC DISCOURSE NEW

Even before the introduction of the notion of a sustainable empirical theory, the notion of an empirical theory just introduced allows for initial statements about what a scientific discourse could or should be.
It is assumed here that the participants in a scientific discourse exchange their opinions about the world in the form of texts, all of which meet the requirements of an empirical theory.

WITH HUMANS

Insofar as the participants in the discourse are human beings, we know that they have basic species-typical abilities to generate subjective meanings by means of language, which can be decided as now true or now not true by reference to a real situation.

WITH TEXT GENERATORS

Insofar as the discourse participants would be text generators lacking these elementary skills (meaning, reality reference), they drop out as independent actors for a scientific discourse.
To illustrate this, here is a self-assessment of chatGPT4, a current text generator:

ChatGPT

Yes, your summary of our previous dialogue is accurate based on the points you’ve listed:

  1. I cannot read a book in the same way a human does, meaning I don’t interpret or comprehend in the same manner.
  2. My knowledge is up to September 2021, which means that I might not be aware of events, advancements, or publications after that point.
  3. My “learning” is different from human learning. I don’t learn from new experiences or information after my last update. Instead, I generate responses based on patterns in the data I was trained on.
  4. I don’t cite individual sources in my responses. I provide information based on the patterns recognized during my training.
  5. Responses I give can vary slightly even if the same question is posed multiple times.
  6. I can’t directly attribute my statements to specific, individual sources.
  7. The specifics about my training data and the processes that determine my responses are not transparently provided in each interaction.

You’ve captured the essence of our prior conversation well. If you have further questions or need clarifications on any of these points, please let me know. [5]

[5] This text is from a chat experiment conducted by the author with chatGPT4 on August 31, 2023. The citation can be found in: Gerd Doeben-Henisch, CONTINUE EXPERIMENT WITH CHATGPT4: Science, Empirical Science, Philosophy of Science, uffmm, Integrating Engineering and the Human Factor, eJournal uffmm.org ISSN 2567-6458,
8/31/2023 in [https://www.uffmm.org/2023/08/31/continue-experiment-with-chatgpt4-science-empirical-science-philosophy-of-science/ ] (accessed 9/27/2023).

The question then arises whether (current) text generators, despite their severely limited capabilities, could nevertheless contribute to scientific discourse, and what this contribution means for human participants. Since text generators fail for the hard scientific criteria (decidable reality reference, reproducible predictive behavior, separation of sources), one can only assume a possible contribution within human behavior: since humans can understand and empirically verify texts, they would in principle be able to rudimentarily classify a text from a text generator within their considerations.

For hard theory work, these texts would not be usable, but due to their literary-associative character across a very large body of texts, the texts of text generators could – in the positive case – at least introduce thoughts into the discourse through texts as stimulators via the detour of human understanding, which would stimulate the human user to examine these additional aspects to see if they might be important for the actual theory building after all. In this way, the text generators would not participate independently in the scientific discourse, but they would indirectly support the knowledge process of the human actors as aids to them.[6]

[6] A detailed illustration of this associative role of a text generator can also be found in (Doeben-Henisch, 2023) on the example of the term philosophy of science and on the question of the role of philosophy of science.

CHALLENGE DECISION

The application of an empirical theory can – in the positive case — enable an expanded picture of everyday experience, in that, related to an initial situation, possible continuations (possible futures) are brought before one’s eyes.
For people who have to shape their own individual processes in their respective everyday life, however, it is usually not enough to know only what one can do. Rather, everyday life requires deciding in each case which continuation to choose, given the many possible continuations. In order to be able to assert themselves in everyday life with as little effort as possible and with – at least imagined – as little risk as possible, people have adopted well-rehearsed behavior patterns for as many everyday situations as possible, which they follow spontaneously without questioning them anew each time. These well-rehearsed behavior patterns include decisions that have been made. Nevertheless, there are always situations in which the ingrained automatisms have to be interrupted in order to consciously clarify the question for which of several possibilities one wants to decide.

The example of an individual decision-maker can also be directly applied to the behavior of larger groups. Normally, even more individual factors play a role here, all of which have to be integrated in order to reach a decision. However, the characteristic feature of a decision situation remains the same: whatever knowledge one may have at the time of decision, when alternatives are available, one has to decide for one of many alternatives without any further, additional knowledge at this point. Empirical science cannot help here [7]: it is an indisputable basic ability of humans to be able to decide.

So far, however, it remains rather hidden in the darkness of not knowing oneself, which ultimately leads to deciding for one and not for the other. Whether and to what extent the various cultural patterns of decision-making aids in the form of religious, moral, ethical or similar formats actually form or have formed a helpful role for projecting a successful future appears to be more unclear than ever.[8]

[7] No matter how much detail she can contribute about the nature of decision-making processes.

[8] This topic is taken up again in the following in a different context and embedded there in a different solution context.

SUSTAINABLE EMPIRICAL THEORY

Through the newly flared up discussion about sustainability in the context of the United Nations, the question of prioritizing action relevant to survival has received a specific global impulse. The multitude of aspects that arise in this discourse context [9] are difficult, if not impossible, to classify into an overarching, consistent conceptual framework.

[9] For an example see the 17 development goals: [https://unric.org/de/17ziele/] (Accessed: September 27, 2023)

A rough classification of development goals into resource-oriented and actor-oriented can help to make an underlying asymmetry visible: a resource problem only exists if there are biological systems on this planet that require a certain configuration of resources (an ecosystem) for their physical existence. Since the physical resources that can be found on planet Earth are quantitatively limited, it is possible, in principle, to determine through thought and science under what conditions the available physical resources — given a prevailing behavior — are insufficient. Added to this is the factor that biological systems, by their very existence, also actively alter the resources that can be found.

So, if there should be a resource problem, it is exclusively because the behavior of the biological systems has led to such a biologically caused shortage. Resources as such are neither too much, nor too little, nor good, nor bad. If one accepts that the behavior of biological systems in the case of the species Homo sapiens can be controlled by internal states, then the resource problem is primarily a cognitive and emotional problem: Do we know enough? Do we want the right thing? And these questions point to motivations beyond what is currently knowable. Is there a dark spot in the human self-image here?

On the one hand, this questioning refers to the driving forces for a current decision beyond the possibilities of the empirical sciences (trans-empirical, meta-physical, …), but on the other hand, this questioning also refers to the center/ core of human competence. This motivates to extend the notion of empirical theory to the notion of a sustainable empirical theory. This does not automatically solve the question of the inner mechanism of a value decision, but it systematically classifies the problem. The problem thus has an official place. The following formulation is suggested as a characterization for the concept of a sustainable empirical theory:

  1. a sustainable empirical theory contains an empirical theory as its core.
    1. besides the parts of initial situation, rules of change and application of rules of change, a sustainable theory also contains a text with a list of such situations, which are considered desirable for a possible future (goals, visions, …).
    2. under the condition of goals, it is possible to minimally compare each current situation with the available goals and thereby indicate the degree of goal achievement.

Stating desired goals says nothing about how realistic or promising it is to pursue those goals. It only expresses that the authors of this theory know these goals and consider them optimal at the time of theory creation. [10] The irrationality of chosen goals is in this way officially included in the domain of thought of the theory creators and in this way facilitates the extension of the rational to the irrational without already having a real solution. Nobody can exclude that the phenomenon of bringing forth something new, respectively of preferring a certain point of view in comparison to others, can be understood further and better in the future.

[10] Something can only be classified as optimal if it can be placed within an overarching framework, which allows for positioning on a scale. This refers to a minimal cognitive model as an expression of rationality. However, the decision itself takes place outside of such a rational model; in this sense, the decision as an independent process is pre-rational.

EXTENDED SCIENTIFIC DISCOURSE

If one accepts the concept of a sustainable empirical theory, then one can extend the concept of a scientific discourse in such a way that not only texts that represent empirical theories can be introduced, but also those texts that represent sustainable empirical theories with their own goals. Here too, one can ask whether the current text generators (September 2023) can make a constructive contribution. Insofar as a sustainable empirical theory contains an empirical theory as a hard core, the preceding observations on the limitations of text generators apply. In the creative part of the development of an empirical theory, they can contribute text fragments through their associative-combinatorial character based on a very large number of documents, which may inspire the active human theory authors to expand their view. But what about that part that manifests itself in the selection of possible goals? At this point, one must realize that it is not about any formulations, but about those that represent possible solution formulations within a systematic framework; this implies knowledge of relevant and verifiable meaning structures that could be taken into account in the context of symbolic patterns. Text generators fundamentally do not have these abilities. But it is – again – not to be excluded that their associative-combinatorial character based on a very large number of documents can still provide one or the other suggestion.

In retrospect of humanity’s history of knowledge, research, and technology, it is suggested that the great advances were each triggered by something really new, that is, by something that had never existed before in this form. The praise for Big Data, as often heard today, represents – colloquially speaking — exactly the opposite: The burial of the new by cementing the old.[11]

[11] A prominent example of the naive fixation on the old as a standard for what is right can be seen, for example, in the book by Seth Stephens-Davidowitz, Don’t Trust Your Gut. Using Data Instead of Instinct To Make Better Choices, London – Oxford New York et al., 2022.

EXISTENTIALLY NEW THROUGH TIME

The concept of an empirical theory inherently contains the element of change, and even in the extended concept of a sustainable empirical theory, in addition to the fundamental concept of change, there is the aspect of a possible goal. A possible goal itself is not a change, but presupposes the reality of changes! The concept of change does not result from any objects but is the result of a brain performance, through which a current present is transformed into a partially memorable state (memory contents) by forming time slices in the context of perception processes – largely unconsciously. These produced memory contents have different abstract structures, are networked differently with each other, and are assessed in different ways. In addition, the brain automatically compares current perceptions with such stored contents and immediately reports when a current perception has changed compared to the last perception contents. In this way, the phenomenon of change is a fundamental cognitive achievement of the brain, which thus makes the character of a feeling of time available in the form of a fundamental process structure. The weight of this property in the context of evolution is hardly to be overestimated, as time as such is in no way perceptible.

[12] The modern invention of machines that can generate periodic signals (oscillators, clocks) has been successfully integrated into people’s everyday lives. However, the artificially (technically) producible time has nothing to do with the fundamental change found in reality. Technical time is a tool that we humans have invented to somehow structure the otherwise amorphous mass of a phenomenon stream. Since structure itself shows in the amorphous mass, which manifest obviously for all, repeating change cycles (e.g., sunrise and sunset, moonrise and moonset, seasons, …), a correlation of technical time models and natural time phenomena was offered. From the correlations resulting here, however, one should not conclude that the amorphous mass of the world phenomenon stream actually behaves according to our technical time model. Einstein’s theory of relativity at least makes us aware that there can be various — or only one? — asymmetries between technical time and world phenomenon stream.


Assuming this fundamental sense of time in humans, one can in principle recognize whether a current phenomenon, compared to all preceding phenomena, is somehow similar or markedly different, and in this sense indicates something qualitatively new.[13]

[13] Ultimately, an individual human only has its individual memory contents available for comparison, while a collective of people can in principle consult the set of all records. However, as is known, only a minimal fraction of the experiential reality is symbolically transformed.

By presupposing the concept of directed time for the designation of qualitatively new things, such a new event is assigned an information value in the Shannonian sense, as well as the phenomenon itself in terms of linguistic meaning, and possibly also in the cognitive area: relative to a spanned knowledge space, the occurrence of a qualitatively new event can significantly strengthen a theoretical assumption. In the latter case, the cognitive relevance may possibly mutate to a sustainable relevance if the assumption marks a real action option that could be important for further progress. In the latter case, this would provoke the necessity of a decision: should we adopt this action option or not? Humans can accomplish the finding of qualitatively new things. They are designed for it by evolution. But what about text generators?

Text generators so far do not have a sense of time comparable to that of humans. Their starting point would be texts that are different, in such a way that there is at least one text that is the most recent on the timeline and describes real events in the real world of phenomena. Since a text generator (as of September 2023) does not yet have the ability to classify texts regarding their applicability/non-applicability in the real world, its use would normally end here. Assuming that there are people who manually perform this classification for a text generator [14] (which would greatly limit the number of possible texts), then a text generator could search the surface of these texts for similar patterns and, relative to them, for those that cannot be compared. Assuming that the text generator would find a set of non-comparable patterns in acceptable time despite a massive combinatorial explosion, the problem of semantic qualification would arise again: which of these patterns can be classified as an indication of something qualitatively new? Again, humans would have to become active.

[14] Such support of machines by humans in the field of so-called intelligent algorithms has often been applied (and is still being applied today, see: [https://www.mturk.com/] (Accessed: September 27, 2023)), and is known to be very prone to errors.

As before, the verdict is mixed: left to itself, a text generator will not be able to solve this task, but in cooperation with humans, it may possibly provide important auxiliary services, which could ultimately be of existential importance to humans in search of something qualitatively new despite all limitations.

THE IMMANENT PREJUDICE OF THE SCIENCES

A prejudice is known to be the assessment of a situation as an instance of a certain pattern, which the judge assumes applies, even though there are numerous indications that the assumed applicability is empirically false. Due to the permanent requirement of everyday life that we have to make decisions, humans, through their evolutionary development, have the fundamental ability to make many of their everyday decisions largely automatically. This offers many advantages, but can also lead to conflicts.

Daniel Kahneman introduced in this context in his book [15] the two terms System 1 and System 2 for a human actor. These terms describe in his concept of a human actor two behavioral complexes that can be distinguished based on some properties.[16] System 1 is set by the overall system of human actor and is characterized by the fact that the actor can respond largely automatically to requirements by everyday life. The human actor has automatic answers to certain stimuli from his environment, without having to think much about it. In case of conflicts within System 1 or from the perspective of System 2, which exercises some control over the appropriateness of System 1 reactions in a certain situation in conscious mode, System 2 becomes active. This does not have automatic answers ready, but has to laboriously work out an answer to a given situation step by step. However, there is also the phenomenon that complex processes, which must be carried out frequently, can be automated to a certain extent (bicycling, swimming, playing a musical instrument, learning language, doing mental arithmetic, …). All these processes are based on preceding decisions that encompass different forms of preferences. As long as these automated processes are appropriate in the light of a certain rational model, everything seems to be OK. But if the corresponding model is distorted in any sense, then it would be said that these models carry a prejudice.

[15] Daniel Kahnemann, Thinking Fast and Slow, Pinguin Boooks Random House, UK, 2012 (zuerst 2011)

[16] See the following Chapter 1 in Part 1 of (Kahnemann, 2012, pages 19-30).

In addition to the countless examples that Kahneman himself cites in his book to show the susceptibility of System 1 to such prejudices, it should be pointed out here that the model of Kahneman himself (and many similar models) can carry a prejudice that is of a considerably more fundamental nature. The division of the behavioral space of a human actor into a System 1 and 2, as Kahneman does, obviously has great potential to classify many everyday events. But what about all the everyday phenomena that fit neither the scheme of System 1 nor the scheme of System 2?

In the case of making a decision, System 1 comments that people – if available – automatically call up and execute an available answer. Only in the case of conflict under the control of System 2 can there be lengthy operations that lead to other, new answers.

In the case of decisions, however, it is not just about reacting at all, but there is also the problem of choosing between known possibilities or even finding something new because the known old is unsatisfactory.

Established scientific disciplines have their specific perspectives and methods that define areas of everyday life as a subject area. Phenomena that do not fit into this predefined space do not occur for the relevant discipline – methodically conditioned. In the area of decision-making and thus the typical human structures, there are not a few areas that have so far not found official entry into a scientific discipline. At a certain point in time, there are ultimately many, large phenomenon areas that really exist, but methodically are not present in the view of individual sciences. For a scientific investigation of the real world, this means that the sciences, due to their immanent exclusions, are burdened with a massive reservation against the empirical world. For the task of selecting suitable sustainable goals within the framework of sustainable science, this structurally conditioned fact can be fatal. Loosely formulated: under the banner of actual science, a central principle of science – the openness to all phenomena – is simply excluded, so as not to have to change the existing structure.

For this question of a meta-reflection on science itself, text generators are again only reduced to possible abstract text delivery services under the direction of humans.

SUPERVISION BY PHILOSOPHY

The just-described fatal dilemma of all modern sciences is to be taken seriously, as without an efficient science, sustainable reflection on the present and future cannot be realized in the long term. If one agrees that the fatal bias of science is caused by the fact that each discipline works intensively within its discipline boundaries, but does not systematically organize communication and reflection beyond its own boundaries with a view to other disciplines as meta-reflection, the question must be answered whether and how this deficit can be overcome.

There is only one known answer to this question: one must search for that conceptual framework within which these guiding concepts can meaningfully interact both in their own right and in their interaction with other guiding concepts, starting from those guiding concepts that are constitutive for the individual disciplines.

This is genuinely the task of philosophy, concretized by the example of the philosophy of science. However, this would mean that each individual science would have to use a sufficiently large part of its capacities to make the idea of the one science in maximum diversity available in a real process.

For the hard conceptual work hinted at here, text generators will hardly be able to play a central role.

COLLECTIVE INTELLIGENCE

Since so far there is no concept of intelligence in any individual science that goes beyond a single discipline, it makes little sense at first glance to apply the term intelligence to collectives. However, looking at the cultural achievements of humanity as a whole, and here not least with a view to the used language, it is undeniable that a description of the performance of an individual person, its individual performance, is incomplete without reference to the whole.

So, if one tries to assign an overarching meaning to the letter combination intelligence, one will not be able to avoid deciphering this phenomenon of the human collective in the form of complex everyday processes in a no less complex dynamic world, at least to the extent that one can identify a somewhat corresponding empirical something for the letter combination intelligence, with which one could constitute a comprehensible meaning.

Of course, this term should be scalable for all biological systems, and one would have to have a comprehensible procedure that allows the various technical systems to be related to this collective intelligence term in such a way that direct performance comparisons between biological and technical systems would be possible.[17]

[17] The often quoted and popular Turing Test (See: Alan M. Turing: Computing Machinery and Intelligence. In: Mind. Volume LIX, No. 236, 1950, 433–460, [doi:10.1093/mind/LIX.236.433] (Accessed: Sept 29, 2023) in no way meets the methodological requirements that one would have to adhere to if one actually wanted to come to a qualified performance comparison between humans and machines. Nevertheless, the basic idea of Turing in his meta-logical text from 1936, published in 1937 (see: A. M. Turing: On Computable Numbers, with an Application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society. s2-42. Volume, No. 1, 1937, 230–265 [doi:10.1112/plms/s2-42.1.230] (Accessed: Sept 29, 2023) seems to be a promising starting point, since he, in trying to present an alternative formulation to Kurt Gödel’s (1931) proof on the undecidability of arithmetic, leads a meta-logical proof, and in this context Turing introduces the concept of a machine that was later called Universal Turing Machine.

Already in this proof approach, it can be seen how Turing transforms the phenomenon of a human bookkeeper at a meta-level into a theoretical concept, by means of which he can then meta-logically examine the behavior of this bookkeeper in a specific behavioral space. His meta-logical proof not only confirmed Gödel’s meta-logical proof, but also indirectly indicates how ultimately any phenomenal complexes can be formalized on a meta-level in such a way that one can then argue formally demanding with it.

CONCLUSION STRUCTURALLY

The idea of philosophical supervision of the individual sciences with the goal of a concrete integration of all disciplines into an overall conceptual structure seems to be fundamentally possible from a philosophy of science perspective based on the previous considerations. From today’s point of view, specific phenomena claimed by individual disciplines should no longer be a fundamental obstacle for a modern theory concept. This would clarify the basics of the concept of Collective Intelligence and it would surely be possible to more clearly identify interactions between human collective intelligence and interactive machines. Subsequently, the probability would increase that the supporting machines could be further optimized, so that they could also help in more demanding tasks.

CONCLUSION SUBJECTIVELY

Attempting to characterize the interactive role of text generators in a human-driven scientific discourse, assuming a certain scientific model, appears to be somewhat clear from a transdisciplinary (and thus structural) perspective. However, such scientific discourse represents only a sub-space of the general human discourse space. In the latter, the reception of texts from the perspective of humans inevitably also has a subjective view [18]: People are used to suspecting a human author behind a text. With the appearance of technical aids, texts have increasingly become products, which increasingly gaining formulations that are not written down by a human author alone, but by the technical aids themselves, mediated by a human author. With the appearance of text generators, the proportion of technically generated formulations increases extremely, up to the case that ultimately the entire text is the direct output of a technical aid. It becomes difficult to impossible to recognize to what extent a controlling human share can still be spoken of here. The human author thus disappears behind a text; the sign reality which does not prevent an existential projection of the inner world of the human reader into a potential human author, but threatens to lose itself or actually loses itself in the real absence of a human author in the face of a chimeric human counterpart. What happens in a world where people no longer have human counterparts?

[18] There is an excellent analysis on this topic by Hannes Bajohr titled “Artifizielle und postartifizielle Texte. Über Literatur und Künstliche Intelligenz” (Artificial and Post-Artificial Texts: On Literature and Artificial Intelligence). It was the Walter-Höllerer-Lecture 2022, delivered on December 8, 2022, at the Technical University of Berlin. The lecture can be accessed here [ https://hannesbajohr.de/wp-content/uploads/2022/12/Hoellerer-Vorlesung-2022.pdf ] (Accessed: September 29, 2023). The reference to this lecture was provided to me by Jennifer Becker.

State Change from Non-Writing to Writing. Working with chatGPT4 in parallel. An Exploration

Author: Gerd Doeben-Henisch

Email: info@uffmm.org

Aug 28, 2023 – Aug 28, 2023 (18:10h CET)

CONTEXT: Man and Machine. One head against Billions of documents …

The author has started an experiment writing two tracks in parallel: the first track is his own writing without chatGPT4, and the next track ist a chat with chatGPT4. The motivation behind this experiment is to get a better estimate how the writing of chatGPT4 differs. While chatGPT4 is working only by statistical patterns of the ‘surface’ of language communications, the author is exploiting his individual ‘meaning knowledge’ built up in his inner states by many years of individual learning as part of certain ‘cultures’ and ‘everyday situations’. Clearly the knowledge of the individual author about texts available is extremely smaller than compared with the knowledge base of chatGPT4. Thus it is an interesting question whether an individual knowledge is generally too bad compared to the text generation capacity of the chatGPT4 software?

While the premises of the original article cannot be easily transferred to the dialog with chatGPT4, one can still get some sense of where chatGPT4’s strengths lie on the one hand, and its weaknesses on the other. For ‘authentic’ writing a replacement by chatGPT4 is not an option, but a ‘cooperation’ between ‘authentic’ writing and chatGPT seems possible and in some contexts certainly even fruitful.

What the Author did Write:

CONTINUOUS REBIRTH – Now. Silence does not help …Exploration

(This text is a translation from a German source using for nearly 90-95% the deepL software without the need to make any changes afterwards. [*])

CONTEXT

As written in the previous blog entry, the last blog entry with the topic “Homo Sapiens: empirical and sustainable-empirical theories, emotions, and machines. A Sketch” [1] as a draft speech for the conference “AI – Text and Validity. How do AI text generators change scientific discourse?” [2] Due to the tight time frame (20 min for the talk), this text was very condensed. However, despite its brevity, the condensed text contains a many references to fundamental issues. One of them will be briefly taken up here.

Localization in the text of the lecture

A first hint is found in the section headed “FUTURE AND EMOTIONS” and then in the section “SUSTAINABLE EMPIRICAL THEORY”.

In these sections of the text, attention is drawn to the fact that every explicit worldview is preceded by a phase of ’emergence’ of that worldview, in which there is a characteristic ‘transition’ between the ‘result’ in the form of a possible text and a preceding state in which that text is not yet ‘there’. Of course, in this ‘pre-text phase’ – according to the assumptions in the section “MEANING” – there are many facts of knowledge and emotions in the brain of the ‘author’, all of which are ‘not conscious’, but from which the possible effects in the form of a text emanate. How exactly ‘impact’ is supposed to emanate from this ‘pre-conscious’ knowledge and emotions is largely unclear.

We know from everyday life that external events can trigger ‘perceptions’, which in turn can ‘stimulate’ a wide variety of reactions as ‘triggers’. If we disregard such reactions, which are ‘pre-trained’ in our brain due to frequent practice and which are then almost always ‘automatically’ evoked, it is as a rule hardly predictable whether and how we react.

From non-action to action

This potential transition from non-action to action is omnipresent in everyday life. As such, we normally do not notice it. In special situations, however, where we are explicitly challenged to make decisions, we then suddenly find ourselves in a quasi ‘undefined state’: the situation appears to us as if we are supposed to decide. Should we do anything at all (eat something or not)? Which option is more important (go to the planned meeting or rather finish a certain task)? We want to implement a plan, but which of the many options should we ‘choose’ (… there are at least three alternatives; all have pros and cons)? Choosing one option as highly favored would involve significant changes in one’s life situation; do I really want this? Would it be worth it? The nature of the challenges is as varied as everyday life in many different areas.

What is important, more important?

As soon as one or more than one option appears before the ‘mind’s eye’, one involuntarily asks oneself how ‘seriously’ one should take the options? Are there arguments for or against? Are the reasons ‘credible’? What ‘risks’ are associated with them? What can I expect as ‘positive added value’? What changes for my ‘personal situation’ are associated with it? What does this mean for my ‘environment’? …

What do I do if the ‘recognizable’ (‘rational’) options do not provide a clear result, it ‘contradicts’ my ‘feeling for life’, ‘me’, and I ‘spontaneously’ reject it, spontaneously ‘don’t want’ it, it triggers various ‘strong feelings’ that may ‘overwhelm’ me (anger, fear, disappointment, sadness, …)? …

The transition from non-action to action can ‘activate’ a multitude of ‘rational’ and ’emotional’ aspects, which can – and mostly do – influence each other, to the point that one experiences a ‘helplessness’ entangled in a ‘tangle’ of considerations and emotions: one has the feeling of being ‘stuck’, a ‘clear solution’ seems distant. …

If one can ‘wait’ (hours, days, weeks, …) and/or one has the opportunity to talk about it with other people, then this can often – not always – clarify the situation so far that one thinks to know what one ‘wants now’. But such ‘clarifications’ usually do not get the ‘challenge of a ‘decision’ out of the way. Besides, the ‘escape’ into ‘repressing’ the situation is always an option; sometimes it helps; if it doesn’t help, then the ‘everyday’ situation becomes worse by the ‘repressing’, quite apart from the fact that ‘unsolved problems’ do not ‘disappear’, but live on ‘inside’ and can unfold ‘special effects’ there in many ways, which are very ‘destructive’.

Rebirth?

The variety of possible – emotional as well as rational – aspects of the transition from non-action to action are fascinating, but possibly even more fascinating is the basic process itself: at any given moment, every human being lives in a certain everyday situation with a variety of experiences already made, a mixture of ‘rational explanations’ and ’emotional states’. And, depending on the nature of everyday life, one can ‘drift along’ or one has to perceive daily ‘strenuous activities’ in order to maintain the situation of everyday life; in other cases, one has to constantly ‘fight’ in real terms for the continuance in everyday life. One experiences here that the ‘conditions of everyday life’ are largely given to the individual and one can only change them to a limited extent and with a corresponding ‘effort’.

External events (fire, water, violence, war, drought, accident, life forms of a community, workplace, company policy, diseases, aging, …) can of course strongly influence the personal everyday life ‘against one’s will’, but in the end a fundamental autonomy of decision-making remains in the individual: one can decide differently in the next moment than before, even without it being completely clear to oneself in this moment ‘why’ one does it. Whether one calls this ‘not being able to explain’ then ‘goot feeling’ or ‘intuition’ or … all these words only circumscribe a ‘not knowing’ about the processes ‘in us’ that take place and ‘motivate’ us. And even if one has a ‘linguistic explanation’ available, this does not have to mean that a ‘clear insight’ is also connected with these words. The proportion of ‘preconscious/ unconscious’ ‘inner processes’ is high and ultimately these are not explainable ‘out of themselves’: they take place, move us, and we ‘implement them’.

Yes, in every moment we can behave ‘as usual’ and thereby ‘preserve’ the world (or thereby prevent it from becoming different?). But we can also sometimes ‘deviate’ from the usual (and thereby ‘destroy’ something or make something ‘new possible?). All in all, the ‘space of the inside’ remains largely ‘unilluminated’. We hardly if at all understand why we do this; this requires trust in ourselves and the situation. Is the difference to the ‘original birth’ only gradual? Are we in a continuing process of birth that constantly enables the construction of something ‘new’, can support ‘life’ or also ‘weaken’ it?

COMMENTS

[Exploration] The format ‘exploration’ is newly introduced in the blog from now on, since there is often the situation that the author at the transition point from ‘non-action to action’, from ‘non-writing to writing’ tries out which emotional and rational ‘reactions’ from the ‘inside’ are ‘spontaneously’ available for a certain question/idea. This is to be distinguished from a ‘systematic elaboration’ of a thought, although the influence of the ‘inside’ is of course never completely excluded. The ‘difference’ between ‘exploratory’ and ‘systematic’ writing has to do with the fact that systematic writing tries to bring the ‘rational dimension’ of the thought to the fore.

[*] German source: https://www.cognitiveagent.org/2023/08/28/staendige-wiedergeburt-jetzt-schweigen-hilft-nicht-exploration/ ,

[deepL translator]: https://www.deepl.com

[1] https://www.uffmm.org/2023/08/24/homo-sapiens-empirical-and-sustained-empirical-theories-emotions-and-machines-a-sketch/

[2] https://zevedi.de/en/topics/ki-text-2/

Dealing with the topic using chatGPT4

Author: What happens inside a person when it changes from the state of non-writing to the state of writing? Which kinds of factors are involved in this change?

ChatGPT

The shift from a state of non-writing to writing is a complex interplay of cognitive, emotional, and physical processes. Several factors contribute to this transformation:

  1. Cognitive Factors:
    • Intent and Purpose: The most immediate factor that leads to writing is the intent. The individual decides there’s a need to communicate or record something. This purpose could be to share knowledge, express emotions, or any other myriad reasons.
    • Idea Formation: The brain begins to formulate ideas, organize thoughts, and consider the message it wants to convey.
    • Recall: The brain accesses stored knowledge about language, grammar, and the topic at hand.
    • Decision Making: Choices are made about wording, tone, and structure.
  2. Emotional Factors:
    • Motivation: An internal or external motivation prompts the writer. This could be intrinsic (like the joy of writing) or extrinsic (like a job requirement).
    • Confidence: A person’s self-efficacy regarding writing can influence their willingness and approach. A confident writer might start without hesitation, while someone less confident might procrastinate or struggle with where to begin.
    • Mood and Emotion: A person’s emotional state can shape the content and tone of their writing. For instance, someone in a cheerful mood might use more positive and lively language.
  3. Physiological and Neuromotor Factors:
    • Fine Motor Skills: The act of writing requires coordination between the brain and muscles, whether it’s holding a pen or typing on a keyboard.
    • Visual Processing: Reading what’s written, planning spatially on the page or screen, and adjusting based on visual feedback are integral to the writing process.
    • Brain Activation: Certain areas of the brain, like Broca’s area and Wernicke’s area, are particularly active during language production.
  4. Environmental Factors:
    • Physical Environment: The availability of tools (pen, paper, computer), a conducive atmosphere, and a comfortable workspace can influence the transition to writing.
    • Cultural and Social Environment: The societal context, intended audience, and cultural norms can shape what and how a person writes.
  5. Educational and Experiential Factors:
    • Training and Practice: A person’s prior experience with writing, including their education, can influence their ease and style of writing.
    • Feedback and Iteration: Previous feedback on one’s writing can affect future attempts. Someone who has been praised might approach writing with more enthusiasm, while critical feedback might make another more cautious or reflective.
  6. External Stimuli:
    • Inspiration: Often, external stimuli—like reading a book, a conversation, a personal experience, or even a sunset—can spark the urge to write.
    • Prompts: In some situations, a specific prompt or question might initiate the writing process.

Understanding these factors and their interplay can be beneficial for educators, writers, and anyone looking to refine or understand their writing process.

AUTHOR

Can you describe more the subjective experience of a person, which is changing from the state of non-writing to writing?

chatGPT4

Certainly! The transition from non-writing to writing, when viewed from a subjective lens, involves a cascade of internal experiences. Here’s a more in-depth dive into the intimate, often ineffable stages a writer might traverse:

  1. Initial Restlessness: Before the act of writing commences, there’s often a sense of unease or urgency. It’s akin to a pressure building up, a compulsion to get something out, or a feeling that there’s something “there” that needs to be expressed.
  2. Incubation and Percolation: Many writers describe a period where ideas are “brewing” or “stewing” inside them. They might not be actively thinking about these ideas, but somewhere in the backdrop, the mind is processing and refining them. This can feel like daydreaming or being lost in thought.
  3. Flash of Insight: This is the ‘Eureka!’ moment when clarity emerges. It’s the point when the idea crystallizes, and the writer feels an impetus to put pen to paper. It can be a sudden realization or a slow dawning.
  4. Overcoming the Inertia: This is the mental “deep breath” before diving in. There’s a brief struggle, often described as “writer’s block” or resistance, where the weight of the blank page feels daunting.
  5. Entering the Flow: As words start pouring out, many writers describe a state known as “flow” – a term coined by Mihaly Csikszentmihalyi. In this state, writers lose track of time, their surroundings, and sometimes even themselves. They feel as if they are merely a conduit for the words, with the writing almost writing itself.
  6. Bouts of Doubt and Reassurance: Especially in longer writing stints, waves of self-doubt might wash over the writer. Questions like “Is this good enough?” or “Does this make sense?” arise. These periods might be interspersed with moments of confidence and reassurance, where the writer feels they’re on the right track.
  7. Physical Sensations: There might be heightened awareness of the tactile sensation of the pen moving on paper or fingers dancing on the keyboard. Some writers describe a kind of rhythm they get into, almost like a meditative state.
  8. Emotional Catharsis: Particularly for personal or emotive subjects, the act of writing can be cathartic. It’s a release, a way to process feelings, and often brings relief or deeper understanding.
  9. Completion and Exhaustion: As the writing draws to a close, there’s a sense of accomplishment, but also, often, a feeling of emptiness or exhaustion. The mental and emotional energy expended in writing can leave one drained.
  10. Reflection and Revision: Once the initial draft is out, there’s a period of reflection. Reading one’s own words can be an enlightening experience. This phase might involve editing, but it’s also a moment of self-confrontation, seeing one’s thoughts and feelings laid out bare.

The subjective experience of writing is deeply personal and can vary greatly from person to person. Some find it therapeutic, others see it as work, and for many, it’s a passionate craft. Regardless of the perspective, the journey from non-writing to writing is an intimate dance between the conscious and subconscious, emotion and reason, art and discipline.

End of this first small experiment.

Homo Sapiens: empirical and sustained-empirical theories, emotions, and machines. A sketch

Author: Gerd Doeben-Henisch

Email: info@uffmm.org

Aug 24, 2023 — Aug 29, 2023 (10:48h CET)

Attention: This text has been translated from a German source by using the software deepL for nearly 97 – 99% of the text! The diagrams of the German version have been left out.

CONTEXT

This text represents the outline of a talk given at the conference “AI – Text and Validity. How do AI text generators change scientific discourse?” (August 25/26, 2023, TU Darmstadt). [1] A publication of all lectures is planned by the publisher Walter de Gruyter by the end of 2023/beginning of 2024. This publication will be announced here then.

Start of the Lecture

Dear Auditorium,

This conference entitled “AI – Text and Validity. How do AI text generators change scientific discourses?” is centrally devoted to scientific discourses and the possible influence of AI text generators on these. However, the hot core ultimately remains the phenomenon of text itself, its validity.

In this conference many different views are presented that are possible on this topic.

TRANSDISCIPLINARY

My contribution to the topic tries to define the role of the so-called AI text generators by embedding the properties of ‘AI text generators’ in a ‘structural conceptual framework’ within a ‘transdisciplinary view’. This helps the specifics of scientific discourses to be highlighted. This can then result further in better ‘criteria for an extended assessment’ of AI text generators in their role for scientific discourses.

An additional aspect is the question of the structure of ‘collective intelligence’ using humans as an example, and how this can possibly unite with an ‘artificial intelligence’ in the context of scientific discourses.

‘Transdisciplinary’ in this context means to span a ‘meta-level’ from which it should be possible to describe today’s ‘diversity of text productions’ in a way that is expressive enough to distinguish ‘AI-based’ text production from ‘human’ text production.

HUMAN TEXT GENERATION

The formulation ‘scientific discourse’ is a special case of the more general concept ‘human text generation’.

This change of perspective is meta-theoretically necessary, since at first sight it is not the ‘text as such’ that decides about ‘validity and non-validity’, but the ‘actors’ who ‘produce and understand texts’. And with the occurrence of ‘different kinds of actors’ – here ‘humans’, there ‘machines’ – one cannot avoid addressing exactly those differences – if there are any – that play a weighty role in the ‘validity of texts’.

TEXT CAPABLE MACHINES

With the distinction in two different kinds of actors – here ‘humans’, there ‘machines’ – a first ‘fundamental asymmetry’ immediately strikes the eye: so-called ‘AI text generators’ are entities that have been ‘invented’ and ‘built’ by humans, it are furthermore humans who ‘use’ them, and the essential material used by so-called AI generators are again ‘texts’ that are considered a ‘human cultural property’.

In the case of so-called ‘AI-text-generators’, we shall first state only this much, that we are dealing with ‘machines’, which have ‘input’ and ‘output’, plus a minimal ‘learning ability’, and whose input and output can process ‘text-like objects’.

BIOLOGICAL — NON-BIOLOGICAL

On the meta-level, then, we are assumed to have, on the one hand, such actors which are minimally ‘text-capable machines’ – completely human products – and, on the other hand, actors we call ‘humans’. Humans, as a ‘homo-sapiens population’, belong to the set of ‘biological systems’, while ‘text-capable machines’ belong to the set of ‘non-biological systems’.

BLANK INTELLIGENCE TERM

The transformation of the term ‘AI text generator’ into the term ‘text capable machine’ undertaken here is intended to additionally illustrate that the widespread use of the term ‘AI’ for ‘artificial intelligence’ is rather misleading. So far, there exists today no general concept of ‘intelligence’ in any scientific discipline that can be applied and accepted beyond individual disciplines. There is no real justification for the almost inflationary use of the term AI today other than that the term has been so drained of meaning that it can be used anytime, anywhere, without saying anything wrong. Something that has no meaning can be neither true’ nor ‘false’.

PREREQUISITES FOR TEXT GENERATION

If now the homo-sapiens population is identified as the original actor for ‘text generation’ and ‘text comprehension’, it shall now first be examined which are ‘those special characteristics’ that enable a homo-sapiens population to generate and comprehend texts and to ‘use them successfully in the everyday life process’.

VALIDITY

A connecting point for the investigation of the special characteristics of a homo-sapiens text generation and a text understanding is the term ‘validity’, which occurs in the conference topic.

In the primary arena of biological life, in everyday processes, in everyday life, the ‘validity’ of a text has to do with ‘being correct’, being ‘appicable’. If a text is not planned from the beginning with a ‘fictional character’, but with a ‘reference to everyday events’, which everyone can ‘check’ in the context of his ‘perception of the world’, then ‘validity in everyday life’ has to do with the fact that the ‘correctness of a text’ can be checked. If the ‘statement of a text’ is ‘applicable’ in everyday life, if it is ‘correct’, then one also says that this statement is ‘valid’, one grants it ‘validity’, one also calls it ‘true’. Against this background, one might be inclined to continue and say: ‘If’ the statement of a text ‘does not apply’, then it has ‘no validity’; simplified to the formulation that the statement is ‘not true’ or simply ‘false’.

In ‘real everyday life’, however, the world is rarely ‘black’ and ‘white’: it is not uncommon that we are confronted with texts to which we are inclined to ascribe ‘a possible validity’ because of their ‘learned meaning’, although it may not be at all clear whether there is – or will be – a situation in everyday life in which the statement of the text actually applies. In such a case, the validity would then be ‘indeterminate’; the statement would be ‘neither true nor false’.

ASYMMETRY: APPLICABLE- NOT APPLICABLE

One can recognize a certain asymmetry here: The ‘applicability’ of a statement, its actual validity, is comparatively clear. The ‘not being applicable’, i.e. a ‘merely possible’ validity, on the other hand, is difficult to decide.

With this phenomenon of the ‘current non-decidability’ of a statement we touch both the problem of the ‘meaning’ of a statement — how far is at all clear what is meant? — as well as the problem of the ‘unfinishedness of our everyday life’, better known as ‘future’: whether a ‘current present’ continues as such, whether exactly like this, or whether completely different, depends on how we understand and estimate ‘future’ in general; what some take for granted as a possible future, can be simply ‘nonsense’ for others.

MEANING

This tension between ‘currently decidable’ and ‘currently not yet decidable’ additionally clarifies an ‘autonomous’ aspect of the phenomenon of meaning: if a certain knowledge has been formed in the brain and has been made usable as ‘meaning’ for a ‘language system’, then this ‘associated’ meaning gains its own ‘reality’ for the scope of knowledge: it is not the ‘reality beyond the brain’, but the ‘reality of one’s own thinking’, whereby this reality of thinking ‘seen from outside’ has something like ‘being virtual’.

If one wants to talk about this ‘special reality of meaning’ in the context of the ‘whole system’, then one has to resort to far-reaching assumptions in order to be able to install a ‘conceptual framework’ on the meta-level which is able to sufficiently describe the structure and function of meaning. For this, the following components are minimally assumed (‘knowledge’, ‘language’ as well as ‘meaning relation’):

KNOWLEDGE: There is the totality of ‘knowledge’ that ‘builds up’ in the homo-sapiens actor in the course of time in the brain: both due to continuous interactions of the ‘brain’ with the ‘environment of the body’, as well as due to interactions ‘with the body itself’, as well as due to interactions ‘of the brain with itself’.

LANGUAGE: To be distinguished from knowledge is the dynamic system of ‘potential means of expression’, here simplistically called ‘language’, which can unfold over time in interaction with ‘knowledge’.

MEANING RELATIONSHIP: Finally, there is the dynamic ‘meaning relation’, an interaction mechanism that can link any knowledge elements to any language means of expression at any time.

Each of these mentioned components ‘knowledge’, ‘language’ as well as ‘meaning relation’ is extremely complex; no less complex is their interaction.

FUTURE AND EMOTIONS

In addition to the phenomenon of meaning, it also became apparent in the phenomenon of being applicable that the decision of being applicable also depends on an ‘available everyday situation’ in which a current correspondence can be ‘concretely shown’ or not.

If, in addition to a ‘conceivable meaning’ in the mind, we do not currently have any everyday situation that sufficiently corresponds to this meaning in the mind, then there are always two possibilities: We can give the ‘status of a possible future’ to this imagined construct despite the lack of reality reference, or not.

If we would decide to assign the status of a possible future to a ‘meaning in the head’, then there arise usually two requirements: (i) Can it be made sufficiently plausible in the light of the available knowledge that the ‘imagined possible situation’ can be ‘transformed into a new real situation’ in the ‘foreseeable future’ starting from the current real situation? And (ii) Are there ‘sustainable reasons’ why one should ‘want and affirm’ this possible future?

The first requirement calls for a powerful ‘science’ that sheds light on whether it can work at all. The second demand goes beyond this and brings the seemingly ‘irrational’ aspect of ’emotionality’ into play under the garb of ‘sustainability’: it is not simply about ‘knowledge as such’, it is also not only about a ‘so-called sustainable knowledge’ that is supposed to contribute to supporting the survival of life on planet Earth — and beyond –, it is rather also about ‘finding something good, affirming something, and then also wanting to decide it’. These last aspects are so far rather located beyond ‘rationality’; they are assigned to the diffuse area of ’emotions’; which is strange, since any form of ‘usual rationality’ is exactly based on these ’emotions’.[2]

SCIENTIFIC DISCOURSE AND EVERYDAY SITUATIONS

In the context of ‘rationality’ and ’emotionality’ just indicated, it is not uninteresting that in the conference topic ‘scientific discourse’ is thematized as a point of reference to clarify the status of text-capable machines.

The question is to what extent a ‘scientific discourse’ can serve as a reference point for a successful text at all?

For this purpose it can help to be aware of the fact that life on this planet earth takes place at every moment in an inconceivably large amount of ‘everyday situations’, which all take place simultaneously. Each ‘everyday situation’ represents a ‘present’ for the actors. And in the heads of the actors there is an individually different knowledge about how a present ‘can change’ or will change in a possible future.

This ‘knowledge in the heads’ of the actors involved can generally be ‘transformed into texts’ which in different ways ‘linguistically represent’ some of the aspects of everyday life.

The crucial point is that it is not enough for everyone to produce a text ‘for himself’ alone, quite ‘individually’, but that everyone must produce a ‘common text’ together ‘with everyone else’ who is also affected by the everyday situation. A ‘collective’ performance is required.

Nor is it a question of ‘any’ text, but one that is such that it allows for the ‘generation of possible continuations in the future’, that is, what is traditionally expected of a ‘scientific text’.

From the extensive discussion — since the times of Aristotle — of what ‘scientific’ should mean, what a ‘theory’ is, what an ’empirical theory’ should be, I sketch what I call here the ‘minimal concept of an empirical theory’.

  1. The starting point is a ‘group of people’ (the ‘authors’) who want to create a ‘common text’.
  2. This text is supposed to have the property that it allows ‘justifiable predictions’ for possible ‘future situations’, to which then ‘sometime’ in the future a ‘validity can be assigned’.
  3. The authors are able to agree on a ‘starting situation’ which they transform by means of a ‘common language’ into a ‘source text’ [A].
  4. It is agreed that this initial text may contain only ‘such linguistic expressions’ which can be shown to be ‘true’ ‘in the initial situation’.
  5. In another text, the authors compile a set of ‘rules of change’ [V] that put into words ‘forms of change’ for a given situation.
  6. Also in this case it is considered as agreed that only ‘such rules of change’ may be written down, of which all authors know that they have proved to be ‘true’ in ‘preceding everyday situations’.
  7. The text with the rules of change V is on a ‘meta-level’ compared to the text A about the initial situation, which is on an ‘object-level’ relative to the text V.
  8. The ‘interaction’ between the text V with the change rules and the text A with the initial situation is described in a separate ‘application text’ [F]: Here it is described when and how one may apply a change rule (in V) to a source text A and how this changes the ‘source text A’ to a ‘subsequent text A*’.
  9. The application text F is thus on a next higher meta-level to the two texts A and V and can cause the application text to change the source text A.
  1. The moment a new subsequent text A* exists, the subsequent text A* becomes the new initial text A.
  2. If the new initial text A is such that a change rule from V can be applied again, then the generation of a new subsequent text A* is repeated.
  3. This ‘repeatability’ of the application can lead to the generation of many subsequent texts <A*1, …, A*n>.
  4. A series of many subsequent texts <A*1, …, A*n> is usually called a ‘simulation’.
  5. Depending on the nature of the source text A and the nature of the change rules in V, it may be that possible simulations ‘can go quite differently’. The set of possible scientific simulations thus represents ‘future’ not as a single, definite course, but as an ‘arbitrarily large set of possible courses’.
  6. The factors on which different courses depend are manifold. One factor are the authors themselves. Every author is, after all, with his corporeality completely himself part of that very empirical world which is to be described in a scientific theory. And, as is well known, any human actor can change his mind at any moment. He can literally in the next moment do exactly the opposite of what he thought before. And thus the world is already no longer the same as previously assumed in the scientific description.

Even this simple example shows that the emotionality of ‘finding good, wanting, and deciding’ lies ahead of the rationality of scientific theories. This continues in the so-called ‘sustainability discussion’.

SUSTAINABLE EMPIRICAL THEORY

With the ‘minimal concept of an empirical theory (ET)’ just introduced, a ‘minimal concept of a sustainable empirical theory (NET)’ can also be introduced directly.

While an empirical theory can span an arbitrarily large space of grounded simulations that make visible the space of many possible futures, everyday actors are left with the question of what they want to have as ‘their future’ out of all this? In the present we experience the situation that mankind gives the impression that it agrees to destroy the life beyond the human population more and more sustainably with the expected effect of ‘self-destruction’.

However, this self-destruction effect, which can be predicted in outline, is only one variant in the space of possible futures. Empirical science can indicate it in outline. To distinguish this variant before others, to accept it as ‘good’, to ‘want’ it, to ‘decide’ for this variant, lies in that so far hardly explored area of emotionality as root of all rationality.[2]

If everyday actors have decided in favor of a certain rationally lightened variant of possible future, then they can evaluate at any time with a suitable ‘evaluation procedure (EVAL)’ how much ‘percent (%) of the properties of the target state Z’ have been achieved so far, provided that the favored target state is transformed into a suitable text Z.

In other words, the moment we have transformed everyday scenarios into a rationally tangible state via suitable texts, things take on a certain clarity and thereby become — in a sense — simple. That we make such transformations and on which aspects of a real or possible state we then focus is, however, antecedent to text-based rationality as an emotional dimension.[2]

MAN-MACHINE

After these preliminary considerations, the final question is whether and how the main question of this conference, “How do AI text generators change scientific discourse?” can be answered in any way?

My previous remarks have attempted to show what it means for humans to collectively generate texts that meet the criteria for scientific discourse that also meets the requirements for empirical or even sustained empirical theories.

In doing so, it becomes apparent that both in the generation of a collective scientific text and in its application in everyday life, a close interrelation with both the shared experiential world and the dynamic knowledge and meaning components in each actor play a role.

The aspect of ‘validity’ is part of a dynamic world reference whose assessment as ‘true’ is constantly in flux; while one actor may tend to say “Yes, can be true”, another actor may just tend to the opposite. While some may tend to favor possible future option X, others may prefer future option Y. Rational arguments are absent; emotions speak. While one group has just decided to ‘believe’ and ‘implement’ plan Z, the others turn away, reject plan Z, and do something completely different.

This unsteady, uncertain character of future-interpretation and future-action accompanies the Homo Sapiens population from the very beginning. The not understood emotional complex constantly accompanies everyday life like a shadow.

Where and how can ‘text-enabled machines’ make a constructive contribution in this situation?

Assuming that there is a source text A, a change text V and an instruction F, today’s algorithms could calculate all possible simulations faster than humans could.

Assuming that there is also a target text Z, today’s algorithms could also compute an evaluation of the relationship between a current situation as A and the target text Z.

In other words: if an empirical or a sustainable-empirical theory would be formulated with its necessary texts, then a present algorithm could automatically compute all possible simulations and the degree of target fulfillment faster than any human alone.

But what about the (i) elaboration of a theory or (ii) the pre-rational decision for a certain empirical or even sustainable-empirical theory ?

A clear answer to both questions seems hardly possible to me at the present time, since we humans still understand too little how we ourselves collectively form, select, check, compare and also reject theories in everyday life.

My working hypothesis on the subject is: that we will very well need machines capable of learning in order to be able to fulfill the task of developing useful sustainable empirical theories for our common everyday life in the future. But when this will happen in reality and to what extent seems largely unclear to me at this point in time.[2]

COMMENTS

[1] https://zevedi.de/en/topics/ki-text-2/

[2] Talking about ’emotions’ in the sense of ‘factors in us’ that move us to go from the state ‘before the text’ to the state ‘written text’, that hints at very many aspects. In a small exploratory text “State Change from Non-Writing to Writing. Working with chatGPT4 in parallel” ( https://www.uffmm.org/2023/08/28/state-change-from-non-writing-to-writing-working-with-chatgpt4-in-parallel/ ) the author has tried to address some of these aspects. While writing it becomes clear that very many ‘individually subjective’ aspects play a role here, which of course do not appear ‘isolated’, but always flash up a reference to concrete contexts, which are linked to the topic. Nevertheless, it is not the ‘objective context’ that forms the core statement, but the ‘individually subjective’ component that appears in the process of ‘putting into words’. This individual subjective component is tentatively used here as a criterion for ‘authentic texts’ in comparison to ‘automated texts’ like those that can be generated by all kinds of bots. In order to make this difference more tangible, the author decided to create an ‘automated text’ with the same topic at the same time as the quoted authentic text. For this purpose he used chatGBT4 from openAI. This is the beginning of a philosophical-literary experiment, perhaps to make the possible difference more visible in this way. For purely theoretical reasons, it is clear that a text generated by chatGBT4 can never generate ‘authentic texts’ in origin, unless it uses as a template an authentic text that it can modify. But then this is a clear ‘fake document’. To prevent such an abuse, the author writes the authentic text first and then asks chatGBT4 to write something about the given topic without chatGBT4 knowing the authentic text, because it has not yet found its way into the database of chatGBT4 via the Internet.

chatGPT – How drunk do you have to be …

eJournal: uffmm.org
ISSN 2567-6458, 14.February 2023 – 17.April 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This is a text in the context of ‘Different Findings about chatGPT’ (https://www.uffmm.org/2023/02/23/chatgbt-different-findings/).

Since the release of the chatbot ‘chatGPT’ to the larger public, a kind of ‘earthquake’ has been going through the media, worldwide, in many areas, from individuals to institutions, companies, government agencies …. everyone is looking for the ‘chatGPT experience’. These reactions are amazing, and frightening at the same time.

Remark: The text of this post represents a later ‘stage’ of my thinking about the usefulness of the chatGPT algorithm, which started with my first reflections in the text entitled “chatGBT about Rationality: Emotions, Mystik, Unconscious, Conscious, …” from 15./16.January 2023. The main text to this version is an English translation from an originally German text partially generated with the www.DeepL.com/Translator (free version).

FORM

The following lines form only a short note, since it is hardly worthwhile to discuss a ‘surface phenomenon’ so intensively, when the ‘deep structures’ should be explained. Somehow the ‘structures behind chatGPT’ seem to interest hardly anybody (I do not mean technical details of the used algorithms).

chatGPT as an object


The chatbot named ‘chatGPT’ is a piece of software, an algorithm that (i) was invented and programmed by humans. When (ii) people ask it questions, then (iii) it searches the database of documents known to it, which in turn have been created by humans, (iv) for text patterns that have a relation to the question according to certain formal criteria (partly given by the programmers). These ‘text finds’ are (v) also ‘arranged’ according to certain formal criteria (partly given by the programmers) into a new text, which (vi) should come close to those text patterns, which a human reader is ‘used’ to accept as ‘meaningful’.

Text surface – text meaning – truthfulness

A normal human being can distinguish – at least ‘intuitively’ – between the (i) ‘strings’ used as ‘expressions of a language’ and those (ii) ‘knowledge elements’ (in the mind of the hearer-speaker) which are as such ‘independent’ of the language elements, but which (iii) can be ‘freely associated’ by speakers-hearers of a language, so that the correlated ‘knowledge elements’ become what is usually called the ‘meaning’ of the language elements. [1] Of these knowledge elements (iv), every language participant already ‘knows’ ‘pre-linguistically’, as a learning child [2], that some of these knowledge elements are ‘correlatable’ with circumstances of the everyday world under certain circumstances. And the normal language user also ‘intuitively’ (automatically, unconsciously) has the ability to assess such correlation – in the light of the available knowledge – as (v) ‘possible’ or (vi) as rather ‘improbable’ or (vi) as ‘mere fancifulness’.”[3]

The basic ability of a human being to be able to establish a ‘correlation’ of meanings with (intersubjective) environmental facts is called – at least by some – philosophers ‘truth ability’ and in the execution of truth ability one then also can speak of ‘true’ linguistic utterances or of ‘true statements’.[5]

Distinctions like ‘true’, ‘possibly true’, ‘rather not true’ or ‘in no case true’ indicate that the reality reference of human knowledge elements is very diverse and ‘dynamic’. Something that was true a moment ago may not be true the next moment. Something that has long been dismissed as ‘mere fantasy’ may suddenly appear as ‘possible’ or ‘suddenly true’. To move in this ‘dynamically correlated space of meaning’ in such a way that a certain ‘inner and outer consistency’ is preserved, is a complex challenge, which has not yet been fully understood by philosophy and the sciences, let alone even approximately ‘explained’.

The fact is: we humans can do this to a certain extent. Of course, the more complex the knowledge space is, the more diverse the linguistic interactions with other people become, the more difficult it becomes to completely understand all aspects of a linguistic statement in a situation.

‘Air act’ chatGPT

Comparing the chatbot chatGPT with these ‘basic characteristics’ of humans, one can see that chatGPT can do none of these things. (i) It cannot ask questions meaningfully on its own, since there is no reason why it should ask (unless someone induces it to ask). (ii) Text documents (of people) are sets of expressions for him, for which he has no independent assignment of meaning. So he could never independently ask or answer the ‘truth question’ – with all its dynamic shades. He takes everything at ‘face value’ or one says right away that he is ‘only dreaming’.

If chatGPT, because of its large text database, has a subset of expressions that are somehow classified as ‘true’, then the algorithm can ‘in principle’ indirectly determine ‘probabilities’ that other sets of expressions that are not classified as ‘true’ then do ‘with some probability’ appear to be ‘true’. Whether the current chatGPT algorithm uses such ‘probable truths’ explicitly is unclear. In principle, it translates texts into ‘vector spaces’ that are ‘mapped into each other’ in various ways, and parts of these vector spaces are then output again in the form of a ‘text’. The concept of ‘truth’ does not appear in these mathematical operations – to my current knowledge. If, then it would be also only the formal logical concept of truth [4]; but this lies with respect to the vector spaces ‘above’ the vector spaces, forms with respect to these a ‘meta-concept’. If one wanted to actually apply this to the vector spaces and operations on these vector spaces, then one would have to completely rewrite the code of chatGPT. If one would do this – but nobody will be able to do this – then the code of chatGPT would have the status of a formal theory (as in mathematics) (see remark [5]). From an empirical truth capability chatGPT would then still be miles away.

Hybrid illusory truths

In the use case where the algorithm named ‘chatGPT’ uses expression sets similar to the texts that humans produce and read, chatGPT navigates purely formally and with probabilities through the space of formal expression elements. However, a human who ‘reads’ the expression sets produced by chatGPT automatically (= unconsciously!) activates his or her ‘linguistic knowledge of meaning’ and projects it into the abstract expression sets of chatGBT. As one can observe (and hears and reads from others), the abstract expression sets produced by chatGBT are so similar to the usual text input of humans – purely formally – that a human can seemingly effortlessly correlate his meaning knowledge with these texts. This has the consequence that the receiving (reading, listening) human has the ‘feeling’ that chatGPT produces ‘meaningful texts’. In the ‘projection’ of the reading/listening human YES, but in the production of chatGPT NO. chatGBT has only formal expression sets (coded as vector spaces), with which it calculates ‘blindly’. It does not have ‘meanings’ in the human sense even rudimentarily.

Back to the Human?

(Last change: 27.February 2023)

How easily people are impressed by a ‘fake machine’ to the point of apparently forgetting themselves in face of the machine by feeling ‘stupid’ and ‘inefficient’, although the machine only makes ‘correlations’ between human questions and human knowledge documents in a purely formal way, is actually frightening [6a,b], [7], at least in a double sense: (i)Instead of better recognizing (and using) one’s own potentials, one stares spellbound like the famous ‘rabbit at the snake’, although the machine is still a ‘product of the human mind’. (ii) This ‘cognitive deception’ misses to better understand the actually immense potential of ‘collective human intelligence’, which of course could then be advanced by at least one evolutionary level higher by incorporating modern technologies. The challenge of the hour is ‘Collective Human-Machine Intelligence’ in the context of sustainable development with priority given to human collective intelligence. The current so-called ‘artificial (= machine) intelligence’ is only present by rather primitive algorithms. Integrated into a developed ‘collective human intelligence’ quite different forms of ‘intelligence’ could be realized, ones we currently can only dream of at most.

Commenting on other articles from other authors about chatGPT

(Last change: 14.April 2023)

[7], [8],[9],[11],[12],[13],[14]

Comments

(Last change: 3.April 2023)

wkp-en: en.wikipedia.org

[1] In the many thousands of ‘natural languages’ of this world one can observe how ‘experiential environmental facts’ can become ‘knowledge elements’ via ‘perception’, which are then correlated with different expressions in each language. Linguists (and semioticians) therefore speak here of ‘conventions’, ‘freely agreed assignments’.

[2] Due to physical interaction with the environment, which enables ‘perceptual events’ that are distinguishable from the ‘remembered and known knowledge elements’.

[3] The classification of ‘knowledge elements’ as ‘imaginations/ fantasies’ can be wrong, as many examples show, like vice versa, the classification as ‘probably correlatable’ can be wrong too!

[4] Not the ‘classical (Aristotelian) logic’ since the Aristotelian logic did not yet realize a stricCommenting on other articles from other authors about chatGPTt separation of ‘form’ (elements of expression) and ‘content’ (meaning).

[5] There are also contexts in which one speaks of ‘true statements’ although there is no relation to a concrete world experience. For example in the field of mathematics, where one likes to say that a statement is ‘true’. But this is a completely ‘different truth’. Here it is about the fact that in the context of a ‘mathematical theory’ certain ‘basic assumptions’ were made (which must have nothing to do with a concrete reality), and one then ‘derives’ other statements starting from these basic assumptions with the help of a formal concept of inference (the formal logic). A ‘derived statement’ (usually called a ‘theorem’), also has no relation to a concrete reality. It is ‘logically true’ or ‘formally true’. If one would ‘relate’ the basic assumptions of a mathematical theory to concrete reality by – certainly not very simple – ‘interpretations’ (as e.g. in ‘applied physics’), then it may be, under special conditions, that the formally derived statements of such an ’empirically interpreted abstract theory’ gain an ’empirical meaning’, which may be ‘correlatable’ under certain conditions; then such statements would not only be called ‘logically true’, but also ’empirically true’. As the history of science and philosophy of science shows, however, the ‘transition’ from empirically interpreted abstract theories to empirically interpretable inferences with truth claims is not trivial. The reason lies in the used ‘logical inference concept’. In modern formal logic there are almost ‘arbitrarily many’ different formal inference terms possible. Whether such a formal inference term really ‘adequately represents’ the structure of empirical facts via abstract structures with formal inferences is not at all certain! This pro’simulation’blem is not really clarified in the philosophy of science so far!

[6a] Weizenbaum’s 1966 chatbot ‘Eliza’, despite its simplicity, was able to make human users believe that the program ‘understood’ them even when they were told that it was just a simple algorithm. See the keyword  ‚Eliza‘ in wkp-en: https://en.wikipedia.org/wiki/ELIZA

[6b] Joseph Weizenbaum, 1966, „ELIZA. A Computer Program For the Study of Natural Language. Communication Between Man And Machine“, Communications of the ACM, Vol.9, No.1, January 1966, URL: https://cse.buffalo.edu/~rapaport/572/S02/weizenbaum.eliza.1966.pdf . Note: Although the program ‘Eliza’ by Weizenbaum was very simple, all users were fascinated by the program because they had the feeling “It understands me”, while the program only mirrored the questions and statements of the users. In other words, the users were ‘fascinated by themselves’ with the program as a kind of ‘mirror’.

[7] Ted Chiang, 2023, “ChatGPT Is a Blurry JPEG of the Web. OpenAI’s chatbot offers paraphrases, whereas Google offers quotes. Which do we prefer?”, The NEW YORKER, February 9, 2023. URL: https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web . Note: Chang looks to the chatGPT program using the paradigm of a ‘compression algorithm’: the abundance of information is ‘condensed/abstracted’ so that a slightly blurred image of the text volumes is created, not a 1-to-1 copy. This gives the user the impression of understanding at the expense of access to detail and accuracy. The texts of chatGPT are not ‘true’, but they ‘mute’.

[8] Dietmar Hansch, 2023, “The more honest name would be ‘Simulated Intelligence’. Which deficits bots like chatGBT suffer from and what that must mean for our dealings with them.”, FAZ Frankfurter Allgemeine Zeitung, March 1, 2023, p.N1 . Note: While Chiang (see [7]) approaches the phenomenon chatGPT with the concept ‘compression algorithm’ Hansch prefers the terms ‘statistical-incremental learning’ as well as ‘insight learning’. For Hansch, insight learning is tied to ‘mind’ and ‘consciousness’, for which he postulates ‘equivalent structures’ in the brain. Regarding insight learning, Hansch further comments “insight learning is not only faster, but also indispensable for a deep, holistic understanding of the world, which grasps far-reaching connections as well as conveys criteria for truth and truthfulness.” It is not surprising then when Hansch writes “Insight learning is the highest form of learning…”. With reference to this frame of reference established by Hansch, he classifies chatGPT in the sense that it is only capable of ‘statistical-incremental learning’. Further, Hansch postulates for humans, “Human learning is never purely objective, we always structure the world in relation to our needs, feelings, and conscious purposes…”. He calls this the ‘human reference’ in human cognition, and it is precisely this what he also denies for chatGPT. For common designation ‘AI’ as ‘Artificial Intelligence’ he postulates that the term ‘intelligence’ in this word combination has nothing to do with the meaning we associate with ‘intelligence’ in the case of humans, so in no case has the term intelligence anything to do with ‘insight learning’, as he has stated before. To give more expression to this fact of mismatch he would rather use the term ‘simulated intelligence’ (see also [9]). This conceptual strategy seems strange, since the term simulation [10] normally presupposes that there is a clear state of affairs, for which one defines a simplified ‘model’, by means of which the behavior of the original system can then be — simplified — viewed and examined in important respects. In the present case, however, it is not quite clear what the original system should be, which is to be simulated in the case of AI. There is so far no unified definition of ‘intelligence’ in the context of ‘AI’! As far as Hansch’s terminology itself is concerned, the terms ‘statistical-incremental learning’ as well as ‘insight learning’ are not clearly defined either; the relation to observable human behavior let alone to the postulated ‘equivalent brain structures’ is arbitrarily unclear (which is not improved by the relation to terms like ‘consciousness’ and ‘mind’ which are not defined yet).

[9] Severin Tatarczyk, Feb 19, 2023, on ‘Simulated Intelligence’: https://www.severint.net/2023/02/19/kompakt-warum-ich-den-begriff-simulierte-intelligenz-bevorzuge-und-warum-chatbots-so-menschlich-auf-uns-wirken/

[10] See the term ‘simulation’ in wkp-en: https://en.wikipedia.org/wiki/Simulation

[11] Doris Brelowski pointed me to the following article: James Bridle, 16.March 2023, „The stupidity of AI. Artificial intelligence in its current form is based on the wholesale appropriation of existing culture, and the notion that it is actually intelligent could be actively dangerous“, URL: https://www.theguardian.com/technology/2023/mar/16/the-stupidity-of-ai-artificial-intelligence-dall-e-chatgpt?CMP=Share_AndroidApp_Other . Comment: An article that knowledgeably and very sophisticatedly describes the interplay between forms of AI that are being ‘unleashed’ on the entire Internet by large corporations, and what this is doing to human culture and then, of course, to humans themselves. Two quotes from this very readable article: Quote 1: „The entirety of this kind of publicly available AI, whether it works with images or words, as well as the many data-driven applications like it, is based on this wholesale appropriation of existing culture, the scope of which we can barely comprehend. Public or private, legal or otherwise, most of the text and images scraped up by these systems exist in the nebulous domain of “fair use” (permitted in the US, but questionable if not outright illegal in the EU). Like most of what goes on inside advanced neural networks, it’s really impossible to understand how they work from the outside, rare encounters such as Lapine’s aside. But we can be certain of this: far from being the magical, novel creations of brilliant machines, the outputs of this kind of AI is entirely dependent on the uncredited and unremunerated work of generations of human artists.“ Quote 2: „Now, this didn’t happen because ChatGPT is inherently rightwing. It’s because it’s inherently stupid. It has read most of the internet, and it knows what human language is supposed to sound like, but it has no relation to reality whatsoever. It is dreaming sentences that sound about right, and listening to it talk is frankly about as interesting as listening to someone’s dreams. It is very good at producing what sounds like sense, and best of all at producing cliche and banality, which has composed the majority of its diet, but it remains incapable of relating meaningfully to the world as it actually is. Distrust anyone who pretends that this is an echo, even an approximation, of consciousness. (As this piece was going to publication, OpenAI released a new version of the system that powers ChatGPT, and said it was “less likely to make up facts”.)“

[12] David Krakauer in an Interview with Brian Gallagher in Nautilus, March 27, 2023, Does GPT-4 Really Understand What We’re Saying?, URL: https://nautil.us/does-gpt-4-really-understand-what-were-saying-291034/?_sp=d9a7861a-9644-44a7-8ba7-f95ee526d468.1680528060130. David Krakauer, an evolutionary theorist and president of the Santa Fe Institute for complexity science, analyzes the role of chat-GPT-4 models compared to the human language model and a more differentiated understanding of what ‘understanding’ and ‘Intelligence’ could mean. His main points of criticism are in close agreement with the position int he text above. He points out that (i) one has clearly to distinguish between the ‘information concept’ of Shannon and the concept of ‘meaning’. Something can represent a high information load but can nevertheless be empty of any meaning. Then he points out (ii) that there are several possible variants of the meaning of ‘understanding’. Coordinating with human understanding can work, but to understand in a constructive sense: no. Then Krakauer (iii) relates GPT-4 to the standard model of science which he characterizes as ‘parsimony’; chat-GPT-4 is clearly the opposite. Another point (iv) is the fact, that human experience has an ’emotional’ and a ‘physical’ aspect based on somato-sensory perceptions within its body. This is missing with GPT-4. This is somehow related (v) to the fact, that the human brain with its ‘algorithms’ is the product of millions of years of evolution in a complex environment. The GPT-4 algorithms have nothing comparable; they have only to ‘convince’ humans. Finally (vi) humans can generate ‘physical models’ inspired by their experience and can quickly argue by using such models. Thus Krakauer concludes “So the narrative that says we’ve rediscovered human reasoning is so misguided in so many ways. Just demonstrably false. That can’t be the way to go.”

[13] By Marie-José Kolly (text) and Merlin Flügel (illustration), 11.04.2023, “Chatbots like GPT can form wonderful sentences. That’s exactly what makes them a problem.” Artificial intelligence fools us into believing something that is not. A plea against the general enthusiasm. Online newspaper ‘Republik’ from Schweiz, URL: https://www.republik.ch/2023/04/11/chatbots-wie-gpt-koennen-wunderbare-saetze-bilden-genau-das-macht-sie-zum-problem? Here are some comments:

The text by Marie-José Kolly stands out because the algorithm named chatGPT(4) is characterized here both in its input-output behavior and additionally a comparison to humans is made at least to some extent.

The basic problem of the algorithm chatGPT(4) is (as also pointed out in my text above) that it has as input data exclusively text sets (also those of the users), which are analyzed according to purely statistical procedures in their formal properties. On the basis of the analyzed regularities, arbitrary text collages can then be generated, which are very similar in form to human texts, so much so that many people take them for ‘human-generated texts’. In fact, however, the algorithm lacks what we humans call ‘world knowledge’, it lacks real ‘thinking’, it lacks ‘own’ value positions, and the algorithm ‘does not understand’ its own text.

Due to this lack of its own reference to the world, the algorithm can be manipulated very easily via the available text volumes. A ‘mass production’ of ‘junk texts’, of ‘disinformation’ is thus very easily possible.

If one considers that modern democracies can only function if the majority of citizens have a common basis of facts that can be assumed to be ‘true’, a common body of knowledge, and reliable media, then the chatGPT(4) algorithm can massively destroy precisely these requirements for a democracy.

The interesting question then is whether chatGPT(4) can actually support a human society, especially a democratic society, in a positive-constructive way?

In any case, it is known that humans learn the use of their language from childhood on in direct contact with a real world, largely playfully, in interaction with other children/people. For humans ‘words’ are never isolated quantities, but they are always dynamically integrated into equally dynamic contexts. Language is never only ‘form’ but always at the same time ‘content’, and this in many different ways. This is only possible because humans have complex cognitive abilities, which include corresponding memory abilities as well as abilities for generalization.

The cultural-historical development from spoken language, via writing, books, libraries up to enormous digital data memories has indeed achieved tremendous things concerning the ‘forms’ of language and therein – possibly – encoded knowledge, but there is the impression that the ‘automation’ of the forms drives them into ‘isolation’, so that the forms lose more and more their contact to reality, to meaning, to truth. Language as a central moment of enabling more complex knowledge and more complex action is thus increasingly becoming a ‘parasite’ that claims more and more space and in the process destroys more and more meaning and truth.

[14] Gary Marcus, April 2023, Hoping for the Best as AI Evolves, Gary Marcus on the systems that “pose a real and imminent threat to the fabric of society.” Communications of the ACM, Volume 66, Issue 4, April 2023 pp 6–7, https://doi.org/10.1145/3583078 , Comment: Gary Marcus writes on the occasion of the effects of systems like chatGPT(OpenAI), Dalle-E2 and Lensa about the seriously increasing negative effects these tools can have within a society, to an extent that poses a serious threat to every society! These tools are inherently flawed in the areas of thinking, facts and hallucinations. At near zero cost, they can be used to create and execute large-scale disinformation campaigns very quickly. Looking to the globally important website ‘Stack Overflow’ for programmers as an example, one could (and can) see how the inflationary use of chatGPT due to its inherent many flaws pushes the Stack Overflow’s management team having to urge its users to completely stop using chatGPT in order to prevent the site’s collapse after 14 years. In the case of big players who specifically target disinformation, such a measure is ineffective. These players aim to create a data world in which no one will be able to trust anyone. With this in mind, Gary Marcus sets out 4 postulates that every society should implement: (1) Automatically generated not certified content should be completely banned; (2) Legally effective measures must be adopted that can prevent ‘misinformation’; (3) User accounts must be made tamper-proof; (4) A new generation of AI tools is needed that can verify facts. (Translated with partial support from www.DeepL.com/Translator (free version))

FORECASTING – PREDICTION: What?

eJournal: uffmm.org
ISSN 2567-6458, 19.August 2022 – 25 August 2022, 14:26h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of the subject COMMON SCIENCE as Sustainable Applied Empirical Theory, besides ENGINEERING, in a SOCIETY. It is a preliminary version, which is intended to become part of a book.

FORECASTING – PREDICTION: What?

optimal prediction

In the introduction of the main text it has been underlined that within a sustainable empirical theory it is not only necessary to widen the scope with a maximum of diversity, but at the same time it is also necessary to enable the capability for an optimal prediction about the ‘possible states of a possible future’.

the meaning machinery

In the text after this introduction it has been outlined that between human actors the most powerful tool for the clarification of the given situation — the NOW — is the everyday language with a ‘built in’ potential in every human actor for infinite meanings. This individual internal meaning space as part of the individual cognitive structure is equipped with an ‘abstract – concrete’ meaning structure with the ability to distinguish between ‘true’ and ‘not true’, and furthermore equipped with the ability to ‘play around’ with meanings in a ‘new way’.

COORDINATION

Thus every human actor can generate within his cognitive dimension some states or situations accompanied with potential new processes leading to new states. To share this ‘internal meanings’ with other brains to ‘compare’ properties of the ‘own’ thinking with properties of the thinking of ‘others’ the only chance is to communicate with other human actors mediated by the shared everyday language. If this communication is successful it arises the possibility to ‘coordinate’ the own thinking about states and possible actions with others. A ‘joint undertaking’ is becoming possible.

shared thinking

To simplify the process of communication it is possible, that a human actor does not ‘wait’ until some point in the future to communicate the content of the thinking, but even ‘while the thinking process is going on’ a human actor can ‘translate his thinking’ in language expressions which ‘fit the processed meanings’ as good as possible. Doing this another human actor can observe the language activity, can try to ‘understand’, and can try to ‘respond’ to the observations with his language expressions. Such an ‘interplay’ of expressions in the context of multiple thinking processes can show directly either a ‘congruence’ or a ‘difference’. This can help each participant in the communication to clarify the own thinking. At the same time an exchange of language expressions associated with possible meanings inside the different brains can ‘stimulate’ different kinds of memory and thinking processes and through this the space of shared meanings can be ‘enlarged’.

phenomenal space 1 and 2

Human actors with their ability to construct meaning spaces and the ability to share parts of the meaning space by language communication are embedded with their bodies in a ‘body-external environment’ usual called ‘external world’ or ‘nature’ associated with the property to be ‘real’.

Equipped with a body with multiple different kinds of ‘sensors’ some of the environmental properties can stimulate these sensors which in turn send neuronal signals to the embedded brain. The first stage of the ‘processing of sensor signals’ is usually called ‘perception’. Perception is not a passive 1-to-1 mapping of signals into the brain but it is already a highly sophisticated processing where the ‘raw signals’ of the sensors — which already are doing some processing on their own — are ‘transformed’ into more complex signals which the human actor in its perception does perceive as ‘features’, ‘properties’, ‘figures’, ‘patterns’ etc. which usually are called ‘phenomena’. They all together are called ‘phenomenal space’. In a ‘naive thinking’ this phenomenal space is taken ‘as the external world directly’. During life a human actor can learn — this must not happen! –, that the ‘phenomenal space’ is a ‘derived space’ triggered by an ‘assumed outside world’ which ’causes’ by its properties the sensors to react in a certain way. But the ‘actual nature’ of the outside world is not really known. Let us call the unknown outside world of properties ‘phenomenal space 1’ and the derived phenomenal space inside the body-brain ‘phenomenal space 2’.

TIMELY ORDERING

Due to the availability of the phenomenal space 2 the different human actors can try to ‘explore’ the ‘unknown assumed real world’ based on the available phenomena.

If one takes a wider look to the working of the brain of a human actor one can detect that the processing of the brain of the phenomenal space is using additional mechanisms:

  1. The phenomenal space is organized in ‘time slices’ of a certain fixed duration. The ‘content’ of a time slice during the time window (t,t’) will be ‘overwritten’ during the next time slice (t’,t”) by those phenomena, which are then ‘actual’, which are then constituting the NOW. The phenomena from the time window before (t’,t”) can become ‘stored’ in some other parts of the brain usually called ‘memory’.
  2. The ‘storing’ of phenomena in parts of the brain called ‘memory’ happens in a highly sophisticated way enabling ‘abstract structures’ with an ‘interface’ for ‘concrete properties’ typical for the phenomenal space, and which can become associated with other ‘content’ of the memory.
  3. It is an astonishing ability of the memory to enable an ‘ordering’ of memory contents related to situations as having occurred ‘before’ or ‘after’ some other property. Therefore the ‘content of the memory’ can represent collections of ‘stored NOWs’, which can be ‘ordered’ in a ‘sequence of NOWs’, and thereby the ‘dimension of time’ appears as a ‘framing property’ of ‘remembered phenomena’.
  4. Based on this capability to organize remembered phenomena in ‘sequences of states’ representing a so-called ‘timely order’ the brain can ‘operate’ on such sequences in various ways. It can e.g. ‘compare’ two states in such a sequence whether these are ‘the same’ or whether they are ‘different’. A difference points to a ‘change’ in the phenomenal space. Longer sequences — even including changes — can perhaps show up as ‘repetitions’ compared to ‘earlier’ sequences. Such ‘repeating sequences’ can perhaps represent a ‘pattern’ pointing to some ‘hidden factors’ responsible for the pattern.

formal representations [1]

Basic outline of human actor as part of an external world with an internal phenomenal space 2, including a memory and the capability to elaborate cognitive meta-levels using the dimension of time. There is a limited exchange medium between different brains realized by language communication. Formal models are an instrument to represent recognized timely sequences of sets of properties with typical changes.

Based on a rather sophisticated internal processing structure every human actor has the capability to compose language descriptions which can ‘represent’ with the aid of sets of language expressions different kinds of local situations. Every expression can represent some ‘meaning’ which is encoded in every human actor in an individual manner. Such a language encoding can partially becoming ‘standardized’ by shared language learning in typical everyday living situations. To that extend as language encodings (the assumed meaning) is shared between different human actors they can use this common meaning space to communicate their experience.

Based on the built-in property of abstract knowledge to have an interface to ‘more concrete’ meanings, which finally can be related to ‘concrete perceptual phenomena’ available in the sensual perceptions, every human actor can ‘check’ whether an actual meaning seems to have an ‘actual correspondence’ to some properties in the ‘real environment’. If this phenomenal setting in the phenomenal space 2 with a correspondence to the sensual perceptions is encoded in a language expression E then usually it is told that the ‘meaning of E’ is true; otherwise not.

Because the perceptual interface to an assumed real world is common to all human actors they can ‘synchronize’ their perceptions by sharing the related encoded language expressions.

If a group of human actors sharing a real situation agrees about a ‘set of language expressions’ in the sens that each expression is assumed to be ‘true’, then one can assume, that every expression ‘represents’ some encoded meanings which are related to the shared empirical situation, and therefore the expressions represent ‘properties of the assumed real world’. Such kinds of ‘meaning constructions’ can be further ‘supported’ by the usage of ‘standardized procedures’ called ‘measurement procedures’.

Under this assumption one can infer, that a ‘change in the realm of real world properties’ has to be encoded in a ‘new language expression’ associated with the ‘new real world properties’ and has to be included in the set of expressions describing an actual situation. At the same time it can happen, that an expression of the actual set of expressions is becoming ‘outdated’ because the properties, this expression has encoded, are gone. Thus, the overall ‘dynamics of a set of expressions representing an actual set of real world properties’ can be realized as follows:

  1. Agree on a first set of expression to be a ‘true’ description of a given set of real world properties.
  2. After an agreed period of time one has to check whether (i) the encoded meaning of an expression is gone or (ii) whether a new real world property has appeared which seems to be ‘important’ but is not yet encoded in a language expression of the set. Depending from this check either (i) one has to delete those expressions which are no longer ‘true’ or (ii) one has to introduce new expressions for the new real world properties.

In a strictly ‘observational approach’ the human actors are only observing the course of events after some — regular or spontaneous –time span, making their observations (‘measurements’) and compare these observations with their last ‘true description’ of the actual situation. Following this pattern of behavior they can deduce from the series of true descriptions <D1, D2, …, Dn> for every pair of descriptions (Di,Di+1) a ‘difference description’ as a ‘rule’ in the following way: (i) IF x is a subset of expressions in Di+1, which are not yet members of the set of expressions in Di, THEN ‘add’ these expressions to the set of expressions in Di. (ii) IF y is a subset of expressions in Di, which are no more members of the set of expressions in Di+1, THEN ‘delete’ these expressions from the set of expressions in Di. (iii) Construct a ‘condition-set’ of expressions as subset of Di, which has to be fulfilled to apply (i) and (ii).

Doing this for every pair of descriptions then one is getting a set of ‘change rules’ X which can be used, to ‘generate’ — starting with the first description D0 — all the follow-up descriptions only by ‘applying a change rule Xi‘ to the last generated description.

This first purely observational approach works, but every change rule Xi in this set of change rules X can be very ‘singular’ pointing to a true singularity in the mathematical sense, because there is not ‘common rule’ to predict this singularity.

It would be desirable to ‘dig into possible hidden factors’ which are responsible for the observed changes but they would allow to ‘reduce the number’ of individual change rules of X. But for such a ‘rule-compression’ there exists from the outset no usable knowledge. Such a reduction will only be possible if a certain amount of research work will be done hopefully to discover the hidden factors.

All the change rules which could be found through such observational processes can in the future be re-used to explore possible outcomes for selected situations.

COMMENTS

[1] For the final format of this section I have got important suggestions from René Thom by reading the introduction of his book “Structural Stability and Morphogenesis: An Outline of a General Theory of Models” (1972, 1989). See my review post HERE : https://www.uffmm.org/2022/08/22/rene-thom-structural-stability-and-morphogenesis-an-outline-of-a-general-theory-of-models-original-french-edition-1972-updated-by-the-author-and-translated-into-english-by-d-h-fowler-1989/

COMMON SCIENCE as Sustainable Applied Empirical Theory, besides ENGINEERING, in a SOCIETY

eJournal: uffmm.org
ISSN 2567-6458, 19.Juni 2022 – 30.December 2022
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of the Philosophy of Science theme within the the uffmm.org blog.

This is work in progress:

  1. The whole text shows a dynamic, which induces many changes. Difficult to plan ‘in advance’.
  2. Perhaps, some time, it will look like a ‘book’, at least ‘for a moment’.
  3. I have started a ‘book project’ in parallel. This was motivated by the need to provide potential users of our new oksimo.R software with a coherent explanation of how the oksimo.R software, when used, generates an empirical theory in the format of a screenplay. The primary source of the book is in German and will be translated step by step here in the uffmm.blog.

INTRODUCTION

In a rather foundational paper about an idea, how one can generalize ‘systems engineering’ [*1] to the art of ‘theory engineering’ [1] a new conceptual framework has been outlined for a ‘sustainable applied empirical theory (SAET)’. Part of this new framework has been the idea that the classical recourse to groups of special experts (mostly ‘engineers’ in engineering) is too restrictive in the light of the new requirement of being sustainable: sustainability is primarily based on ‘diversity’ combined with the ‘ability to predict’ from this diversity probable future states which keep life alive. The aspect of diversity induces the challenge to see every citizen as a ‘natural expert’, because nobody can know in advance and from some non-existing absolut point of truth, which knowledge is really important. History shows that the ‘mainstream’ is usually to a large degree ‘biased’ [*1b].

With this assumption, that every citizen is a ‘natural expert’, science turns into a ‘general science’ where all citizens are ‘natural members’ of science. I will call this more general concept of science ‘sustainable citizen science (SCS)’ or ‘Citizen Science 2.0 (CS2)’. The important point here is that a sustainable citizen science is not necessarily an ‘arbitrary’ process. While the requirement of ‘diversity’ relates to possible contents, to possible ideas, to possible experiments, and the like, it follows from the other requirement of ‘predictability’/ of being able to make some useful ‘forecasts’, that the given knowledge has to be in a format, which allows in a transparent way the construction of some consequences, which ‘derive’ from the ‘given’ knowledge and enable some ‘new’ knowledge. This ability of forecasting has often been understood as the business of ‘logic’ providing an ‘inference concept’ given by ‘rules of deduction’ and a ‘practical pattern (on the meta level)’, which defines how these rules have to be applied to satisfy the inference concept. But, looking to real life, to everyday life or to modern engineering and economy, one can learn that ‘forecasting’ is a complex process including much more than only cognitive structures nicely fitting into some formulas. For this more realistic forecasting concept we will use here the wording ‘common logic’ and for the cognitive adventure where common logic is applied we will use the wording ‘common science’. ‘Common science’ is structurally not different from ‘usual science’, but it has a substantial wider scope and is using the whole of mankind as ‘experts’.

The following chapters/ sections try to illustrate this common science view by visiting different special views which all are only ‘parts of a whole’, a whole which we can ‘feel’ in every moment, but which we can not yet completely grasp with our theoretical concepts.

CONTENT

  1. Language (Main message: “The ordinary language is the ‘meta language’ to every special language. This can be used as a ‘hint’ to something really great: the mystery of the ‘self-creating’ power of the ordinary language which for most people is unknown although it happens every moment.”)
  2. Concrete Abstract Statements (Main message: “… you will probably detect, that nearly all words of a language are ‘abstract words’ activating ‘abstract meanings’. …If you cannot provide … ‘concrete situations’ the intended meaning of your abstract words will stay ‘unclear’: they can mean ‘nothing or all’, depending from the decoding of the hearer.”)
  3. True False Undefined (Main message: “… it reveals that ’empirical (observational) evidence’ is not necessarily an automatism: it presupposes appropriate meaning spaces embedded in sets of preferences, which are ‘observation friendly’.
  4. Beyond Now (Main message: “With the aid of … sequences revealing possible changes the NOW is turned into a ‘moment’ embedded in a ‘process’, which is becoming the more important reality. The NOW is something, but the PROCESS is more.“)
  5. Playing with the Future (Main message: “In this sense seems ‘language’ to be the master tool for every brain to mediate its dynamic meaning structures with symbolic fix points (= words, expressions) which as such do not change, but the meaning is ‘free to change’ in any direction. And this ‘built in ‘dynamics’ represents an ‘internal potential’ for uncountable many possible states, which could perhaps become ‘true’ in some ‘future state’. Thus ‘future’ can begin in these potentials, and thinking is the ‘playground’ for possible futures.(but see [18])”)
  6. Forecasting – Prediction: What? (This chapter explains the cognitive machinery behind forecasting/ predictions, how groups of human actors can elaborate shared descriptions, and how it is possible to start with sequences of singularities to built up a growing picture of the empirical world which appears as a radical infinite and indeterministic space. )
  7. !!! From here all the following chapters have to be re-written !!!
  8. THE LOGIC OF EVERYDAY THINKING. Lets try an Example (Will probably be re-written too)
  9. Boolean Logic (Explains what boolean logic is, how it enables the working of programmable machines, but that it is of nearly no help for the ‘heart’ of forecasting.)
  10. … more re-writing will probably happen …
  11. Everyday Language: German Example
  12. Everyday Language: English
  13. Natural Logic
  14. Predicate Logic
  15. True Statements
  16. Formal Logic Inference: Preserving Truth
  17. Ordinary Language Inference: Preserving and Creating Truth
  18. Hidden Ontologies: Cognitively Real and Empirically Real
  19. AN INFERENCE IS NOT AUTOMATICALLY A FORECAST
  20. EMPIRICAL THEORY
  21. Side Trip to Wikipedia
  22. SUSTAINABLE EMPIRICAL THEORY
  23. CITIZEN SCIENCE 2.0
  24. … ???

COMMENTS

wkp-en := Englisch Wikipedia

/* Often people argue against the usage of the wikipedia encyclopedia as not ‘scientific’ because the ‘content’ of an entry in this encyclopedia can ‘change’. This presupposes the ‘classical view’ of scientific texts to be ‘stable’, which presupposes further, that such a ‘stable text’ describes some ‘stable subject matter’. But this view of ‘steadiness’ as the major property of ‘true descriptions’ is in no correspondence with real scientific texts! The reality of empirical science — even as in some special disciplines like ‘physics’ — is ‘change’. Looking to Aristotle’s view of nature, to Galileo Galilei, to Newton, to Einstein and many others, you will not find a ‘single steady picture’ of nature and science, and physics is only a very simple strand of science compared to the live-sciences and many others. Thus wikipedia is a real scientific encyclopedia give you the breath of world knowledge with all its strengths and limits at once. For another, more general argument, see In Favour for Wikipedia */

[*1] Meaning operator ‘…’ : In this text (and in nearly all other texts of this author) the ‘inverted comma’ is used quite heavily. In everyday language this is not common. In some special languages (theory of formal languages or in programming languages or in meta-logic) the inverted comma is used in some special way. In this text, which is primarily a philosophical text, the inverted comma sign is used as a ‘meta-language operator’ to raise the intention of the reader to be aware, that the ‘meaning’ of the word enclosed in the inverted commas is ‘text specific’: in everyday language usage the speaker uses a word and assumes tacitly that his ‘intended meaning’ will be understood by the hearer of his utterance as ‘it is’. And the speaker will adhere to his assumption until some hearer signals, that her understanding is different. That such a difference is signaled is quite normal, because the ‘meaning’ which is associated with a language expression can be diverse, and a decision, which one of these multiple possible meanings is the ‘intended one’ in a certain context is often a bit ‘arbitrary’. Thus, it can be — but must not — a meta-language strategy, to comment to the hearer (or here: the reader), that a certain expression in a communication is ‘intended’ with a special meaning which perhaps is not the commonly assumed one. Nevertheless, because the ‘common meaning’ is no ‘clear and sharp subject’, a ‘meaning operator’ with the inverted commas has also not a very sharp meaning. But in the ‘game of language’ it is more than nothing 🙂

[*1b] That the main stream ‘is biased’ is not an accident, not a ‘strange state’, not a ‘failure’, it is the ‘normal state’ based on the deeper structure how human actors are ‘built’ and ‘genetically’ and ‘cultural’ ‘programmed’. Thus the challenge to ‘survive’ as part of the ‘whole biosphere’ is not a ‘partial task’ to solve a single problem, but to solve in some sense the problem how to ‘shape the whole biosphere’ in a way, which enables a live in the universe for the time beyond that point where the sun is turning into a ‘red giant’ whereby life will be impossible on the planet earth (some billion years ahead)[22]. A remarkable text supporting this ‘complex view of sustainability’ can be found in Clark and Harvey, summarized at the end of the text. [23]

[*2] The meaning of the expression ‘normal’ is comparable to a wicked problem. In a certain sense we act in our everyday world ‘as if there exists some standard’ for what is assumed to be ‘normal’. Look for instance to houses, buildings: to a certain degree parts of a house have a ‘standard format’ assuming ‘normal people’. The whole traffic system, most parts of our ‘daily life’ are following certain ‘standards’ making ‘planning’ possible. But there exists a certain percentage of human persons which are ‘different’ compared to these introduced standards. We say that they have a ‘handicap’ compared to this assumed ‘standard’, but this so-called ‘standard’ is neither 100% true nor is the ‘given real world’ in its properties a ‘100% subject’. We have learned that ‘properties of the real world’ are distributed in a rather ‘statistical manner’ with different probabilities of occurrences. To ‘find our way’ in these varying occurrences we try to ‘mark’ the main occurrences as ‘normal’ to enable a basic structure for expectations and planning. Thus, if in this text the expression ‘normal’ is used it refers to the ‘most common occurrences’.

[*3] Thus we have here a ‘threefold structure’ embracing ‘perception events, memory events, and expression events’. Perception events represent ‘concrete events’; memory events represent all kinds of abstract events but they all have a ‘handle’ which maps to subsets of concrete events; expression events are parts of an abstract language system, which as such is dynamically mapped onto the abstract events. The main source for our knowledge about perceptions, memory and expressions is experimental psychology enhanced by many other disciplines.

[*4] Characterizing language expressions by meaning – the fate of any grammar: the sentence ” … ‘words’ (= expressions) of a language which can activate such abstract meanings are understood as ‘abstract words’, ‘general words’, ‘category words’ or the like.” is pointing to a deep property of every ordinary language, which represents the real power of language but at the same time the great weakness too: expressions as such have no meaning. Hundreds, thousands, millions of words arranged in ‘texts’, ‘documents’ can show some statistical patterns’ and as such these patterns can give some hint which expressions occur ‘how often’ and in ‘which combinations’, but they never can give a clue to the associated meaning(s). During more than three-thousand years humans have tried to describe ordinary language in a more systematic way called ‘grammar’. Due to this radically gap between ‘expressions’ as ‘observable empirical facts’ and ‘meaning constructs’ hidden inside the brain it was all the time a difficult job to ‘classify’ expressions as representing a certain ‘type’ of expression like ‘nouns’, ‘predicates’, ‘adjectives’, ‘defining article’ and the like. Without regressing to the assumed associated meaning such a classification is not possible. On account of the fuzziness of every meaning ‘sharp definitions’ of such ‘word classes’ was never and is not yet possible. One of the last big — perhaps the biggest ever — project of a complete systematic grammar of a language was the grammar project of the ‘Akademie der Wissenschaften der DDR’ (‘Academy of Sciences of the GDR’) from 1981 with the title “Grundzüge einer Deutschen Grammatik” (“Basic features of a German grammar”). A huge team of scientists worked together using many modern methods. But in the preface you can read, that many important properties of the language are still not sufficiently well describable and explainable. See: Karl Erich Heidolph, Walter Flämig, Wolfgang Motsch et al.: Grundzüge einer deutschen Grammatik. Akademie, Berlin 1981, 1028 Seiten.

[*5] Differing opinions about a given situation manifested in uttered expressions are a very common phenomenon in everyday communication. In some sense this is ‘natural’, can happen, and it should be no substantial problem to ‘solve the riddle of being different’. But as you can experience, the ability of people to solve the occurrence of different opinions is often quite weak. Culture is suffering by this as a whole.

[1] Gerd Doeben-Henisch, 2022, From SYSTEMS Engineering to THEORYEngineering, see: https://www.uffmm.org/2022/05/26/from-systems-engineering-to-theory-engineering/(Remark: At the time of citation this post was not yet finished, because there are other posts ‘corresponding’ with that post, which are too not finished. Knowledge is a dynamic network of interwoven views …).

[1d] ‘usual science’ is the game of science without having a sustainable format like in citizen science 2.0.

[2] Science, see e.g. wkp-en: https://en.wikipedia.org/wiki/Science

Citation = “Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.[1][2]

Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”

Citation = “New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems.[27][28] Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions,[29] government agencies, and companies.[30][31] The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the ethical and moral development of commercial productsarmamentshealth carepublic infrastructure, and environmental protection.”

[2b] History of science in wkp-en: https://en.wikipedia.org/wiki/History_of_science#Scientific_Revolution_and_birth_of_New_Science

[3] Theory, see wkp-en: https://en.wikipedia.org/wiki/Theory#:~:text=A%20theory%20is%20a%20rational,or%20no%20discipline%20at%20all.

Citation = “A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory’s assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.”

[4] Scientific theory, see: wkp-en: https://en.wikipedia.org/wiki/Scientific_theory

Citation = “In modern science, the term “theory” refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (“falsify“) of it. Scientific theories are the most reliable, rigorous, and comprehensive form of scientific knowledge,[1] in contrast to more common uses of the word “theory” that imply that something is unproven or speculative (which in formal terms is better characterized by the word hypothesis).[2] Scientific theories are distinguished from hypotheses, which are individual empirically testable conjectures, and from scientific laws, which are descriptive accounts of the way nature behaves under certain conditions.”

[4b] Empiricism in wkp-en: https://en.wikipedia.org/wiki/Empiricism

[4c] Scientific method in wkp-en: https://en.wikipedia.org/wiki/Scientific_method

Citation =”The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries). It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; experimental and measurement-based statistical testing of deductions drawn from the hypotheses; and refinement (or elimination) of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.[1][2][3] [4c]

and

Citation = “The purpose of an experiment is to determine whether observations[A][a][b] agree with or conflict with the expectations deduced from a hypothesis.[6]: Book I, [6.54] pp.372, 408 [b] Experiments can take place anywhere from a garage to a remote mountaintop to CERN’s Large Hadron Collider. There are difficulties in a formulaic statement of method, however. Though the scientific method is often presented as a fixed sequence of steps, it represents rather a set of general principles.[7] Not all steps take place in every scientific inquiry (nor to the same degree), and they are not always in the same order.[8][9]

[5] Gerd Doeben-Henisch, “Is Mathematics a Fake? No! Discussing N.Bourbaki, Theory of Sets (1968) – Introduction”, 2022, https://www.uffmm.org/2022/06/06/n-bourbaki-theory-of-sets-1968-introduction/

[6] Logic, see wkp-en: https://en.wikipedia.org/wiki/Logic

[7] W. C. Kneale, The Development of Logic, Oxford University Press (1962)

[8] Set theory, in wkp-en: https://en.wikipedia.org/wiki/Set_theory

[9] N.Bourbaki, Theory of Sets , 1968, with a chapter about structures, see: https://en.wikipedia.org/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique

[10] = [5]

[11] Ludwig Josef Johann Wittgenstein ( 1889 – 1951): https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

[12] Ludwig Wittgenstein, 1953: Philosophische Untersuchungen [PU], 1953: Philosophical Investigations [PI], translated by G. E. M. Anscombe /* For more details see: https://en.wikipedia.org/wiki/Philosophical_Investigations */

[13] Wikipedia EN, Speech acts: https://en.wikipedia.org/wiki/Speech_act

[14] While the world view constructed in a brain is ‘virtual’ compared to the ‘real word’ outside the brain (where the body outside the brain is also functioning as ‘real world’ in relation to the brain), does the ‘virtual world’ in the brain function for the brain mostly ‘as if it is the real world’. Only under certain conditions can the brain realize a ‘difference’ between the triggering outside real world and the ‘virtual substitute for the real world’: You want to use your bicycle ‘as usual’ and then suddenly you have to notice that it is not at that place where is ‘should be’. …

[15] Propositional Calculus, see wkp-en: https://en.wikipedia.org/wiki/Propositional_calculus#:~:text=Propositional%20calculus%20is%20a%20branch,of%20arguments%20based%20on%20them.

[16] Boolean algebra, see wkp-en: https://en.wikipedia.org/wiki/Boolean_algebra

[17] Boolean (or propositional) Logic: As one can see in the mentioned articles of the English wikipedia, the term ‘boolean logic’ is not common. The more logic-oriented authors prefer the term ‘boolean calculus’ [15] and the more math-oriented authors prefer the term ‘boolean algebra’ [16]. In the view of this author the general view is that of ‘language use’ with ‘logic inference’ as leading idea. Therefore the main topic is ‘logic’, in the case of propositional logic reduced to a simple calculus whose similarity with ‘normal language’ is widely ‘reduced’ to a play with abstract names and operators. Recommended: the historical comments in [15].

[18] Clearly, thinking alone can not necessarily induce a possible state which along the time line will become a ‘real state’. There are numerous factors ‘outside’ the individual thinking which are ‘driving forces’ to push real states to change. But thinking can in principle synchronize with other individual thinking and — in some cases — can get a ‘grip’ on real factors causing real changes.

[19] This kind of knowledge is not delivered by brain science alone but primarily from experimental (cognitive) psychology which examines observable behavior and ‘interprets’ this behavior with functional models within an empirical theory.

[20] Predicate Logic or First-Order Logic or … see: wkp-en: https://en.wikipedia.org/wiki/First-order_logic#:~:text=First%2Dorder%20logic%E2%80%94also%20known,%2C%20linguistics%2C%20and%20computer%20science.

[21] Gerd Doeben-Henisch, In Favour of Wikipedia, https://www.uffmm.org/2022/07/31/in-favour-of-wikipedia/, 31 July 2022

[22] The sun, see wkp-ed https://en.wikipedia.org/wiki/Sun (accessed 8 Aug 2022)

[23] By Clark, William C., and Alicia G. Harley – https://doi.org/10.1146/annurev-environ-012420-043621, Clark, William C., and Alicia G. Harley. 2020. “Sustainability Science: Toward a Synthesis.” Annual Review of Environment and Resources 45 (1): 331–86, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=109026069

[24] Sustainability in wkp-en: https://en.wikipedia.org/wiki/Sustainability#Dimensions_of_sustainability

[25] Sustainable Development in wkp-en: https://en.wikipedia.org/wiki/Sustainable_development

[26] Marope, P.T.M; Chakroun, B.; Holmes, K.P. (2015). Unleashing the Potential: Transforming Technical and Vocational Education and Training (PDF). UNESCO. pp. 9, 23, 25–26. ISBN978-92-3-100091-1.

[27] SDG 4 in wkp-en: https://en.wikipedia.org/wiki/Sustainable_Development_Goal_4

[28] Thomas Rid, Rise of the Machines. A Cybernetic History, W.W.Norton & Company, 2016, New York – London

[29] Doeben-Henisch, G., 2006, Reducing Negative Complexity by a Semiotic System In: Gudwin, R., & Queiroz, J., (Eds). Semiotics and Intelligent Systems Development. Hershey et al: Idea Group Publishing, 2006, pp.330-342

[30] Döben-Henisch, G.,  Reinforcing the global heartbeat: Introducing the planet earth simulator project, In M. Faßler & C. Terkowsky (Eds.), URBAN FICTIONS. Die Zukunft des Städtischen. München, Germany: Wilhelm Fink Verlag, 2006, pp.251-263

[29] The idea that individual disciplines are not good enough for the ‘whole of knowledge’ is expressed in a clear way in a video of the theoretical physicist and philosopher Carlo Rovell: Carlo Rovelli on physics and philosophy, June 1, 2022, Video from the Perimeter Institute for Theoretical Physics. Theoretical physicist, philosopher, and international bestselling author Carlo Rovelli joins Lauren and Colin for a conversation about the quest for quantum gravity, the importance of unlearning outdated ideas, and a very unique way to get out of a speeding ticket.

[] By Azote for Stockholm Resilience Centre, Stockholm University – https://www.stockholmresilience.org/research/research-news/2016-06-14-how-food-connects-all-the-sdgs.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=112497386

[]  Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) in wkp-en, UTL: https://en.wikipedia.org/wiki/Intergovernmental_Science-Policy_Platform_on_Biodiversity_and_Ecosystem_Services

[] IPBES (2019): Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673

[] Michaelis, L. & Lorek, S. (2004). “Consumption and the Environment in Europe: Trends and Futures.” Danish Environmental Protection Agency. Environmental Project No. 904.

[] Pezzey, John C. V.; Michael A., Toman (2002). “The Economics of Sustainability: A Review of Journal Articles” (PDF). . Archived from the original (PDF) on 8 April 2014. Retrieved 8 April 2014.

[] World Business Council for Sustainable Development (WBCSD)  in wkp-en: https://en.wikipedia.org/wiki/World_Business_Council_for_Sustainable_Development

[] Sierra Club in wkp-en: https://en.wikipedia.org/wiki/Sierra_Club

[] Herbert Bruderer, Where is the Cradle of the Computer?, June 20, 2022, URL: https://cacm.acm.org/blogs/blog-cacm/262034-where-is-the-cradle-of-the-computer/fulltext (accessed: July 20, 2022)

[] UN. Secretary-GeneralWorld Commission on Environment and Development, 1987, Report of the World Commission on Environment and Development : note / by the Secretary-General., https://digitallibrary.un.org/record/139811 (accessed: July 20, 2022) (A more readable format: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf )

/* Comment: Gro Harlem Brundtland (Norway) has been the main coordinator of this document */

[] Chaudhuri, S.,et al.Neurosymbolic programming. Foundations and Trends in Programming Languages 7, 158-243 (2021).

[] Noam Chomsky, “A Review of B. F. Skinner’s Verbal Behavior”, in Language, 35, No. 1 (1959), 26-58.(Online: https://chomsky.info/1967____/, accessed: July 21, 2022)

[] Churchman, C. West (December 1967). “Wicked Problems”Management Science. 14 (4): B-141–B-146. doi:10.1287/mnsc.14.4.B141.

[-] Yen-Chia Hsu, Illah Nourbakhsh, “When Human-Computer Interaction Meets Community Citizen Science“,Communications of the ACM, February 2020, Vol. 63 No. 2, Pages 31-34, 10.1145/3376892, https://cacm.acm.org/magazines/2020/2/242344-when-human-computer-interaction-meets-community-citizen-science/fulltext

[] Yen-Chia Hsu, Ting-Hao ‘Kenneth’ Huang, Himanshu Verma, Andrea Mauri, Illah Nourbakhsh, Alessandro Bozzon, Empowering local communities using artificial intelligence, DOI:https://doi.org/10.1016/j.patter.2022.100449, CellPress, Patterns, VOLUME 3, ISSUE 3, 100449, MARCH 11, 2022

[] Nello Cristianini, Teresa Scantamburlo, James Ladyman, The social turn of artificial intelligence, in: AI & SOCIETY, https://doi.org/10.1007/s00146-021-01289-8

[] Carl DiSalvo, Phoebe Sengers, and Hrönn Brynjarsdóttir, Mapping the landscape of sustainable hci, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, page 1975–1984, New York, NY, USA, 2010. Association for Computing Machinery.

[] Claude Draude, Christian Gruhl, Gerrit Hornung, Jonathan Kropf, Jörn Lamla, Jan Marco Leimeister, Bernhard Sick, Gerd Stumme, Social Machines, in: Informatik Spektrum, https://doi.org/10.1007/s00287-021-01421-4

[] EU: High-Level Expert Group on AI (AI HLEG), A definition of AI: Main capabilities and scientific disciplines, European Commission communications published on 25 April 2018 (COM(2018) 237 final), 7 December 2018 (COM(2018) 795 final) and 8 April 2019 (COM(2019) 168 final). For our definition of Artificial Intelligence (AI), please refer to our document published on 8 April 2019: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=56341

[] EU: High-Level Expert Group on AI (AI HLEG), Policy and investment recommendations for trustworthy Artificial Intelligence, 2019, https://digital-strategy.ec.europa.eu/en/library/policy-and-investment-recommendations-trustworthy-artificial-intelligence

[] European Union. Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC General Data Protection Regulation; http://eur-lex.europa.eu/eli/reg/2016/679/oj (Wirksam ab 25.Mai 2018) [26.2.2022]

[] C.S. Holling. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1):1–23, 1973

[] John P. van Gigch. 1991. System Design Modeling and Metamodeling. Springer US. DOI:https://doi.org/10.1007/978-1-4899-0676-2

[] Gudwin, R.R. (2002), Semiotic Synthesis and Semionic Networks, S.E.E.D. Journal (Semiotics, Energy, Evolution, Development), Volume 2, No.2, pp.55-83.

[] Gudwin, R.R. (2003), On a Computational Model of the Peircean Semiosis, IEEE KIMAS 2003 Proceedings

[] J.A. Jacko and A. Sears, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 1st edition, 2003.

[] LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

[] Lenat, D. What AI can learn from Romeo & Juliet.Forbes (2019)

[] Pierre Lévy, Collective Intelligence. mankind’s emerging world in cyberspace, Perseus books, Cambridge (M A), 1997 (translated from the French Edition 1994 by Robert Bonnono)

[] Lexikon der Nachhaltigkeit, ‘Starke Nachhaltigkeit‘, https://www.nachhaltigkeit.info/artikel/schwache_vs_starke_nachhaltigkeit_1687.htm (acessed: July 21, 2022)

[] Michael L. Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield, Michael C. Horowitz, Charles Isbell, Hiroaki Kitano, Karen Levy, Terah Lyons, Melanie Mitchell, Julie Shah, Steven Sloman, Shannon Vallor, and Toby Walsh. “Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report.” Stanford University, Stanford, CA, September 2021. Doc: http://ai100.stanford.edu/2021-report.

[] Markus Luczak-Roesch, Kieron O’Hara, Ramine Tinati, Nigel Shadbolt, Socio-technical Computation, CSCW’15 Companion, March 14–18, 2015, Vancouver, BC, Canada, ACM 978-1-4503-2946-0/15/03, http://dx.doi.org/10.1145/2685553.2698991

[] Marcus, G.F., et al. Overregularization in language acquisition. Monographs of the Society for Research in Child Development 57 (1998).

[] Gary Marcus and Ernest Davis, Rebooting AI, Published by Pantheon,
Sep 10, 2019, 288 Pages

[] Gary Marcus, Deep Learning Is Hitting a Wall. What would it take for artificial intelligence to make real progress, March 10, 2022, URL: https://nautil.us/deep-learning-is-hitting-a-wall-14467/ (accessed: July 20, 2022)

[] Kathryn Merrick. Value systems for developmental cognitive robotics: A survey. Cognitive Systems Research, 41:38 – 55, 2017

[]  Illah Reza Nourbakhsh and Jennifer Keating, AI and Humanity, MIT Press, 2020 /* An examination of the implications for society of rapidly advancing artificial intelligence systems, combining a humanities perspective with technical analysis; includes exercises and discussion questions. */

[] Olazaran, M. , A sociological history of the neural network controversy. Advances in Computers 37, 335-425 (1993).

[] Friedrich August Hayek (1945), The use of knowledge in society. The American Economic Review 35, 4 (1945), 519–530

[] Karl Popper, „A World of Propensities“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1988, leicht erweitert neu abgedruckt 1990, repr. 1995)

[] Karl Popper, „Towards an Evolutionary Theory of Knowledge“, in: Karl Popper, „A World of Propensities“, Thoemmes Press, Bristol, (Vortrag 1989, ab gedruckt in 1990, repr. 1995)

[] Karl Popper, „All Life is Problem Solving“, Artikel, ursprünglich ein Vortrag 1991 auf Deutsch, erstmalig publiziert in dem Buch (auf Deutsch) „Alles Leben ist Problemlösen“ (1994), dann in dem Buch (auf Englisch) „All Life is Problem Solving“, 1999, Routledge, Taylor & Francis Group, London – New York

[] Rittel, Horst W.J.; Webber, Melvin M. (1973). “Dilemmas in a General Theory of Planning” (PDF). Policy Sciences. 4 (2): 155–169. doi:10.1007/bf01405730S2CID 18634229. Archived from the original (PDF) on 30 September 2007. [Reprinted in Cross, N., ed. (1984). Developments in Design Methodology. Chichester, England: John Wiley & Sons. pp. 135–144.]

[] Ritchey, Tom (2013) [2005]. “Wicked Problems: Modelling Social Messes with Morphological Analysis”Acta Morphologica Generalis2 (1). ISSN 2001-2241. Retrieved 7 October 2017.

[] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th US ed., 2021, URL: http://aima.cs.berkeley.edu/index.html (accessed: July 20, 2022)

[] A. Sears and J.A. Jacko, Eds., The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and emerging Applications. 2nd edition, 2008.

[] Skaburskis, Andrejs (19 December 2008). “The origin of “wicked problems””. Planning Theory & Practice9 (2): 277-280. doi:10.1080/14649350802041654. At the end of Rittel’s presentation, West Churchman responded with that pensive but expressive movement of voice that some may well remember, ‘Hmm, those sound like “wicked problems.”‘

[] Tonkinwise, Cameron (4 April 2015). “Design for Transitions – from and to what?”Academia.edu. Retrieved 9 November 2017.

[] Thoppilan, R., et al. LaMDA: Language models for dialog applications. arXiv 2201.08239 (2022).

[] Wurm, Daniel; Zielinski, Oliver; Lübben, Neeske; Jansen, Maike; Ramesohl,
Stephan (2021) : Wege in eine ökologische Machine Economy: Wir brauchen eine ‘Grüne Governance der Machine Economy’, um das Zusammenspiel von Internet of Things, Künstlicher Intelligenz und Distributed Ledger Technology ökologisch zu gestalten, Wuppertal Report, No. 22, Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal, https://doi.org/10.48506/opus-7828

[] Aimee van Wynsberghe, Sustainable AI: AI for sustainability and the sustainability of AI, in: AI and Ethics (2021) 1:213–218, see: https://doi.org/10.1007/s43681

[-] Sarah West, Rachel Pateman, 2017, “How could citizen science support the Sustainable Development Goals?“, SEI Stockholm Environment Institut , 2017, see: https://mediamanager.sei.org/documents/Publications/SEI-2017-PB-citizen-science-sdgs.pdf

[] R. I. Damper (2000), Editorial for the special issue on ‘Emergent Properties of Complex Systems’: Emergence and levels of abstraction. International Journal of Systems Science 31, 7 (2000), 811–818. DOI:https://doi.org/10.1080/002077200406543

[] Gerd Doeben-Henisch (2004), The Planet Earth Simulator Project – A Case Study in Computational Semiotics, IEEE AFRICON 2004, pp.417 – 422

[] Boder, A. (2006), “Collective intelligence: a keystone in knowledge management”, Journal of Knowledge Management, Vol. 10 No. 1, pp. 81-93. https://doi.org/10.1108/13673270610650120

[] Wikipedia, ‘Weak and strong sustainability’, https://en.wikipedia.org/wiki/Weak_and_strong_sustainability (accessed: July 21, 2022)

[] Florence Maraninchi, Let us Not Put All Our Eggs in One Basket. Towards new research directions in computer Science, CACM Communications of the ACM, September 2022, Vol.65, No.9, pp.35-37, https://dl.acm.org/doi/10.1145/3528088

[] AYA H. KIMURA and ABBY KINCHY, “Citizen Science: Probing the Virtues and Contexts of Participatory Research”, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099

[] Eric Bonabeau (2009), Decisions 2.0: The power of collective intelligence. MIT Sloan Management Review 50, 2 (Winter 2009), 45-52.

[] Jim Giles (2005), Internet encyclopaedias go head to head. Nature 438, 7070 (Dec. 2005), 900–901. DOI:https://doi.org/10.1038/438900a

[] T. Bosse, C. M. Jonker, M. C. Schut, and J. Treur (2006), Collective representational content for shared extended mind. Cognitive Systems Research 7, 2-3 (2006), pp.151-174, DOI:https://doi.org/10.1016/j.cogsys.2005.11.007

[] Romina Cachia, Ramón Compañó, and Olivier Da Costa (2007), Grasping the potential of online social networks for foresight. Technological Forecasting and Social Change 74, 8 (2007), oo.1179-1203. DOI:https://doi.org/10.1016/j.techfore.2007.05.006

[] Tom Gruber (2008), Collective knowledge systems: Where the social web meets the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 6, 1 (2008), 4–13. DOI:https://doi.org/10.1016/j.websem.2007.11.011

[] Luca Iandoli, Mark Klein, and Giuseppe Zollo (2009), Enabling on-line deliberation and collective decision-making through large-scale argumentation. International Journal of Decision Support System Technology 1, 1 (Jan. 2009), 69–92. DOI:https://doi.org/10.4018/jdsst.2009010105

[] Shuangling Luo, Haoxiang Xia, Taketoshi Yoshida, and Zhongtuo Wang (2009), Toward collective intelligence of online communities: A primitive conceptual model. Journal of Systems Science and Systems Engineering 18, 2 (01 June 2009), 203–221. DOI:https://doi.org/10.1007/s11518-009-5095-0

[] Dawn G. Gregg (2010), Designing for collective intelligence. Communications of the ACM 53, 4 (April 2010), 134–138. DOI:https://doi.org/10.1145/1721654.1721691

[] Rolf Pfeifer, Jan Henrik Sieg, Thierry Bücheler, and Rudolf Marcel Füchslin. 2010. Crowdsourcing, open innovation and collective intelligence in the scientific method: A research agenda and operational framework. (2010). DOI:https://doi.org/10.21256/zhaw-4094

[] Martijn C. Schut. 2010. On model design for simulation of collective intelligence. Information Sciences 180, 1 (2010), 132–155. DOI:https://doi.org/10.1016/j.ins.2009.08.006 Special Issue on Collective Intelligence

[] Dimitrios J. Vergados, Ioanna Lykourentzou, and Epaminondas Kapetanios (2010), A resource allocation framework for collective intelligence system engineering. In Proceedings of the International Conference on Management of Emergent Digital EcoSystems (MEDES’10). ACM, New York, NY, 182–188. DOI:https://doi.org/10.1145/1936254.1936285

[] Anita Williams Woolley, Christopher F. Chabris, Alex Pentland, Nada Hashmi, and Thomas W. Malone (2010), Evidence for a collective intelligence factor in the performance of human groups. Science 330, 6004 (2010), 686–688. DOI:https://doi.org/10.1126/science.1193147

[] Michael A. Woodley and Edward Bell (2011), Is collective intelligence (mostly) the General Factor of Personality? A comment on Woolley, Chabris, Pentland, Hashmi and Malone (2010). Intelligence 39, 2 (2011), 79–81. DOI:https://doi.org/10.1016/j.intell.2011.01.004

[] Joshua Introne, Robert Laubacher, Gary Olson, and Thomas Malone (2011), The climate CoLab: Large scale model-based collaborative planning. In Proceedings of the 2011 International Conference on Collaboration Technologies and Systems (CTS’11). 40–47. DOI:https://doi.org/10.1109/CTS.2011.5928663

[] Miguel de Castro Neto and Ana Espírtio Santo (2012), Emerging collective intelligence business models. In MCIS 2012 Proceedings. Mediterranean Conference on Information Systems. https://aisel.aisnet.org/mcis2012/14

[] Peng Liu, Zhizhong Li (2012), Task complexity: A review and conceptualization framework, International Journal of Industrial Ergonomics 42 (2012), pp. 553 – 568

[] Sean Wise, Robert A. Paton, and Thomas Gegenhuber. (2012), Value co-creation through collective intelligence in the public sector: A review of US and European initiatives. VINE 42, 2 (2012), 251–276. DOI:https://doi.org/10.1108/03055721211227273

[] Antonietta Grasso and Gregorio Convertino (2012), Collective intelligence in organizations: Tools and studies. Computer Supported Cooperative Work (CSCW) 21, 4 (01 Oct 2012), 357–369. DOI:https://doi.org/10.1007/s10606-012-9165-3

[] Sandro Georgi and Reinhard Jung (2012), Collective intelligence model: How to describe collective intelligence. In Advances in Intelligent and Soft Computing. Vol. 113. Springer, 53–64. DOI:https://doi.org/10.1007/978-3-642-25321-8_5

[] H. Santos, L. Ayres, C. Caminha, and V. Furtado (2012), Open government and citizen participation in law enforcement via crowd mapping. IEEE Intelligent Systems 27 (2012), 63–69. DOI:https://doi.org/10.1109/MIS.2012.80

[] Jörg Schatzmann & René Schäfer & Frederik Eichelbaum (2013), Foresight 2.0 – Definition, overview & evaluation, Eur J Futures Res (2013) 1:15
DOI 10.1007/s40309-013-0015-4

[] Sylvia Ann Hewlett, Melinda Marshall, and Laura Sherbin (2013), How diversity can drive innovation. Harvard Business Review 91, 12 (2013), 30–30

[] Tony Diggle (2013), Water: How collective intelligence initiatives can address this challenge. Foresight 15, 5 (2013), 342–353. DOI:https://doi.org/10.1108/FS-05-2012-0032

[] Hélène Landemore and Jon Elster. 2012. Collective Wisdom: Principles and Mechanisms. Cambridge University Press. DOI:https://doi.org/10.1017/CBO9780511846427

[] Jerome C. Glenn (2013), Collective intelligence and an application by the millennium project. World Futures Review 5, 3 (2013), 235–243. DOI:https://doi.org/10.1177/1946756713497331

[] Detlef Schoder, Peter A. Gloor, and Panagiotis Takis Metaxas (2013), Social media and collective intelligence—Ongoing and future research streams. KI – Künstliche Intelligenz 27, 1 (1 Feb. 2013), 9–15. DOI:https://doi.org/10.1007/s13218-012-0228-x

[] V. Singh, G. Singh, and S. Pande (2013), Emergence, self-organization and collective intelligence—Modeling the dynamics of complex collectives in social and organizational settings. In 2013 UKSim 15th International Conference on Computer Modelling and Simulation. 182–189. DOI:https://doi.org/10.1109/UKSim.2013.77

[] A. Kornrumpf and U. Baumöl (2014), A design science approach to collective intelligence systems. In 2014 47th Hawaii International Conference on System Sciences. 361–370. DOI:https://doi.org/10.1109/HICSS.2014.53

[] Michael A. Peters and Richard Heraud. 2015. Toward a political theory of social innovation: Collective intelligence and the co-creation of social goods. 3, 3 (2015), 7–23. https://researchcommons.waikato.ac.nz/handle/10289/9569

[] Juho Salminen. 2015. The Role of Collective Intelligence in Crowdsourcing Innovation. PhD dissertation. Lappeenranta University of Technology

[] Aelita Skarzauskiene and Monika Maciuliene (2015), Modelling the index of collective intelligence in online community projects. In International Conference on Cyber Warfare and Security. Academic Conferences International Limited, 313

[] AYA H. KIMURA and ABBY KINCHY (2016), Citizen Science: Probing the Virtues and Contexts of Participatory Research, Engaging Science, Technology, and Society 2 (2016), 331-361, DOI:10.17351/ests2016.099

[] Philip Tetlow, Dinesh Garg, Leigh Chase, Mark Mattingley-Scott, Nicholas Bronn, Kugendran Naidoo†, Emil Reinert (2022), Towards a Semantic Information Theory (Introducing Quantum Corollas), arXiv:2201.05478v1 [cs.IT] 14 Jan 2022, 28 pages

[] Melanie Mitchell, What Does It Mean to Align AI With Human Values?, quanta magazin, Quantized Columns, 19.Devember 2022, https://www.quantamagazine.org/what-does-it-mean-to-align-ai-with-human-values-20221213#

Comment by Gerd Doeben-Henisch:

[] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies. Oxford University Press, Oxford (UK), 1 edition, 2014.

[] Scott Aaronson, Reform AI Alignment, Update: 22.November 2022, https://scottaaronson.blog/?p=6821

[] Andrew Y. Ng, Stuart J. Russell, Algorithms for Inverse Reinforcement Learning, ICML 2000: Proceedings of the Seventeenth International Conference on Machine LearningJune 2000 Pages 663–670

[] Pat Langley (ed.), ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., 340 Pine Street, Sixth Floor, San Francisco, CA, United States, Conference 29 June 2000- 2 July 2000, 29.June 2000

[] Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum, (2019) Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations
, Proceedings of the 36 th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s): https://arxiv.org/pdf/1904.06387.pdf

Abstract: Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations
Daniel S. Brown * 1 Wonjoon Goo * 1 Prabhat Nagarajan 2 Scott Niekum 1
You can read in the abstract:
“A critical flaw of existing inverse reinforcement learning (IRL) methods is their inability to significantly outperform the demonstrator. This is because IRL typically seeks a reward function that makes the demonstrator appear near-optimal, rather than inferring the underlying intentions of the demonstrator that may have been poorly executed in practice. In this paper, we introduce
a novel reward-learning-from-observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of (ap-
proximately) ranked demonstrations in order to infer high-quality reward functions from a set of potentially poor demonstrations. When combined
with deep reinforcement learning, T-REX outperforms state-of-the-art imitation learning and IRL methods on multiple Atari and MuJoCo bench-
mark tasks and achieves performance that is often more than twice the performance of the best demonstration. We also demonstrate that T-REX
is robust to ranking noise and can accurately extrapolate intention by simply watching a learner noisily improve at a task over time.”

[] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, Dario Amodei, (2017), Deep reinforcement learning from human preferences, https://arxiv.org/abs/1706.03741

In the abstract you can read: “For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent’s interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback.

[] Melanie Mitchell,(2021), Abstraction and Analogy-Making in Artificial
Intelligence
, https://arxiv.org/pdf/2102.10717.pdf

In the abstract you can read: “Conceptual abstraction and analogy-making are key abilities underlying humans’ abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite of a long history of research on constructing AI systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing
challenge tasks and evaluation measures in order to make quantifiable and generalizable progress

[] Melanie Mitchell, (2021), Why AI is Harder Than We Think, https://arxiv.org/pdf/2102.10717.pdf

In the abstract you can read: “Since its beginning in the 1950s, the field of artificial intelligence has cycled several times between periods of optimistic predictions and massive investment (“AI spring”) and periods of disappointment, loss of confidence, and reduced funding (“AI winter”). Even with today’s seemingly fast pace of AI breakthroughs, the development of long-promised technologies such as self-driving cars, housekeeping robots, and conversational companions has turned out to be much harder than many people expected. One reason for these repeating cycles is our limited understanding of the nature and complexity of intelligence itself. In this paper I describe four fallacies in common assumptions made by AI researchers, which can lead to overconfident predictions about the field. I conclude by discussing the open questions spurred by these fallacies, including the age-old challenge of imbuing machines with humanlike common sense.”

[] Stuart Russell, (2019), Human Compatible: AI and the Problem of Control, Penguin books, Allen Lane; 1. Edition (8. Oktober 2019)

In the preface you can read: “This book is about the past , present , and future of our attempt to understand and create intelligence . This matters , not because AI is rapidly becoming a pervasive aspect of the present but because it is the dominant technology of the future . The world’s great powers are waking up to this fact , and the world’s largest corporations have known it for some time . We cannot predict exactly how the technology will develop or on what timeline . Nevertheless , we must plan for the possibility that machines will far exceed the human capacity for decision making in the real world . What then ? Everything civilization has to offer is the product of our intelligence ; gaining access to considerably greater intelligence would be the biggest event in human history . The purpose of the book is to explain why it might be the last event in human history and how to make sure that it is not .”

[] David Adkins, Bilal Alsallakh, Adeel Cheema, Narine Kokhlikyan, Emily McReynolds, Pushkar Mishra, Chavez Procope, Jeremy Sawruk, Erin Wang, Polina Zvyagina, (2022), Method Cards for Prescriptive Machine-Learning Transparency, 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN), CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA, pp. 90 – 100, Association for Computing Machinery, ACM ISBN 978-1-4503-9275-4/22/05, New York, NY, USA, https://doi.org/10.1145/3522664.3528600

In the abstract you can read: “Specialized documentation techniques have been developed to communicate key facts about machine-learning (ML) systems and the datasets and models they rely on. Techniques such as Datasheets,
AI FactSheets, and Model Cards have taken a mainly descriptive
approach, providing various details about the system components.
While the above information is essential for product developers
and external experts to assess whether the ML system meets their
requirements, other stakeholders might find it less actionable. In
particular, ML engineers need guidance on how to mitigate po-
tential shortcomings in order to fix bugs or improve the system’s
performance. We propose a documentation artifact that aims to
provide such guidance in a prescriptive way. Our proposal, called
Method Cards, aims to increase the transparency and reproducibil-
ity of ML systems by allowing stakeholders to reproduce the models,
understand the rationale behind their designs, and introduce adap-
tations in an informed way. We showcase our proposal with an
example in small object detection, and demonstrate how Method
Cards can communicate key considerations that help increase the
transparency and reproducibility of the detection model. We fur-
ther highlight avenues for improving the user experience of ML
engineers based on Method Cards.”

[] John H. Miller, (2022),  Ex Machina: Coevolving Machines and the Origins of the Social Universe, The SFI Press Scholars Series, 410 pages
Paperback ISBN: 978-1947864429 , DOI: 10.37911/9781947864429

In the announcement of the book you can read: “If we could rewind the tape of the Earth’s deep history back to the beginning and start the world anew—would social behavior arise yet again? While the study of origins is foundational to many scientific fields, such as physics and biology, it has rarely been pursued in the social sciences. Yet knowledge of something’s origins often gives us new insights into the present. In Ex Machina, John H. Miller introduces a methodology for exploring systems of adaptive, interacting, choice-making agents, and uses this approach to identify conditions sufficient for the emergence of social behavior. Miller combines ideas from biology, computation, game theory, and the social sciences to evolve a set of interacting automata from asocial to social behavior. Readers will learn how systems of simple adaptive agents—seemingly locked into an asocial morass—can be rapidly transformed into a bountiful social world driven only by a series of small evolutionary changes. Such unexpected revolutions by evolution may provide an important clue to the emergence of social life.”

[] Stefani A. Crabtree, Global Environmental Change, https://doi.org/10.1016/j.gloenvcha.2022.102597

In the abstract you can read: “Analyzing the spatial and temporal properties of information flow with a multi-century perspective could illuminate the sustainability of human resource-use strategies. This paper uses historical and archaeological datasets to assess how spatial, temporal, cognitive, and cultural limitations impact the generation and flow of information about ecosystems within past societies, and thus lead to tradeoffs in sustainable practices. While it is well understood that conflicting priorities can inhibit successful outcomes, case studies from Eastern Polynesia, the North Atlantic, and the American Southwest suggest that imperfect information can also be a major impediment
to sustainability. We formally develop a conceptual model of Environmental Information Flow and Perception (EnIFPe) to examine the scale of information flow to a society and the quality of the information needed to promote sustainable coupled natural-human systems. In our case studies, we assess key aspects of information flow by focusing on food web relationships and nutrient flows in socio-ecological systems, as well as the life cycles, population dynamics, and seasonal rhythms of organisms, the patterns and timing of species’ migration, and the trajectories of human-induced environmental change. We argue that the spatial and temporal dimensions of human environments shape society’s ability to wield information, while acknowledging that varied cultural factors also focus a society’s ability to act on such information. Our analyses demonstrate the analytical importance of completed experiments from the past, and their utility for contemporary debates concerning managing imperfect information and addressing conflicting priorities in modern environmental management and resource use.”



OKSIMO APPLICATIONS – Simple Examples – Citizens of a County

eJournal: uffmm.org ISSN 2567-6458

27.March 2022 – 27.March 2022
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

BLOG-CONTEXT

This post is part of the Oksimo Application theme which is part of the uffmm blog.

PREFACE

This post shows a simple simulation example with the beta-version of the new Version 2 of the oksimo programming environment. This example shall illustrate the concept of an ‘Everyday Empirical Theory‘ as described in this blog 11 days before. It is intentionally as ‘simple as possible’. Probably some more examples will be shown.

FROM THEORY TO AN APPLICATION

To apply a theory concept in an everyday world there are many formats possible. In this text it will be shown how such an application would look like if one is applying the oksimo programming environment. Until now there exists only a German Blog (oksimo.org) describing the oksimo paradigm a little bit. But the examples there are written with oksimo version 1, which didn’t allow to use math. In version 2 this is possible, accompanied by some visual graph features.

Everyday Experts – Basic Ideas

This figure shows a simple outline of the basic assumptions of the oksimo programming environment constituting the oksimo paradigm: (i) Every human person is assumed to be a ‘natural expert’ being member of a bigger population which shares the same ‘everyday language’ including basic math. (ii) An actor is embedded in some empirical environment including the own body and other human actors. (iii) Human actors are capable of elaborating as inner states different kinds of ‘mental (cognitive) models’ based on their experience of the environment and their own body. (iv) Human actors are further capable to use symbolic languages to ‘represent’ properties of these mental models encoded in symbolic expressions. Such symbolic encoding presupposes an ‘inner meaning function’ which has to be learned. (v) In the oksimo programming environment one needs for the description of a ‘given state’ two kinds of symbolic expressions: (v.1) Language expressions to describe general properties and relations which are assumed to be ‘given’ (= ‘valid by experience’); (v.2) Language expressions to name concrete quantitative properties (simple math expressions).

This figure shows the idea how to change a given state (situation) by so-called ‘change rules’. A change rule encodes experience from the everyday world under which conditions some properties of a given situation S can be ‘changed’ in a way, that a ‘new situation’ S* comes into being. Generally a given state can change if either language expression is ‘deleted’ from the description or ‘contributed’. Another possibility is realized if one of the given quantitative expressions changes its value. In the above simple situation the only change happens by changing the number of citizens by some growth effect. But, as other examples will demonstrate, everything is possible what is possible in the empirical world.

SOME MORE FEATURES

The basic schema of the oksimo paradigm assumes the following components:

  1. The description of a ‘given situation’ as a ‘start state’.
  2. The description of a ‘vision’ functioning as a ‘goal’ which allows a basic ‘Benchmarking’.
  3. A list of ‘change rules’ which describe the assumed possible changes
  4. An ‘inference engine’ called ‘simulator’: Depending from the number of wanted ‘simulation cycles’ (‘inferences’) the simulator applies the change rules onto a given state S and thereby it is producing a ‘follow up state’ S*, which becomes the new given state. The series of generated states represents the ‘history’ of a simulation. Every follow up state is an ‘inference’ and by definition also a ‘forecast’.

All these features (1) – (4) together constitute a full empirical theory in the sense of the mentioned theory post before.

Let us look to a real simulation.

A REAL SIMULATION

The following example has been run with Oksimo v2.0 (Pre-Release) (353e5). Hopefully we can finish the pre-release to a full release the next few weeks.

A VISION

Name: v2026

Expressions:

The Main-Kinzig County exists.

Math expressions:

YEAR>2025 and YEAR<2027

This simple goal assumes the existence of the Main-Kinzig County for the year 2026.

GIVEN START STATE

Name: StartSimple1

Expressions:

The Main-Kinzig County exists.

The number of citizens is known.

Comparing the number of different years one has computed a growth rate.

Math expressions:

YEAR=2018Number

CITIZENS=418950Amount

GROWTH=0.0023Percentage

The start state makes some simple statements which are assumed to be ‘valid’ in a ‘real given situation’ by the participating natural experts.

CHANGE RULES

In this example there is only one change rules (In principle there can be as many change rules as wanted).

Rule name: Growth1

Probability: 1.0

Conditions:

The Main-Kinzig County exists.

Math conditions:

CITIZENS < 450000

Effects plus:

Effects minus:

Effects math:

CITIZENS=CITIZENS+(CITIZENS*GROWTH)

YEAR=YEAR+1

This change rules is rather simple. It looks only to the fact whether the Main-Kinzig County exists and wether the number of citizens is still below 450000. If this is the case, then the year will be incremented and the number of citizens will be incremented according to an extremely simple formula.

For every named quantity in this simulation (YEAR, GROWTH, CITIZENS) the values are collected for every simulation cycle and therefore can be used for evaluations. In this simple case only the quantities of YEAR and CITIZENS have changes:

Simple linear graph for the quantity named YEAR
Simple linear graph for the quantity named CITIZENS

Here the quick log of simulation cycle round 7 – 9:

Round 7

State rules:
Vision rules:
Current states: The number of citizens is known.,Comparing the number of different years one has computed a growth rate.,The Main-Kinzig County exists.
Current visions: The Main-Kinzig County exists.
Current values:
YEAR: 2025Number
CITIZENS: 425741.8149741673Amount
GROWTH: 0.0023Percentage

50.00 percent of your vision was achieved by reaching the following states:
The Main-Kinzig County exists.,
And the following math visions:
None

Round 8

State rules:
Vision rules:
Current states: The number of citizens is known.,Comparing the number of different years one has computed a growth rate.,The Main-Kinzig County exists.
Current visions: The Main-Kinzig County exists.
Current values:
YEAR: 2026Number
CITIZENS: 426721.0211486079Amount
GROWTH: 0.0023Percentage

100.00 percent of your vision was achieved by reaching the following states:
The Main-Kinzig County exists.,
And the following math visions:
YEAR>2025 and YEAR<2027,

Round 9

State rules:
Vision rules:
Current states: The number of citizens is known.,Comparing the number of different years one has computed a growth rate.,The Main-Kinzig County exists.
Current visions: The Main-Kinzig County exists.
Current values:
YEAR: 2027Number
CITIZENS: 427702.4794972497Amount
GROWTH: 0.0023Percentage

50.00 percent of your vision was achieved by reaching the following states:
The Main-Kinzig County exists.,
And the following math visions:
None

In round 8 one can see, that the simulation announces:

100.00 percent of your vision was achieved by reaching the following states: The Main-Kinzig County exists., And the following math visions: YEAR>2025 and YEAR<2027

From this the natural expert can conclude that his requirements given in the vision are ‘fulfilled’/’satisfied’.

WHAT COMES NEXT?

In a loosely order more examples will follow. Here you find the next one.

OKSIMO and BOURBAKI. A Metamathematical Perspective on Oksimo. Part 1

eJournal: uffmm.org
ISSN 2567-6458, 22.Sept – 24.Sept  2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

(Some minor corrections: 23.Sept 2021)

(A substantial extension: 24.Sept.2021)

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.[*]

THE BOOK: THEORY OF SETS

Covered under the pseudonym of N.Bourbaki [1] appeared 1970 the French edition of a book which 1968 already had been translated into English  (reprinted 1970) called  Theory of Sets.[2] This book is the first book of a series about ELEMENTS OF MATHEMATICS.

To classify this book about set theory as a book of Metamathematics and as such as a book in the perspective of Philosophy of Science will become clear if one starts reading the book.[3]

MATHEMATICS WITH ONE LANGUAGE

It is the basic conviction of the Bourbaki book, that “… it is known to be possible … to derive practically the whole of known mathematics from a single source the Theory of Sets.” (p.9) And from this Bourbaki concludes, that it will be sufficient “… to describe the principles of a single formalized language, to indicate how the Thory of Sets could be written in this language, and then to show how the various branches of mathematics  … fit into this framework.”(p.9)

Thus, the content of mathematics — whatever it is — can according to Bourbaki be described in one single language [Lm] and the content will be called Theory of Sets [T] .

METAMATHEMATICS

Because the one single language Lm used to describe the Theory of Sets shall be a language with certain properties one has to define these properties with some other language, which is talking about Lm. As language for this job Bourbaki is using the ordinary language [Lo].(p.9) But the reasoning within which one is using this ordinary language is called metamathematics (cf. P.10f). Within the metamathematical point of view the language Lm under investigation is seen as a set of previously given objetcs without any kind of meaning, where only the assigned order is of importance.(cf. p.10): “… metamathematical ‘arguments’ usually assert that when a succession of operations has been performed on a text of a given type, then the final text will be of another given type.”(p.10)

What looks here at first glance  as the complete formalization of mathematics it is not. Bourbaki states clearly that “formalized mathematics cannot in practice be written down in full“(p.11) There has to be assumed as ‘last resort’ the assumption of a common sense of the mathematician and the intuition of the reader. (cf. p.11)

COGNITIVE-SEMIOTIC TURN

This conflict between at one hand of  the idea of a formalization of  Mathematics by a formalized language Lm  and on the other hand by the well known proof of Gödel [4] of the incompleteness of the axioms for classical arithmetic  (cf. p.12) is not a real conflict as long as one takes into account — as Bourbaki points out — that the ‘content of mathematics’ is only given in different layers of languages (Lm, Lo, …) which again are embedded in a presupposed ‘common sense’ which is nothing else as the cognitive machinery of human persons including an embedded meaning function relating different kinds of knowledge into different kinds of — internal as well as external — expressions of some language L. Thus any kind of a  ‘reduction of meaning’ seems never to be a ‘complete reduction’ but only a ‘technical reduction’ to introduce some ‘artificial (abstract) objetcs’ which can only work because of their embedding in some richer context.

This new perspective can be called the cognitive-semiotic turn which became possible by new insights of modern brain sciences in connection with pysychology and semiotics.

From this new point of view one can derive the idea of embedding metamathemics in a more advanced actor theory providing all the ingredients to make metamathematics more ‘rational’.

OUTLINE OF ACTOR THEORY

Actor theory first outline
Figure 1: Actor theory first outline

The details of the Actor Theory [AT] can become quite complex. Here a first outline of the basic ideas and what this can mean for a metamathematical point of view of mathematics.

World is not World

The main idea is founded in the new insights of Biology and Neuro-Psychology of the handling of body-world interactions as exercised by humans. One of the main insights is rooted back to von Uexküll [5] more than 100 years ago, when he described how every biological organism perceives and handles some world outside of the body  with the inner neuronal structures given! Thus different life forms in the same outside world  W will peceive and act neuronally in different worlds! Brain X acts in world X which is somehow related to the outside world W as well as Brain Y acts in world Y which also is  somehow related to the outside world W.

These basic insights relate as well to more developed life forms as such as  humans are. We as humans do not perceive and think the world W outside of our bodies ‘as it is’ but only as our brain inside our body can process all the body states related to the outside world in the mode of the inside brain. Thus if the different human individuals would have different brains they would live in different worlds and their would be no chance of a simple communication. But as we know from physiological and behavioral  studies humans can to some extend communicate successfully. Thus there exists inside of every human individual a human-processed world h(W) which is different from other life-forms like a rat, a worm, an octopus, etc.

From this basic insight it follows that if we speak about the world W we do indeed  not speak about the world  W directly but about the world W as it is processed in a human-specific manner, the  world h(W). This has many implications.

  1. Because we know already that the world h(W) is not a static but a dynamic world depending from our learning history it can happen — and it happens all the time — that different individuals have different learning histories.  This can result in quite strong differences of experience and knowledge attached to different individuals, which can prevent a simple understanding between such individuals: the learned world h1(W) can to some degree be different from the learned world  h2(W) such that a simple and direct understanding will not be possible.
  2. This difference between the outside world W and the processed inside world h(W) relates to the communication too! The spoken or written expressions E of some language L are belonging to the outside world. They have a counterpart in the inner world as inner expressions E*, which can be associated with all kinds of processed inner states of the inner world h(W) = W*. These possible — and learned — associations between inner expressions and inner states belonging to h(W) is assumed here to be that what commonly is called meaning. Thus one has to assume an internal meaning function μ which maps the internal expressions E* of some internal language L*  into parts of the internally processed world h(W)=W* and vice versa. Thus we have μ: E* <—> W*. Thus μ(e*) would point to some part w* of the internally processed world W* as the ‘meaning’ of the internal expression e*.
  3. This semiotic architecture of human beings enables a nearly infinite space of expressions as well as associated meanings definable during learning processes. This is powerful, but it is also very demanding for the speaker-hearer: to enable a succesful communication between different speaker-hearer these have to train their language usage under sufficient similar conditions thereby constructing individual meaning functions which work — hopefully — sufficiently similar. If not then communication can slow down, can produce lots of misunderstandings or can even break down completely. [6]
  4. In the case of mathematics it is a long debated question whether mathematics can be reduced to the expressions Em of some mathematical language Lm or if mathematics has some mathematical objects on its own which are different from the expressions. If one would assume that mathematics has no objects on its own but only some expressions Em, then it would become difficult to argue whether exactly these expressions Em should be used and not some other expressions Ex. Moreover to classify expressions as ‘axioms’ or ‘theorems’ would be completely arbitrary.   The only ‘anchor’ of non-arbitrariness would consist in some formal criteria of a formal consistency which would disable the formal generation of pairs of expressions {a,a*} where one is excluding the other. But even such a formal consistency presupposes some criteria which are beyond the expressions as such! Thus mathematics would need some criteria outside mathematics. This can be understood as an argument for metamathematics.  But according to Bourbaki  metamathematics is defined as a set of operations on given expressions without a specific meaning.  This is not enough to establish formal consistency! Thus even metamathematics is pointing to something outside of given mathematical expressions.  What can this be?
PART 2

To be continued …

COMMENTS

[*] More recent versions of the specification of the oksimo oftware can be found in the bolg oksimo.org. Unfortunately are the texts in that blog  — at the time if this writing — still only in German. Hopefully this will change in the future.

[1] Bourbaki group in Wikipedia [EN]: https://en.wikipedia.org/wiki/Nicolas_Bourbaki

[2] N.Bourbaki (1970), Theory of Sets, Series: ELEMENTS OF MATHEMATICS, Springer, Berlin — Heidelberg — New York (Engl. Translation from the French edition 1970)

[3] The first time when the author of this text has encountered the book was some time between 1984 – 1987 while being a PhD-student at the Ludwig-Maximilians Univesty [LMU] in Munich. It was in a seminar with Prof. Peter Hinst about structural approaches to Philosophy of Science. The point of view at that time was completely different to the point of view applied in this text.

[4] Kurt Goedel. Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme, i. Monatshefte fuer
Mathematik und Physik, 38:173–98, 1931.

[5] Jakob von Uexküll, 1909, Umwelt und Innenwelt der Tiere. Berlin: J.Springer.

[6] Probably everybody has made the experience in his life of being part of a situation where nobody speaks a language, which one is used to speak …

 

 

LOGIC. The Theory Of Inquiry (1938) by John Dewey – An oksimo Review – Part 2

eJournal: uffmm.org, ISSN 2567-6458, Aug 17-18, 2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

SCOPE

In the uffmm review section the different papers and books are discussed from the point of view of the oksimo paradigm. [2] Here the author reads the book “Logic. The Theory Of Inquiry” by John Dewey, 1938. [1]

DISCUSSION after the PREFACE DEWEY 1938/9

 

Following the description and interpretation of Dewey’s preface the author takes here the time for a short discussion how one can describe the first idea of Dewey about the view of inquiry as a continuum, as a process with some outcome.

Dewey's view of an inquiry as a continuous process slightly interpreted
FIGURE 1: Dewey’s view of an inquiry as a continuous process slightly interpreted

In the interpretation of Dewey the author takes the starting point with the view of Dewey of an inquiry as a  continuous process.(cf. figure 1)

In his description of such an inquiry in the spirit of pragmatism Dewey claims that the process ends up in a situation which is caused by the preceding parts of the process. He calls the ‘end’ of such an inquiry process a consequence (or: consequences) which can be used as a test of the validity of the assumed propositions.

Validity of the proposition

Taking only the words of Dewey “validity of the …  propositions” this can be interpreted in many ways. The author of this texts interprets these words with a conceptual framework based on the today knowledge about cognitive processing, which is also used in the oksimo paradigm.

In this modern framework of cognitive processing we know that one has at least to distinguish the dimension of the real world with real situations and as part of the real situation real objects, real actions (and more) on the one hand and inner states of an actor on the other  hand.

As part of this overall scenario one has to distinguish at least the following main dimensions: (i) the overall observable real behavior of an actor and real expressions as part of the observable behavior, which can be classified (by learned knowledge) as expressions of some normal language, and (ii) the not-observable inner states of the actor reflecting in a special way the observable situation as such as well as the perceivable (by hearing, reading, …) expressions of the known language as part of the observable situation.

The main point here in the case of an actor of the life form homo sapiens is the fact that a homo sapiens actor is able to map the inner counterpart of the external expressions into the inner counterpart of the perceived real situation as part of a cognitive machinery (including memory) in a way that this internal mapping — here called meaning function — encodes part of the cognitive states into expressions (and vice versa).

Using this knowledge about the cognitive closure of expressions known as part of a learned language one can understand, why arbitrary aspects of the observable real situation can be encoded by the (built-in as well as learned ) meaning function into certain expressions in a way, that a hearer-reader of these expressions can decode these expressions (with his individual meaning function) to some extend into the inner cognitive states corresponding to the perceivable world.

In the light of this modern cognitive framework can a proposition be interpreted as part of the inner cognitive states corresponding either actually to some perceived real situation (then it is qualified as being valid) or not. And because the meaning function can encode such propositions with some expressions we can have external expressions as a real counterpart to such propositions.

Inquiry as a process

Thus inquiry understood by Dewey as a continuous process starts with some starting real situation which can be accompanied by appropriate (encoded) expressions of the selected language. During the course of inquiry the situation can change caused by actions which after some finite period of time lead to a final situation (‘final’ is not an absolute’ category here; it depends from the decision of the researchers what they think has to be understood as ‘final’).

While the possible process of inquiry in the beginning is quite unclear, open, undefined, turns the real process of actions (including speaking/ writing expressions) this undefined/ possibly infinite situation step by step into some real defined finite process by making decisions which enable selections of concrete actions/ things out of many options.

Test of the validity

Dewey speaks about the end of an inquiry process as a consequence which can be seen as a test of the validity of the propositions. If the ‘validity of a proposition’ is a qualification of the relation between a proposition as a cognitive counterpart of some perceivable real situation and this real situation then the wording ‘test of’ could be interpreted in the way that the reached situation by  an inquiry  process is in a sufficient agreement with an assumed proposition. But this would require that the researchers have in the beginning of their research have an idea of the intended/ wanted outcome. This sounds a bit strange: Why doing some inquiry if I already have an idea of the outcome?

This leads to the everyday life situation where we encounter permanently the following situations: (i) We know of situations which we qualify as being unsatisfying by some reasons (‘Gerd is hungry’, ‘Peter is tired’, ‘Ada is unhappy’, ‘John needs some money’, ‘Mary has a question’, ‘Bill looks for some new flat’, …); and (ii) some kind of visions/ goals, which we want to achieve. At the moment of having a vision/ goal within our inner cognitive states we can decide to achieve it through a real process of real actions. In some cases (being hungry) we probably have some options how to accomplish the goal by starting a series of concrete actions to get some food. And then the food is a consequence of the preceding process of searching and at the same time an answer to the triggering proposition. In other cases (‘being unhappy’ it can be difficult to find a good answer:  what really is missing? What can I do? If Ada would decide to clarify her state it could happen that she tries a lot of options eventually lasting a long time (days, weeks, months, …). But nevertheless one day  it can  happen that she suddenly  has the feeling, that she is no longer unhappy. In that case she can qualify the reached situation as a consequence of her preceding process of inquiry and indeed as an answer to the triggering proposition of being unhappy.  In this case ‘feeling happy’ as an answer to ‘feeling unhappy’ has not been a clear expectation in the beginning, but a causing proposition which has lead Ada into a search process which finally produced a situation which enabled this new feeling of ‘being happy’ which — perhaps –is a quite ‘new’ feeling which nevertheless is understood by her as an ‘answer’.

Goals: defined and undefined

These simple examples point at the fact that homo sapiens actors can start inquiries either by somehow clearly defined goals or with ‘undefined goals‘ but caused by a ‘defined problem‘.

While the wording ‘undefined goal’ seems a little bit ‘fuzzy’ in the beginning, it is of great importance for the case of  inquiry. This has to do with the concept of a possible future.

While the actual real world — and even those parts of it, which we have memorized somehow — is something we can perceive and where we can point at, is ‘future’ a non-object: we have strictly no chance to perceive directly any kind of future. Future is the radical unknown. What we can do — and in our everyday life we do it often — is, that we try to imagine by our past knowledge to get some hints out of the past for some patterns, regularities which can be used as ‘hints’ what perhaps can happen again with some probability as an upcoming situation because there exist some hidden mechanism in the real world which is causing a repetition (e.g. we have learned about phenomena which we call ‘gravity’ which we use as a cognitive tool to make some forecasts).  But such learned patterns of the past do not explain everything and there is no absolute guarantee that these patterns will work ever. Moreover, we are living in a world which is maximal complex because of a multitude of patterns simultaneously at work, and there are many patterns (the behavior of biological systems) which are inherently non-linear, nondeterministic.

Thus doing inquiries into future states which are caused by defined problems where the answer is not yet known are radically different to inquiries with defined problems already accompanied with a clear goal. Although defined problems with defined goals can be quite difficult (e.g. searching for better material, better production processes etc. to get a better electrical battery for everyday usage) the case of an undefined goal is much more demanding. This case is the standard case for real research (as in the case of Ada: What makes her happy?).

COMMENTS

[1] John Dewey, Logic. The Theory Of Inquiry, New York, Henry Holt and Company, 1938  (see: https://archive.org/details/JohnDeweyLogicTheTheoryOfInquiry with several formats; I am using the kindle (= mobi) format: https://archive.org/download/JohnDeweyLogicTheTheoryOfInquiry/%5BJohn_Dewey%5D_Logic_-_The_Theory_of_Inquiry.mobi . This is for the direct work with a text very convenient.  Additionally I am using a free reader ‘foliate’ under ubuntu 20.04: https://github.com/johnfactotum/foliate/releases/). Additionally I am using a free reader ‘foliate’ under ubuntu 20.04: https://github.com/johnfactotum/foliate/releases/). The page numbers in the text of the review — like (p.13) — are the page numbers of the ebook as indicated in the ebook-reader foliate.(There exists no kindle-version for linux (although amazon couldn’t work without linux servers!))

[2] Gerd Doeben-Henisch, 2021, uffmm.org, THE OKSIMO PARADIGM
An Introduction (Version 2), https://www.uffmm.org/wp-content/uploads/2021/03/oksimo-v1-part1-v2.pdf

Continuation

Part 3 (Last change: 20.Aug.2021)

MEDIA

Here is another talk completely unplugged about Dewey’s Logic. It’s focus is on a hypothetical conceptual framework for the wording of ‘valid propositions’ in the context of an inquiry.

 

OKSIMO MEETS POPPER. Popper’s Position

eJournal: uffmm.org
ISSN 2567-6458, 31.March – 31.March  2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

POPPERs POSITION IN THE CHAPTERS 1-17

In my reading of the chapters 1-17 of Popper’s The Logic of Scientific Discovery [1] I see the following three main concepts which are interrelated: (i) the concept of a scientific theory, (ii) the point of view of a meta-theory about scientific theories, and (iii) possible empirical interpretations of scientific theories.

Scientific Theory

A scientific theory is according to Popper a collection of universal statements AX, accompanied by a concept of logical inference , which allows the deduction of a certain theorem t  if one makes  some additional concrete assumptions H.

Example: Theory T1 = <AX1,>

AX1= {Birds can fly}

H1= {Peter is  a bird}

: Peter can fly

Because  there exists a concrete object which is classified as a bird and this concrete bird with the name ‘Peter’ can  fly one can infer that the universal statement could be verified by this concrete bird. But the question remains open whether all observable concrete objects classifiable as birds can fly.

One could continue with observations of several hundreds of concrete birds but according to Popper this would not prove the theory T1 completely true. Such a procedure can only support a numerical universality understood as a conjunction of finitely many observations about concrete birds   like ‘Peter can fly’ & ‘Mary can fly’ & …. &’AH2 can fly’.(cf. p.62)

The only procedure which is applicable to a universal theory according to Popper is to falsify a theory by only one observation like ‘Doxy is a bird’ and ‘Doxy cannot fly’. Then one could construct the following inference:

AX1= {Birds can fly}

H2= {Doxy is  a bird, Doxy cannot fly}

: ‘Doxy can fly’ & ~’Doxy can fly’

If a statement A can be inferred and simultaneously the negation ~A then this is called a logical contradiction:

{AX1, H2}  ‘Doxy can fly’ & ~’Doxy can fly’

In this case the set {AX1, H2} is called inconsistent.

If a set of statements is classified as inconsistent then you can derive from this set everything. In this case you cannot any more distinguish between true or false statements.

Thus while the increase of the number of confirmed observations can only increase the trust in the axioms of a scientific theory T without enabling an absolute proof  a falsification of a theory T can destroy the ability  of this  theory to distinguish between true and false statements.

Another idea associated with this structure of a scientific theory is that the universal statements using universal concepts are strictly speaking speculative ideas which deserve some faith that these concepts will be provable every time one will try  it.(cf. p.33, 63)

Meta Theory, Logic of Scientific Discovery, Philosophy of Science

Talking about scientific theories has at least two aspects: scientific theories as objects and those who talk about these objects.

Those who talk about are usually Philosophers of Science which are only a special kind of Philosophers, e.g. a person  like Popper.

Reading the text of Popper one can identify the following elements which seem to be important to describe scientific theories in a more broader framework:

A scientific theory from a point of  view of Philosophy of Science represents a structure like the following one (minimal version):

MT=<S, A[μ], E, L, AX, , ET, E+, E-, true, false, contradiction, inconsistent>

In a shared empirical situation S there are some human actors A as experts producing expressions E of some language L.  Based on their built-in adaptive meaning function μ the human actors A can relate  properties of the situation S with expressions E of L.  Those expressions E which are considered to be observable and classified to be true are called true expressions E+, others are called false expressions  E-. Both sets of expressions are true subsets of E: E+ ⊂ E  and E- ⊂ E. Additionally the experts can define some special  set of expressions called axioms  AX which are universal statements which allow the logical derivation of expressions called theorems of the theory T  ET which are called logically true. If one combines the set of axioms AX with some set of empirically true expressions E+ as {AX, E+} then one can logically derive either  only expressions which are logically true and as well empirically true, or one can derive logically true expressions which are empirically true and empirically false at the same time, see the example from the paragraph before:

{AX1, H2}  ‘Doxy can fly’ & ~’Doxy can fly’

Such a case of a logically derived contradiction A and ~A tells about the set of axioms AX unified with the empirical true expressions  that this unified set  confronted with the known true empirical expressions is becoming inconsistent: the axioms AX unified with true empirical expressions  can not  distinguish between true and false expressions.

Popper gives some general requirements for the axioms of a theory (cf. p.71):

  1. Axioms must be free from contradiction.
  2. The axioms  must be independent , i.e . they must not contain any axiom deducible from the remaining axioms.
  3. The axioms should be sufficient for the deduction of all statements belonging to the theory which is to be axiomatized.

While the requirements (1) and (2) are purely logical and can be proved directly is the requirement (3) different: to know whether the theory covers all statements which are intended by the experts as the subject area is presupposing that all aspects of an empirical environment are already know. In the case of true empirical theories this seems not to be plausible. Rather we have to assume an open process which generates some hypothetical universal expressions which ideally will not be falsified but if so, then the theory has to be adapted to the new insights.

Empirical Interpretation(s)

Popper assumes that the universal statements  of scientific theories   are linguistic representations, and this means  they are systems of signs or symbols. (cf. p.60) Expressions as such have no meaning.  Meaning comes into play only if the human actors are using their built-in meaning function and set up a coordinated meaning function which allows all participating experts to map properties of the empirical situation S into the used expressions as E+ (expressions classified as being actually true),  or E- (expressions classified as being actually false) or AX (expressions having an abstract meaning space which can become true or false depending from the activated meaning function).

Examples:

  1. Two human actors in a situation S agree about the  fact, that there is ‘something’ which  they classify as a ‘bird’. Thus someone could say ‘There is something which is a bird’ or ‘There is  some bird’ or ‘There is a bird’. If there are two somethings which are ‘understood’ as being a bird then they could say ‘There are two birds’ or ‘There is a blue bird’ (If the one has the color ‘blue’) and ‘There is a red bird’ or ‘There are two birds. The one is blue and the other is red’. This shows that human actors can relate their ‘concrete perceptions’ with more abstract  concepts and can map these concepts into expressions. According to Popper in this way ‘bottom-up’ only numerical universal concepts can be constructed. But logically there are only two cases: concrete (one) or abstract (more than one).  To say that there is a ‘something’ or to say there is a ‘bird’ establishes a general concept which is independent from the number of its possible instances.
  2. These concrete somethings each classified as a ‘bird’ can ‘move’ from one position to another by ‘walking’ or by ‘flying’. While ‘walking’ they are changing the position connected to the ‘ground’ while during ‘flying’ they ‘go up in the air’.  If a human actor throws a stone up in the air the stone will come back to the ground. A bird which is going up in the air can stay there and move around in the air for a long while. Thus ‘flying’ is different to ‘throwing something’ up in the air.
  3. The  expression ‘A bird can fly’ understood as an expression which can be connected to the daily experience of bird-objects moving around in the air can be empirically interpreted, but only if there exists such a mapping called meaning function. Without a meaning function the expression ‘A bird can fly’ has no meaning as such.
  4. To use other expressions like ‘X can fly’ or ‘A bird can Y’ or ‘Y(X)’  they have the same fate: without a meaning function they have no meaning, but associated with a meaning function they can be interpreted. For instance saying the the form of the expression ‘Y(X)’ shall be interpreted as ‘Predicate(Object)’ and that a possible ‘instance’ for a predicate could be ‘Can Fly’ and for an object ‘a bird’ then we could get ‘Can Fly(a Bird)’ translated as ‘The object ‘a Bird’ has the property ‘can fly” or shortly ‘A Bird can fly’. This usually would be used as a possible candidate for the daily meaning function which relates this expression to those somethings which can move up in the air.
Axioms and Empirical Interpretations

The basic idea with a system of axioms AX is — according to Popper —  that the axioms as universal expressions represent  a system of equations where  the  general terms   should be able to be substituted by certain values. The set of admissible values is different from the set of  inadmissible values. The relation between those values which can be substituted for the terms  is called satisfaction: the values satisfy the terms with regard to the relations! And Popper introduces the term ‘model‘ for that set of admissible terms which can satisfy the equations.(cf. p.72f)

But Popper has difficulties with an axiomatic system interpreted as a system of equations  since it cannot be refuted by the falsification of its consequences ; for these too must be analytic.(cf. p.73) His main problem with axioms is,  that “the concepts which are to be used in the axiomatic system should be universal names, which cannot be defined by empirical indications, pointing, etc . They can be defined if at all only explicitly, with the help of other universal names; otherwise they can only be left undefined. That some universal names should remain undefined is therefore quite unavoidable; and herein lies the difficulty…” (p.74)

On the other hand Popper knows that “…it is usually possible for the primitive concepts of an axiomatic system such as geometry to be correlated with, or interpreted by, the concepts of another system , e.g . physics …. In such cases it may be possible to define the fundamental concepts of the new system with the help of concepts which were originally used in some of the old systems .”(p.75)

But the translation of the expressions of one system (geometry) in the expressions of another system (physics) does not necessarily solve his problem of the non-empirical character of universal terms. Especially physics is using also universal or abstract terms which as such have no meaning. To verify or falsify physical theories one has to show how the abstract terms of physics can be related to observable matters which can be decided to be true or not.

Thus the argument goes back to the primary problem of Popper that universal names cannot not be directly be interpreted in an empirically decidable way.

As the preceding examples (1) – (4) do show for human actors it is no principal problem to relate any kind of abstract expressions to some concrete real matters. The solution to the problem is given by the fact that expressions E  of some language L never will be used in isolation! The usage of expressions is always connected to human actors using expressions as part of a language L which consists  together with the set of possible expressions E also with the built-in meaning function μ which can map expressions into internal structures IS which are related to perceptions of the surrounding empirical situation S. Although these internal structures are processed internally in highly complex manners and  are — as we know today — no 1-to-1 mappings of the surrounding empirical situation S, they are related to S and therefore every kind of expressions — even those with so-called abstract or universal concepts — can be mapped into something real if the human actors agree about such mappings!

Example:

Lets us have a look to another  example.

If we take the system of axioms AX as the following schema:  AX= {a+b=c}. This schema as such has no clear meaning. But if the experts interpret it as an operation ‘+’ with some arguments as part of a math theory then one can construct a simple (partial) model m  as follows: m={<1,2,3>, <2,3,5>}. The values are again given as  a set of symbols which as such must not ave a meaning but in common usage they will be interpreted as sets of numbers   which can satisfy the general concept of the equation.  In this secondary interpretation m is becoming  a logically true (partial) model for the axiom Ax, whose empirical meaning is still unclear.

It is conceivable that one is using this formalism to describe empirical facts like the description of a group of humans collecting some objects. Different people are bringing  objects; the individual contributions will be  reported on a sheet of paper and at the same time they put their objects in some box. Sometimes someone is looking to the box and he will count the objects of the box. If it has been noted that A brought 1 egg and B brought 2 eggs then there should according to the theory be 3 eggs in the box. But perhaps only 2 could be found. Then there would be a difference between the logically derived forecast of the theory 1+2 = 3  and the empirically measured value 1+2 = 2. If one would  define all examples of measurement a+b=c’ as contradiction in that case where we assume a+b=c as theoretically given and c’ ≠ c, then we would have with  ‘1+2 = 3′ & ~’1+2 = 3’ a logically derived contradiction which leads to the inconsistency of the assumed system. But in reality the usual reaction of the counting person would not be to declare the system inconsistent but rather to suggest that some unknown actor has taken against the agreed rules one egg from the box. To prove his suggestion he had to find this unknown actor and to show that he has taken the egg … perhaps not a simple task … But what will the next authority do: will the authority belief  the suggestion of the counting person or will the authority blame the counter that eventually he himself has taken the missing egg? But would this make sense? Why should the counter write the notes how many eggs have been delivered to make a difference visible? …

Thus to interpret some abstract expression with regard to some observable reality is not a principal problem, but it can eventually be unsolvable by purely practical reasons, leaving questions of empirical soundness open.

SOURCES

[1] Karl Popper, The Logic of Scientific Discovery, First published 1935 in German as Logik der Forschung, then 1959 in English by  Basic Books, New York (more editions have been published  later; I am using the eBook version of Routledge (2002))