Category Archives: behavior

Collective Human Intelligence (CHI)

This text is part of the text “Rebooting Humanity”

(The German Version can be found HERE)

Author No. 1 (Gerd Doeben-Henisch)

Contact: info@uffmm.org

(Start: June 22, 2024, Last change: June 22, 2024)

Starting Point

The main theme of this section is ‘collective human intelligence (CHI)’. However, it does not occur in isolation, detached from everything else. Rather, life on Planet Earth creates a complex network of processes which — upon closer examination — reveal structures that are consistent across all forms of life in their basic parameters, yet differ in parts. It must also be considered that these basic structures, in their process form, always intertwine with other processes, interacting and influencing each other. Therefore, a description of these basic structures will initially be rather sketchy here, as the enormous variety of details can otherwise lead one quickly into the ‘thicket of particulars’.

Important Factors

Basic Life-Pattern

Starting from the individual cell up to the most powerful cell galaxies [1] that life has produced so far, every identifiable form of life exhibits a ‘basic pattern’ of the life process that threads like a ‘red thread’ through all forms of life: as long as there is more than a single life system (a ‘population’), there exists throughout the entire lifespan the basic cycle (i) reproduction of Generation 1 – birth of Generation 2 – growth of Generation 2 – onset of behavior of Generation 2 accompanied by learning processes – reproduction of Generation 2 – ….

Genetic Determinism

This basic pattern, in the phases of ‘reproduction’ and ‘birth’, is largely ‘genetically determined’. [2] The growth process itself—the development of the cell galaxy—is also fundamentally strongly genetically determined, but increasingly factors from the environment of the growth process come into play, which can modify the growth process to varying degrees. Thus, the outcomes of reproduction and growth can vary more or less significantly.

Learning

As growth transforms the cell galaxy into a ‘mature’ state, the entire system can enable different ‘functions’ that increasingly facilitate ‘learning’.

A minimal concept of learning related to acting systems identifies the ‘learning of a system’ by the fact that the ‘behavior’ of a system changes in relation to a specific environmental stimulus over a longer period of time, and this change is ‘more than random’. [3]

‘Learning’ ranges on a scale from ‘relatively determined’ to ‘largely open’. ‘Open’ here means that the control by genetic presets decreases and the system can have individually different experiences within a spectrum of possible actions.

Experiences

Experiences gain their ‘format’ within the following coordinates:

(i) (sensory) perception,

(ii) abstractions of sensory perceptions which are generated internally and which

(iii) are retrievable inside the system. The totality of such conditionally retrievable (recallable) abstractions is also called memory content. [4]

(iv) the possibility of arbitrary abstractions from abstractions, the

(v) storage of sequential events as well as

(vi) abstractions of sequentially occurring events, and the

(vii) free combination of abstractions into new integrated units.

Additionally,

(viii) the ‘perception of internal bodily events’ (also called ‘proprioceptive’ perception) [5], which can ‘link (associate)’ with all other perceptions and abstractions. [6] It is also important to note that it is a characteristic of perception that

(ix) events usually never occur in isolation but appear as ‘part of a spatial structure’. Although ‘subspaces can be distinguished (visually, acoustically, tactilely, etc.), these subspaces can be integrated into a ‘total space’ that has the format of a ‘three-dimensional body space’, with one’s own body as part of it. ‘In thought’, we can consider individual objects ‘by themselves’, detached from a body space, but as soon as we turn to the ‘sensual space of experience’, the three-dimensional spatial structure becomes active.

Individual – Collective

In the individual experience of everyday situations, this ‘inner world of experience’ largely forms in a multitude of ways, largely unconsciously.

However, as soon as ‘human systems’—in short, people—are not alone in a situation but together with others, these people can perceive and remember the same environment ‘similarly’ or ‘differently’. In their individual experiences, different elements can combine into specific patterns.

Coordination of Behavior

It becomes interesting when different people try to coordinate their behavior, even if it is just to make ‘contact’ with each other. And, although this can also be achieved in various ways without explicit symbolic language [7], sophisticated, complex collective action involving many participants over long periods with demanding tasks, according to current knowledge, is only possible with the inclusion of symbolic language.

The ability of humans to use languages seems to be fundamentally genetically conditioned. [8] ‘How’ language is used, ‘when’, ‘with which memory contents language is linked’, is not genetically conditioned. People must learn this ‘from the particular situation’ both individually and collectively, in coordination with others, since language only makes sense as a ‘common means of communication’ that should enable sophisticated coordination.

Linguistic Meaning

The system of sounds (and later symbols) used in a language is ultimately decided by those who initially use the language together. [9] Given the fact that there are many thousands of languages [10], one can conclude that there is considerable freedom in the specific design of a language. [11]

This ‘freedom in the specific design’ is most evident in the association between language elements and potential meanings. The same ‘object’, ‘event’, or ‘fact’ can be expressed completely differently by people using different languages. [12] And this ‘difference’ refers not only to the naming of individual properties or objects but occurs within a ‘larger context’ of ‘perspectives’ on how the everyday world is perceived, classified, and enacted within a specific language community. These differences also occur ‘within a language community’ in the form of ‘milieus’/’social strata’, where the ‘practice of life’ differs.

The most important aspect of the relationship between the language system (sounds, symbols, the arrangement of sounds and symbols) and possible ‘meaning content’ is that any type of ‘content’ is located within the person (inside the ‘system’).[13]

As the brief sketch above on the space of experience suggests, the elements that can constitute an experiential space are so layered and dynamic that an assignment between language elements and elements of experience is fundamentally incomplete. Additionally, two different systems (people) can only agree on elements of experience as ‘linguistic meaning’ if they have ‘common reference points’ in their individual experiential spaces. Due to the structure of the system, there exist only the following ‘types of reference points’:

(i) There are sensory perceptions of circumstances in a commonly shared environment that can be perceived ‘sufficiently’ similarly by all participants (and are automatically (unconsciously!) transformed into more abstract units in the experiential space).

(ii) There are internal body perceptions that normally occur similarly in each person due to a genetically determined structural similarity.[14]

(iii) There are internal perceptions of internal processes that also normally occur similarly in each person due to a genetically determined structural similarity. [15]

The more ‘similar’ such internal structures are and the more ‘constant’ they occur, the greater the likelihood that different language participants can form ‘internal working hypotheses’ about what the other means when using certain linguistic expressions. The more the content of experience deviates from types (i) – (iii), the more difficult or impossible it becomes to reach an agreement.

The question of ‘true statements’ and ‘verifiable predictions’ is a specific subset of the problem of meaning, which is treated separately.

Complex Language Forms

Even the assignment and determination of meaning in relatively ‘simple’ linguistic expressions is not straightforward, and it becomes quickly ‘blurred’ and ‘vague’ in ‘more complex language forms’. The discussions and research on this topic are incredibly extensive.[16]

I would like to briefly remind you of the example of Ludwig Wittgenstein, who first experimentally played through the very simple meaning concept of modern formal logic in his early work, ‘Tractatus Logico-Philosophicus’ (1921), but then, many years later (1936 – 1946), reexamined the problem of meaning using everyday language and many concrete examples. He discovered — not surprisingly — that ‘normal language’ functions differently and is significantly more complex than the simple meaning model of formal logic assumed. [17] What Wittgenstein discovered in his ‘everyday’ analyses was so multi-layered and complex that he found himself unable to transform it into a systematic presentation.[18]

Generally, it can be said that to this day there is not even a rudimentary comprehensive and accurate ‘theory of the meaning of normal language’. [19]

The emergence and proliferation of ‘generative artificial intelligence’ (Generative AI) in recent years [20] may offer an unexpected opportunity to revisit this problem entirely anew. Here, modern engineering demonstrates that simple algorithms, which possess no inherent meaning knowledge of their own, are capable of producing linguistic output by using only language material in linguistic interaction with humans. [21] This output is substantial, structured, and arranged in such a way that humans perceive it as if it were generated by a human, which is ultimately true. [22] What a person admires in this linguistic output is essentially ‘himself’, though not in his individual language performances, which are often worse than those generated by the algorithms. What the individual user encounters in such generated texts is essentially the ‘collective language knowledge’ of millions of people, which would not be accessible to us without these algorithms in this extracted form.

These generative algorithms [23] can be compared to the invention of the microscope, the telescope, or modern mathematics: all these inventions have enabled humans to recognize facts and structures that would have remained invisible without these tools. The true extent of collective linguistic performances would remain ‘invisible’ without modern technology, simply because humans without these technologies could not comprehend the scope and scale, along with all the details.

Preliminary Interim Result

The considerations so far only give a first outline of what collective intelligence can be or is.

[1] Reminder: If we assume that the number of stars in our home galaxy, the Milky Way, is estimated at 100 – 400 billion stars and we take 200 billion as our estimate, then our body system would correspond to the scope of 700 galaxies the size of the Milky Way, one cell for one star… a single body!

[2] We know today that genes can change in different ways or be altered during various phases.

[3] Simplifying, we can say that ‘randomness’ in a ‘distribution-free form’ means that each of the known possible continuations is ‘equally likely’; none of the possible continuations shows a ‘higher frequency’ over time than any of the others. Randomness with an ‘implicit distribution’ is noticeable because, although the possible continuations are random, certain continuations show a different frequency over time than others. All these particular individual frequencies together reveal a ‘pattern’ by which they can be characterized. An example of ‘randomness with a distribution’ is the ‘natural (or Gaussian) distribution’.

[4] The concept of ‘memory’ is a theoretical notion, the empirical and functional description of which has not yet been fully completed. Literature distinguishes many different ‘forms of memory’ such as ‘short-term memory’, ‘long-term memory’, ‘sensory memory’, ‘episodic memory’, and many more.

[5] For example, ‘joint positioning’, ‘pain’, ‘feeling of fullness’, ‘discomfort’, ‘hunger’, ‘thirst’, various ’emotions’, etc.

[6] One then perceives not just a ‘blue sky’ and feels a ‘light breeze on the skin’ at the same time, but also experiences a sense of ‘malaise’, ‘fever’, perhaps even a ‘feeling of dejection’ and the like.

[7] In biological behavioral research, there are countless examples of life forms showing impressive coordination achievements, such as during collective hunting, organizing the upbringing of offspring, within the ‘family unit’, learning the ‘dialects’ of their respective languages, handling tools, etc.

[8] Every child can learn any known human language anywhere, provided there is an environment in which a language is practiced. Many thousands of different languages are known.

[9] The exact mechanism by which a language first arises among a group of people remains unclear to this day. However, there are increasingly more computer simulations of language learning (language evolution) that attempt to shed light on this. Given the enormous number of factors involved in real language use, these simulations still appear ‘rather simple’.

[10] As we know from many records, there were many other languages in previous times that eventually died out (‘dead languages’), and only written records of them exist. It is also interesting to consider cases in which a language has ‘evolved’, where older forms continue to exist in texts.

[11] Language research (many different disciplines work together here) suggests the working hypothesis that (i) the type and scope of sounds used in a language, due to the human speech apparatus, represent a finite set that is more or less similar across all languages, although there are still different sets of sounds between the major language families. Furthermore, (ii) many analyses of the structure of spoken and then written language suggest that there are ‘basic structures’ (‘syntax’) that can be found—with variations—in all languages.

[12] Anyone who comes into contact with people who speak a different language can experience this up close and concretely.

[13] In light of modern brain research and general physiology, the ‘location’ here would be assumed to be the brain. However, this location is of little use, as the research into the material brain in the body, along with its interactions with the surrounding body, has hardly been able to grasp the exact mechanisms of ‘meaning assignments’ (just as one cannot identify the algorithm being executed based on the physical signals of computer chips alone from those signals).

[14] For example, ‘hunger’, ‘thirst’, ‘toothache’…

[15] The ‘remembering’ of something that has happened before; the ‘recognition’ of something sensually concrete that one can ‘remember’; the ‘combining’ of memorable things into new ‘constellations’, and much more.

[16] Parts of this discussion can be found in the context of ‘text analyses’, ‘text interpretations’, ‘hermeneutics’, ‘Bible interpretation’, etc.

[17] Which is not surprising at all, since modern formal logic could only arise because it had programmatically radically departed from what has to do with everyday linguistic meaning. What was left were only ‘stubs of an abstract truth’ in the form of abstract ‘truth values’ that were devoid of any meaning.

[18] His posthumously published ‘Philosophical Investigations’ (1953) therefore offer ‘only’ a collection of individual insights, but these were influential enough to impact reflections on linguistic meaning worldwide.

[19] The list of publications titled around the ‘meaning of language’ is exceedingly long. However, this does not change the fact that none of these publications satisfactorily solve the problem comprehensively. It is currently not foreseeable how a solution could emerge, as this would require the cooperation of many disciplines, which in current university operations are well distributed and separated into ‘existences of their own’.

[20] With chatGPT as an example.

[21] Millions of texts produced by humans for the purpose of ‘communicating content’.

[22] Which ultimately is true, because the algorithms themselves do not ‘invent’ text, but use ‘actually used’ linguistic expressions from existing texts to generate ‘highly probable’ combinations of expressions that humans would likely use.

[23] These cannot be seen in isolation: without extremely powerful computing centers along with corresponding global networks and social structures that make widespread use possible, these algorithms would be worthless. Here, indirectly, what has become possible and functions in everyday life due to collective human intelligence also shines through.

Is Mathematics a Fake? No! Discussing N.Bourbaki, Theory of Sets (1968) – Introduction

eJournal: uffmm.org, ISSN 2567-6458,
6.June 2022 – 13.June 2022, 10:30h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

SCOPE

In the uffmm review section the different papers and books are discussed from the point of view of the oksimo paradigm, which is embedded in the general view of a generalized ‘citizen science’ as a ‘computer aided sustainable applied empirical theory’ (CSAET). In the following text the author discusses the introduction of the book “Theory of Sets” from the series “Elements of Mathematics” by N.Bourbaki (1968) [1b]

CONTEXT

In the foundational post with the title “From SYSTEMS Engineering to THEORY Engineering” [3] the assumptions of the whole formalization approach in logic, mathematics and science are questioned as to narrow to allow a modern sustainable theory of science dealing explicitly with the future. To sharpen some of the arguments in that post it seems to be helpful to discuss one of the cornerstones of modern (formalized) mathematics substantiated in the book ‘Theory of sets’ from the Bourbaki group.[1a] It has to be mentioned that the question of the insufficiency of formalization has been discussed in the uffmm blog in several posts before. (cf. e.g. [2])

Formalization

preface

In the introduction to the ‘Set Theory Book’ the bourbaki group reveals a little bit of their meta-mathematical point of view, which finally belongs to the perspective of philosophy. At the one hand they try to be ‘radically formal’, but doing this they notice themselves that this is — by several reasons — only a ‘regulative idea’, somehow important for our thinking, but not completely feasible. This ‘practical impossibility’ is not necessarily a problem as long as one is conscious about this. The Bourbaki group is conscious about this problem, but different to their ‘rigor’ with the specialized formalization of mathematical ideas, they leave it widely ‘undefined’ what follows from the practical impossibility of being ‘completely rigorous’. In the following text it will be tried to describe the Bourbaki position with both dimensions: the idea of ‘formalization’ and the reality of ‘non-formalized realities’ which give the ‘ground’ for everything, even for the formalization. Doing this it will — hopefully — become clear that the idea of formalization was a great achievement in the philosophical and scientific thinking but it did not really solve our problems of understanding the world. The most important aspects of knowledge are ‘outside’ of this formalization approach, and many ‘problems’ which seem to bother our actual thinking are perhaps only ‘artifacts’ of this simplified formalization approach (somehow similar to the problems which have been induced by the metaphysical thinking of the older philosophy). To say it flatly: to introduce new names for old problems does not necessarily solve problems. It enables new ways of speaking and perhaps some new kinds of knowledge, but it does not really solve the big problems of knowledge. And the biggest problem of knowledge is — perhaps — the primary ‘knowledge machine’ itself: the biological actors which have brains to transform ‘reality’ in ‘virtual models’ in their brains and communication tools to ‘communicate’ these virtual models to enable a ‘collective intelligence’ as well as a ‘collective cooperation’. As long as we do not understand this we do not really understand the ‘process of knowing’.

before formalization

With the advent of the homo sapiens population on the planet earth about 300.000 years ago [4] it became possible that biological systems could transform their perceptions of the reality around their brains into ‘internal’, ‘virtual’ models, which enabled ‘reference points’ for ‘acting’ and a ‘cooperation’ which was synchronized by a ‘symbolic communication’. Those properties of the internal virtual models which have no clear ‘correspondence’ to the ‘reality between the brains’ are difficult to communicate.

Everyday symbolic communication refers to parts of the reality by certain types of expressions, which are ‘combined’ in manners which encode different types of ‘relations’ or even ‘changes’. Expressions which ‘refer’ to ‘concrete’ properties can be ‘overloaded’ by expressions which refer to other expressions, which in turn refer either again to expressions or to ‘concrete meanings’. Those objects which are the targets of a referring relation — concrete objects or other expressions — are here called ‘the meaning’ of the expressions. Thus the ‘meaning space’ is populated by either expressions related to ‘concrete’ properties or by ‘expressions pointing forward’ to other expressions and these ‘pointing-forward’ expressions are here called ‘abstract meaning’. While concrete meanings are usually ‘decidable’ in the everyday world situations as being ‘given’ (being ‘true’) or as ‘not being given’ (‘being false’), abstract meanings are as expressions ‘undefined’: they can lead to some concrete property which in turn perhaps can be decided or not.

The availability of ‘abstract expressions’ in ordinary language can be seen as a ‘problem’ or as a ‘blessing’. Being able to generate and use abstract terms manifests a great flexibility in talking — and thinking! — about possible realities which allow to overcome the dictatorship of the ‘now’ and the ‘individual single’. Without abstraction thinking would indeed be impossible. Thus if one understands that ‘thinking’ is a real process with sequences of different states which reveal eventually more abstract classes, structures, and changes, then abstraction is the ‘opener’ for more reality, the ‘enabler’ for a more broader and flexible knowledge. Only by ‘transcending’ the eternal ‘Now’ we get an access to phenomena like time, changes, all kinds of dynamics, and only thereby are ‘pictures of some possible future’ feasible!

Clearly, the potential of abstraction can also be a source of ‘non-real’ ideas, of ‘fantastic’ pictures, of ‘fake news’ and the like.

But these possible ‘failures’ — if they will be ‘recognized’ as failures! — are inevitable if one wants to dig out some ‘truth’ in the nearly infinite space of the unknown. Before the ‘knowledge that something is true’ one has to master a ‘path of trial and error’ consuming ‘time’ and ‘resources’.

This process of creating new abstract ideas to guide a search in the space of the unknown is the only key to find besides ‘errors’ sometimes some ‘truth’.

Thus the ‘problem’ with abstract ideas is an unavoidable condition to find necessary ‘truths’. Stepping back in the face of possible problems is no option to survive in the unknown future.

the formal view of the world according to bourbaki

Figure 1: Graphical interpretation of N.Bourbaki, Set Theory (1968), Introduction, ‘liberal version’
Language, object language, meta language

Talking about mathematical objects with their properties within an ordinary language is not simple because the expressions of an ordinary language are as such usually part of a network of meanings, which can overlap, which can be fuzzy, which are giving space for many interpretations. Additionally, that which is called a ‘mathematical object’ is not a kind of an object wich is given in the everyday world experience. What can be done in such a situation?

Bourbaki proposes to introduce a ‘specialized language’ constructed out of a finite set of elements constituting the ‘alphabet’ of a new language, together with ‘syntactical rules’, which describe how to construct with the elements of the alphabet chains of elements called ‘(well formed) expressions’, which constitute the ‘language’ LO, which shall be used to talk about mathematical objects.

But because mathematics is not restricted to ‘static objects’ but deals also with ‘transformations’ (‘changes’) of objects, one needs ‘successions of objects’ (‘sequences’), which are related by ‘operations with mathematical objects’. In this case the operations are also represented by ‘expressions’ but these expressions are expressions of a ‘higher order’ which have as referenced subject those expressions which are representing objects . Thus, Bourbaki needs right from the beginning two languages: an ‘object language’ (expressions of a language LO representing mathematical objects) and a ‘meta language’ LL (expressions referring to expressions of the object language LO including certain ‘types of changes’ occurring with the object language expressions). Thus a mathematical language Lm consists in the combination of an object language LO with a meta language LL (Lm = (LO,LL)).

And, what becomes clear by this procedure, to introduce such a kind of mathematical language Lm one needs another language talking about the mathematical language Lm, and this is either the everyday (normal) language L, which is assumed to be a language which everybody can ‘understand’ and ‘apply correctly’, or it is a third specialized language LLL, which can talk with special expressions about the mathematical language Lm. Independent of the decision which solution one prefers, finally the ordinary language L will become the meta language for all other thinkable meta languages.

Translating(?) math objects into formal expressions

If the formalized expressions of the mathematical language (Lm = (LO,LL)) would be the mathematical objects themselves, then mathematics would consist only of those expressions. And, because there would be no other criteria available, whatever expressions one would introduce, every expression would claim to be a relevant mathematical expression. This situation would be a ‘maximum of non-sense’ construct: nothing could be ‘false’.

Thus, the introduction of formal expressions of some language alone seems to be not enough to establish a language which is called a ‘mathematical’ language Lm different from other languages which talk about other kinds of objects. But what could it be which relates to ‘specific math objects’ which are not yet the expressions used to ‘refer’ to these specific math objects?

Everybody knows that the main reason for to ‘speak’ (or ‘write’) about math specific objects are humans which are claiming to be ‘mathematicians’ and which are claiming to have some ‘knowledge’ about specific objects called ‘math objects’ which are the ‘content’ which they ‘translate’ into the expressions of a certain language call ‘mathematical language’.[5] Thus, if the ‘math objects’ are not the used expressions themselves then these ‘math objects’ have to be located ‘inside of these talking humans’. According to modern science one would specify this ‘inside’ as ‘brain’, which is connected in complex ways to a body which in turn is connected to the ‘outside world of the body’. Until today it is not possible to ‘observe’ directly math objects assumed to be in the brain of the body of someone which claims to be a mathematician. Thus one mathematician A can not decide what another mathematician B has ‘available in his brain’ at some point of time.

Bourbaki is using some formulations in his introduction which gives some ‘flavor’ of this ‘being not able to translate it into a formalized mathematical language’. Thus at one position in the text Bourbaki is recurring to the “common sense” of the mathematicians [6] or to the “reader’s intuition”. [7] Other phrases refer to the “modes of reasoning” which cannot be formalized [8], or simply to the “experience” on which “the opinion rests”. [9] Expressions like ‘common sense’, ‘intuition’, ‘modes of reasoning’, and ‘experience’ are difficult to interpret. All these expressions describe something ‘inside’ the brains which cannot be observed directly. Thus, how can mathematician A know what mathematician B ‘means’ if he is uttering some statement or writes it down? Does it make a difference whether a mathematician is a man or a woman or is belonging to some other kind of a ‘gender’? Does it make a difference which ‘age’ the mathematician has? How ‘big’ he is? Which ‘weight’ he has?

Thus, from a philosophical point of view the question to the specific criteria which classify a language as a ‘mathematical language’ and not some other language leads us into a completely unsatisfying situation: there are no ‘hard facts’ which can give us a hint what ‘mathematical objects’ could be. What did we ‘overlook’ here? What is the key to the specific mathematical objects which inspired the brains of many many thousand people through centuries and centuries? Is mathematics a ‘big fake’ or is there more than this?

A mathematician as an ‘actor’?
Figure 2: Graphical interpretation of N.Bourbaki, Set Theory (1968), Introduction, ‘Actor view’

This last question “Is mathematics a ‘big fake’ or is there more than this?” can lead o the assumption, that it is not enough to talk about ‘mathematics’ by not including the mathematician itself. Only the mathematician is that ‘mysterious source’ of knowledge, which seems to trigger the production of ‘mathematical expressions’ in speaking or writing (or drawing). Thus a meta-mathematical — and thereby philosophical’ — ‘description’ of mathematics should have at least the ‘components’ (MA, LO,LL,L) with ‘MA’ as abbreviation for the set of actors where each element of the set MA is a mathematician, and — this is decisive ! — it is this math actor MA which is in possession of those ‘criteria’ which decide whether an expression E belongs the ‘mathematical language Lm‘ or not.

The phrase of the ‘mathematician’ as a ‘mysterious source of knowledge’ is justified by an ’empirical observational point of view’: nobody can directly look into the brain of a mathematician. Thus the question of what an expression called ‘mathematical expression’ can ‘mean’ is in such an empirical view not decidable and appears to be a ‘mystery’.

But in the reality of everyday life we can observe, that every human actor — not only mathematicians — seems to be able to use expressions of the everyday language with referring to ‘internal states’ of the brain in a way which seems to ‘work’. If we are talking about ‘pain with my teeth’ or about ‘being hungry or thirsty’ or ‘having an idea’ etc. then usually other human actors seem to ‘understand’ what one is uttering. The ‘evidence’ of a ‘working understanding’ is growing up by the ‘confirmation of expectations’: if oneself is hungry, then one has a certain kind of ‘feeling’ and usually this feeling leads — depending from the cultural patterns one is living in — to a certain kind of ‘behavior’, which has — usually — the ‘felt effect’ of being again ‘not hungry’. This functional relation of ‘feeling to be hungry’, ‘behavior of consuming something’, ‘feeling of being not hungry again’ is an association between ‘bodily functions’ common to all human actors and additionally it is a certain kind of observable behavior, which is common to all human actors too. And it seems to work that human actors are able to associate ‘common internal states’ with ‘common observable behavior’ and associate this observable behavior with the ‘presupposed internal states’ with certain kinds of ‘expressions’. Thus although the internal states are directly not observable, they can become ‘communicated by expressions’ because these internal states are — usually — ‘common to the internal experience of every human actor’.

From this follows the ‘assumption’ that we should extend the necessary elements for ‘inter-actor communication’ with the factor of ‘common human actor HA experience’ abbreviated as ‘HAX‘ (HA, HAX, MA, LO,LL,L), which is usually accompanied by certain kinds of observable behavior ‘BX‘, which can be used as point of reference for certain expressions ‘LX‘, which ‘point to’ the associated intern al states HAX, which are not directly observable. This yields the structure (HA, HAX, MA, BX, LO,LL,LX,L).

Having reached this state of assumptions, there arises an other assumption regarding the relationship between ‘expressions of a language’ — like (LO,LL,LX,L) — and those properties which are constituting the ‘meaning’ of these expressions. In this context ‘meaning’ is not a kind of an ‘object’ but a ‘relation’ between two different things, the expressions at one side and the properties ‘referred to’ on the other side. Moreover this ‘meaning relation’ seems not to be a ‘static’ relation but a ‘dynamic’ one, associating two different kinds of properties one to another. This reminds to that what mathematicians call a ‘mapping, a function’, and the engineers a ‘process, an operation’. If we abbreviate this ‘dynamic meaning relation’ with the sign ‘μ’, then we could agree to the convention ‘μX : LX <—> (BX,HAX)’ saying that there exists a meaning function μX which maps the special expressions of LX to the special internal experience HAX, which in turn is associated with the special behavior BX. Thus, we extend our hypothetical structure to the format (HA, HAX, MA, BX, LO,LL,LX,L,μX).

With these assumptions we are getting a first idea how human actors in general can communicate about internal, directly not observable states, with other human actors by using external language expressions. We have to notice that the assumed dynamic meaning relation μX itself has to be located ‘inside’ the body, inside’ the brain. This triggers the further assumption to have ‘internal counterparts’ of the external observable behavior as well as external expressions. From this follows the further assumption that there must exists some ‘translation/ transformation’ ‘τ’ which ‘maps’ the internal ‘counterparts’ of the observable behavior and the observable expressions into the external behavior.(cf. figure 2) Thus, we are reaching the further extended format: (HA, HAX, MA, BX, LO,LL,LX,L,μX,τ).

Mathematical objects

Accepting the basic assumptions about an internal meaning function μX as well an internal translation function τ narrows the space of possible answers about the nature of ‘math objects’ a little bit, but as such this is possibly not yet a satisfying answer. Or, have we nevertheless yet to assume that ‘math objects’ and related ‘modes of reasoning’ are also rooted in internal properties and dynamics of the brain which are ‘common to all humans’?

If one sees that every aspect of the human world view is encoded in some internal states of the brain, and that what we call ‘world’ is only given as a constructed virtual structure in the brains of bodies including all the different kinds of ‘memories’, then there is no real alternative to the assumption that ‘math objects’ and related ‘modes of reasoning’ have to be located in these — yet not completely decoded — inner structures and dynamics of the brain.

From the everyday experience — additionally enlightened by different scientific disciplines, e.g. experimental (neuro) psychology — we know that the brain is — completely automatic — producing all kinds of ‘abstractions’ from concrete ‘perceptions’, can produce any kinds of ‘abstractions of abstractions’, can ‘associate’ abstractions with other abstractions, can arrange many different kinds of memories to ‘arrangements’ representing ‘states’/ ‘situations’, ‘transformations of states’, ‘sequences of states’ and the like. Thus everything which a ‘mathematical reasoning’ HAm needs seems to be available as concrete brain state or brain activity, and this is not only ‘special’ for an individual person alone, it is the common structure of all brains.

Therefore one has to assume that the set of mathematicians MA is a ‘subset’ of the set of human actors HA in general. From this one can further assume that the ‘mathematical reasoning’ HAm is a subset of the general human everyday experience HAX. And, saying this, the meaning function μX as well as the translation function τ should be applicable also to the mathematical reasoning and the mathematical objects as well: (HA, MA, HAX, HAm, BX, LO,LL,LX,L,μX,τ).

These assumptions would explain why it is not only possible but ‘inevitable’ to use the everyday language L to introduce and to use a mathematical language Lm with different kinds of sub-languages (LO,LL, LLL, …). Thus in analogy to the ‘feeling’ ‘to be hungry’ with a cultural encoded kind of accompanying behavior BX we have to assume that the different kinds of internal states and transformations in the case of mathematical reasoning can be associated with an observable kind of ‘behavior’ by using ‘expressions’ embedded (encoded) in certain kinds of ‘behavior’ accepted as ‘typical mathematical’. Introducing expressions like ‘0’, ‘1’, ‘2’, …, ’10’, … (belonging to a language Lo) for certain kinds of ‘objects’ and expressions like ‘+’, ‘-‘ … for certain kinds of operations with these before introduced objects (belonging to a language LL) one can construct combined expressions like ‘1+2=3’ (belonging to a mathematical language Lm). To introduce ‘more abstract objects’ like ‘sets’, ‘relations’, ‘functions’ etc. which have no direct counterpart in the everyday world does not break the assumptions. The everyday language L operates already only with abstract objects like ‘cup’, ‘dog’, ‘house’ etc. The expression ‘cup’ is an abstract concept, which can easily be associated with any kind of concrete phenomena provided by perceptions introducing ‘sets of different properties’, which allow the construction of ‘subsets of properties’ constituting a kind of ‘signature’ for a certain abstract ‘class’ which only exists in the dynamics of the brain. Thus having a set C named ‘cup’ introduces ‘possible elements’, whose ‘interpretation’ can be realized by associating different kinds of sets of properties provided by ‘sensory perception’. But the ‘memory’ as well as the ‘thinking’ can also provide other kinds of properties which can be used too to construct other ‘classes’.

In this outlined perspective of brain dynamics mathematics appears to be a science which is using these brain dynamics in a most direct way without to recur to the the huge amount of everyday experiences. Thus, mathematical languages (today summarized in that language, which enables the so called ‘set theory’) and mathematical thinking in general seems to reflect the basic machinery of the brain processing directly across all different cultures. Engineers worldwide speaking hundreds of different ‘everyday languages’ can work together by using mathematics as their ‘common language’ because this is their ‘common thinking’ underlying all those different everyday languages.

Being a human means being able to think mathematically … besides many other things which characterizes a human actor.

Epiloge

Basically every ordinary language offers all elements which are necessary for mathematics (mathematics is the kernel of every language). But history illustrates that it can be helpful to ‘extend’ an ordinary language with additional expressions (Lo, LL, LLL, …). But the development of modern mathematics and especially computer science shows increasing difficulties by ‘cutting away’ everyday experience in case of elaborating structures, models, theories in a purely formal manner, and to use these formal structures afterwards to interpret the everyday world. This separates the formal productions from the main part of users, of citizens, leading into a situation where only a few specialist have some ‘understanding’ (usually only partially because the formalization goes beyond the individual capacity of understanding), but all others have no more an understanding at all. This has he flavor of a ‘cultural self-destruction’.

In the mentioned oksimo software as part of a new paradigm of a more advanced citizen science this problem of ‘cultural self-destruction’ is avoided because in the format of a ‘computer aided sustainable applied empirical theory (CSAET) the basic language for investigating possible futures is the ordinary language which can be extend as needed with quantifying properties. The computer is not any more needed for ‘understanding’ but only for ‘supporting’ the ‘usage’ of everyday language expressions. This enables the best of both worlds: human thinking as well as machine operations.

COMMENTS

Def: wkp := Wikipedia; en := English

[1a] Bourbaki Group, see: https://en.wikipedia.org/wiki/Nicolas_Bourbaki

[1b] Theory of Sets with a chapter about structures, see: https://en.wikipedia.org/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique

[2] Gerd Doeben-Henisch, “Extended Concept for Meaning Based Inferences, Version 1”, August 2020, see: https://www.uffmm.org/wp-content/uploads/2020/08/TruthTheoryExtended-v1.pdf

[3] Gerd Doeben-Henisch, “From SYSTEMS Engineering to THEORY Engineering”, June 2022, see: https://www.uffmm.org/2022/05/26/from-systems-engineering-to-theory-engineering/

[4] Humans, How many years ago?, see: wkp (en): https://en.wikipedia.org/wiki/Human#:~:text=Homo%20sapiens,-Linnaeus%2C%201758&text=Anatomically%20modern%20humans%20emerged%20around,local%20populations%20of%20archaic%20humans.

[5] The difference between ‘talking’ about math objects and ‘writing’ is usually not thematised in the philosophy of mathematics. Because the ordinary language is the most general ‘meta language’ for all kinds of specialized languages and the primary source of the ordinary language then ‘speaking’ is perhaps not really a ‘trivial’ aspect in understanding the ‘meaning’ of any kind of language.

[6] “But formalized mathematics cannot in practice be written down in full, and therefore we must have confidence in what might be called the common sense of the mathematician …”. (p.11)

[7] “Sometimes we shall use ordinary language more loosely … and by indications which cannot be translated into formalized language and which are designed to help the reader to reconstruct the whole text. Other passages, equally untranslatable into formalized language, are introduced in order to clarify the ideas involved, if necessary by appealing to the reader’s intuition …”(p.11)

[8] “It may happen at some future date that mathematicians will agree to use modes of reasoning which cannot be formalized in the language described here : it would then be necessary, if not to change the language completely, at least to enlarge its rules of syntax.”(p.9)

[9] “To sum up, we believe that mathematics is destined to survive … but we cannot pretend that this opinion rests on anything more than experience.”(p.13)

THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 1

eJournal: uffmm.org
ISSN 2567-6458, 22.March – 23.March 2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

THE OKSIMO EVENT SPACE

The characterization of the oksimo software paradigm starts with an informal characterization  of the oksimo software event space.

EVENT SPACE

An event space is a space which can be filled up by observable events fitting to the species-specific internal processed environment representations [1], [2] here called internal environments [ENVint]. Thus the same external environment [ENV] can be represented in the presence of  10 different species  in 10 different internal formats. Thus the expression ‘environment’ [ENV] is an abstract concept assuming an objective reality which is common to all living species but indeed it is processed by every species in a species-specific way.

In a human culture the usual point of view [ENVhum] is simultaneous with all the other points of views [ENVa] of all the other other species a.

In the ideal case it would be possible to translate all species-specific views ENVa into a symbolic representation which in turn could then be translated into the human point of view ENVhum. Then — in the ideal case — we could define the term environment [ENV] as the sum of all the different species-specific views translated in a human specific language: ∑ENVa = ENV.

But, because such a generalized view of the environment is until today not really possible by  practical reasons we will use here for the beginning only expressions related to the human specific point of view [ENVhum] using as language an ordinary language [L], here  the English language [LEN]. Every scientific language — e.g. the language of physics — is understood here as a sub language of the ordinary language.

EVENTS

An event [EV] within an event space [ENVa] is a change [X] which can be observed at least from the  members of that species [SP] a which is part of that environment ENV which enables  a species-specific event space [ENVa]. Possibly there can be other actors around in the environment ENV from different species with their specific event space [ENVa] where the content of the different event spaces  can possible   overlap with regard to  certain events.

A behavior is some observable movement of the body of some actor.

Changes X can be associated with certain behavior of certain actors or with non-actor conditions.

Thus when there are some human or non-human  actors in an environment which are moving than they show a behavior which can eventually be associated with some observable changes.

CHANGE

Besides being   associated with observable events in the (species specific) environment the expression  change is understood here as a kind of inner state in an actor which can compare past (stored) states Spast with an actual state SnowIf the past and actual state differ in some observable aspect Diff(Spast, Snow) ≠ 0, then there exists some change X, or Diff(Spast, Snow) = X. Usually the actor perceiving a change X will assume that this internal structure represents something external to the brain, but this must not necessarily be the case. It is of help if there are other human actors which confirm such a change perception although even this does not guarantee that there really is a  change occurring. In the real world it is possible that a whole group of human actors can have a wrong interpretation.

SYMBOLIC COMMUNICATION AND MEANING

It is a specialty of human actors — to some degree shared by other non-human biological actors — that they not only can built up internal representations ENVint of the reality external to the  brain (the body itself or the world beyond the body) which are mostly unconscious, partially conscious, but also they can built up structures of expressions of an internal language Lint which can be mimicked to a high degree by expressions in the body-external environment ENV called expressions of an ordinary language L.

For this to work one  has  to assume that there exists an internal mapping from internal representations ENVint into the expressions of the internal language   Lint as

meaning : ENVint <—> Lint.

and

speaking: Lint —> L

hearing: Lint <— L

Thus human actors can use their ordinary language L to activate internal encodings/ decodings with regard to the internal representations ENVint  gained so far. This is called here symbolic communication.

NO SPEECH ACTS

To classify the occurrences of symbolic expressions during a symbolic communication  is a nearly infinite undertaking. First impressions of the unsolvability of such a classification task can be gained if one reads the Philosophical Investigations of Ludwig Wittgenstein. [5] Later trials from different philosophers and scientists  — e.g. under the heading of speech acts [4] — can  not fully convince until today.

Instead of assuming here a complete scientific framework to classify  occurrences of symbolic expressions of an ordinary language L we will only look to some examples and discuss these.

KINDS OF EXPRESSIONS

In what follows we will look to some selected examples of symbolic expressions and discuss these.

(Decidable) Concrete Expressions [(D)CE]

It is assumed here that two human actors A and B  speaking the same ordinary language L  are capable in a concrete situation S to describe objects  OBJ and properties PROP of this situation in a way, that the hearer of a concrete expression E can decide whether the encoded meaning of that expression produced by the speaker is part of the observable situation S or not.

Thus, if A and B are together in a room with a wooden  white table and there is a enough light for an observation then   B can understand what A is saying if he states ‘There is a white wooden table.

To understand means here that both human actors are able to perceive the wooden white table as an object with properties, their brains will transform these external signals into internal neural signals forming an inner — not 1-to-1 — representation ENVint which can further be mapped by the learned meaning function into expressions of the inner language Lint and mapped further — by the speaker — into the external expressions of the learned ordinary language L and if the hearer can hear these spoken expressions he can translate the external expressions into the internal expressions which can be mapped onto the learned internal representations ENVint. In everyday situations there exists a high probability that the hearer then can respond with a spoken ‘Yes, that’s true’.

If this happens that some human actor is uttering a symbolic expression with regard to some observable property of the external environment  and the other human actor does respond with a confirmation then such an utterance is called here a decidable symbolic expression of the ordinary language L. In this case one can classify such an expression  as being true. Otherwise the expression  is classified as being not true.

The case of being not true is not a simple case. Being not true can mean: (i) it is actually simply not given; (ii) it is conceivable that the meaning could become true if the external situation would be  different; (iii) it is — in the light of the accessible knowledge — not conceivable that the meaning could become true in any situation; (iv) the meaning is to fuzzy to decided which case (i) – (iii) fits.

Cognitive Abstraction Processes

Before we talk about (Undecidable) Universal Expressions [(U)UE] it has to clarified that the internal mappings in a human actor are not only non-1-to-1 mappings but they are additionally automatic transformation processes of the kind that concrete perceptions of concrete environmental matters are automatically transformed by the brain into different kinds of states which are abstracted states using the concrete incoming signals as a  trigger either to start a new abstracted state or to modify an existing abstracted state. Given such abstracted states there exist a multitude of other neural processes to process these abstracted states further embedded  in numerous  different relationships.

Thus the assumed internal language Lint does not map the neural processes  which are processing the concrete events as such but the processed abstracted states! Language expressions as such can never be related directly to concrete material because this concrete material  has no direct  neural basis.  What works — completely unconsciously — is that the brain can detect that an actual neural pattern nn has some similarity with a  given abstracted structure NN  and that then this concrete pattern nn  is internally classified as an instance of NN. That means we can recognize that a perceived concrete matter nn is in ‘the light of’ our available (unconscious) knowledge an NN, but we cannot argue explicitly why. The decision has been processed automatically (unconsciously), but we can become aware of the result of this unconscious process.

Universal (Undecidable) Expressions [U(U)E]

Let us repeat the expression ‘There is a white wooden table‘ which has been used before as an example of a concrete decidable expression.

If one looks to the different parts of this expression then the partial expressions ‘white’, ‘wooden’, ‘table’ can be mapped by a learned meaning function φ into abstracted structures which are the result of internal processing. This means there can be countable infinite many concrete instances in the external environment ENV which can be understood as being white. The same holds for the expressions ‘wooden’ and ‘table’. Thus the expressions ‘white’, ‘wooden’, ‘table’ are all related to abstracted structures and therefor they have to be classified as universal expressions which as such are — strictly speaking —  not decidable because they can be true in many concrete situations with different concrete matters. Or take it otherwise: an expression with a meaning function φ pointing to an abstracted structure is asymmetric: one expression can be related to many different perceivable concrete matters but certain members of  a set of different perceived concrete matters can be related to one and the same abstracted structure on account of similarities based on properties embedded in the perceived concrete matter and being part of the abstracted structure.

In a cognitive point of view one can describe these matters such that the expression — like ‘table’ — which is pointing to a cognitive  abstracted structure ‘T’ includes a set of properties Π and every concrete perceived structure ‘t’ (caused e.g. by some concrete matter in our environment which we would classify as a ‘table’) must have a ‘certain amount’ of properties Π* that one can say that the properties  Π* are entailed in the set of properties Π of the abstracted structure T, thus Π* ⊆ Π. In what circumstances some speaker-hearer will say that something perceived concrete ‘is’ a table or ‘is not’ a table will depend from the learning history of this speaker-hearer. A child in the beginning of learning a language L can perhaps call something   a ‘chair’ and the parents will correct the child and will perhaps  say ‘no, this is table’.

Thus the expression ‘There is a white wooden table‘ as such is not true or false because it is not clear which set of concrete perceptions shall be derived from the possible internal meaning mappings, but if a concrete situation S is given with a concrete object with concrete properties then a speaker can ‘translate’ his/ her concrete perceptions with his learned meaning function φ into a composed expression using universal expressions.  In such a situation where the speaker is  part of  the real situation S he/ she  can recognize that the given situation is an  instance of the abstracted structures encoded in the used expression. And recognizing this being an instance interprets the universal expression in a way  that makes the universal expression fitting to a real given situation. And thereby the universal expression is transformed by interpretation with φ into a concrete decidable expression.

SUMMING UP

Thus the decisive moment of turning undecidable universal expressions U(U)E into decidable concrete expressions (D)CE is a human actor A behaving as a speaker-hearer of the used  language L. Without a speaker-hearer every universal expressions is undefined and neither true nor false.

makedecidable :  S x Ahum x E —> E x {true, false}

This reads as follows: If you want to know whether an expression E is concrete and as being concrete is  ‘true’ or ‘false’ then ask  a human actor Ahum which is part of a concrete situation S and the human actor shall  answer whether the expression E can be interpreted such that E can be classified being either ‘true’ or ‘false’.

The function ‘makedecidable()’ is therefore  the description (like a ‘recipe’) of a real process in the real world with real actors. The important factors in this description are the meaning functions inside the participating human actors. Although it is not possible to describe these meaning functions directly one can check their behavior and one can define an abstract model which describes the observable behavior of speaker-hearer of the language L. This is an empirical model and represents the typical case of behavioral models used in psychology, biology, sociology etc.

SOURCES

[1] Jakob Johann Freiherr von Uexküll (German: [ˈʏkskʏl])(1864 – 1944) https://en.wikipedia.org/wiki/Jakob_Johann_von_Uexk%C3%BCll

[2] Jakob von Uexküll, 1909, Umwelt und Innenwelt der Tiere. Berlin: J. Springer. (Download: https://ia802708.us.archive.org/13/items/umweltundinnenwe00uexk/umweltundinnenwe00uexk.pdf )

[3] Wikipedia EN, Speech acts: https://en.wikipedia.org/wiki/Speech_act

[4] Ludwig Josef Johann Wittgenstein ( 1889 – 1951): https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

[5] Ludwig Wittgenstein, 1953: Philosophische Untersuchungen [PU], 1953: Philosophical Investigations [PI], translated by G. E. M. Anscombe /* For more details see: https://en.wikipedia.org/wiki/Philosophical_Investigations */

CASE STUDIES

eJournal: uffmm.org
ISSN 2567-6458, 4.May  – 16.March   2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

In this section several case studies will  be presented. It will be shown, how the DAAI paradigm can be applied to many different contexts . Since the original version of the DAAI-Theory in Jan 18, 2020 the concept has been further developed centering around the concept of a Collective Man-Machine Intelligence [CM:MI] to address now any kinds of experts for any kind of simulation-based development, testing and gaming. Additionally the concept  now can be associated with any kind of embedded algorithmic intelligence [EAI]  (different to the mainstream concept ‘artificial intelligence’). The new concept can be used with every normal language; no need for any special programming language! Go back to the overall framework.

COLLECTION OF PAPERS

There exists only a loosely  order  between the  different papers due to the character of this elaboration process: generally this is an experimental philosophical process. HMI Analysis applied for the CM:MI paradigm.

 

JANUARY 2021 – OCTOBER 2021

  1. HMI Analysis for the CM:MI paradigm. Part 1 (Febr. 25, 2021)(Last change: March 16, 2021)
  2. HMI Analysis for the CM:MI paradigm. Part 2. Problem and Vision (Febr. 27, 2021)
  3. HMI Analysis for the CM:MI paradigm. Part 3. Actor Story and Theories (March 2, 2021)
  4. HMI Analysis for the CM:MI paradigm. Part 4. Tool Based Development with Testing and Gaming (March 3-4, 2021, 16:15h)

APRIL 2020 – JANUARY 2021

  1. From Men to Philosophy, to Empirical Sciences, to Real Systems. A Conceptual Network. (Last Change Nov 8, 2020)
  2. FROM DAAI to GCA. Turning Engineering into Generative Cultural Anthropology. This paper gives an outline how one can map the DAAI paradigm directly into the GCA paradigm (April-19,2020): case1-daai-gca-v1
  3. CASE STUDY 1. FROM DAAI to ACA. Transforming HMI into ACA (Applied Cultural Anthropology) (July 28, 2020)
  4. A first GCA open research project [GCA-OR No.1].  This paper outlines a first open research project using the GCA. This will be the framework for the first implementations (May-5, 2020): GCAOR-v0-1
  5. Engineering and Society. A Case Study for the DAAI Paradigm – Introduction. This paper illustrates important aspects of a cultural process looking to the acting actors  where  certain groups of people (experts of different kinds) can realize the generation, the exploration, and the testing of dynamical models as part of a surrounding society. Engineering is clearly  not  separated from society (April-9, 2020): case1-population-start-part0-v1
  6. Bootstrapping some Citizens. This  paper clarifies the set of general assumptions which can and which should be presupposed for every kind of a real world dynamical model (April-4, 2020): case1-population-start-v1-1
  7. Hybrid Simulation Game Environment [HSGE]. This paper outlines the simulation environment by combing a usual web-conference tool with an interactive web-page by our own  (23.May 2020): HSGE-v2 (May-5, 2020): HSGE-v0-1
  8. The Observer-World Framework. This paper describes the foundations of any kind of observer-based modeling or theory construction.(July 16, 2020)
  9. CASE STUDY – SIMULATION GAMES – PHASE 1 – Iterative Development of a Dynamic World Model (June 19.-30., 2020)
  10. KOMEGA REQUIREMENTS No.1. Basic Application Scenario (last change: August 11, 2020)
  11. KOMEGA REQUIREMENTS No.2. Actor Story Overview (last change: August 12, 2020)
  12. KOMEGA REQUIREMENTS No.3, Version 1. Basic Application Scenario – Editing S (last change: August 12, 2020)
  13. The Simulator as a Learning Artificial Actor [LAA]. Version 1 (last change: August 23, 2020)
  14. KOMEGA REQUIREMENTS No.4, Version 1 (last change: August 26, 2020)
  15. KOMEGA REQUIREMENTS No.4, Version 2. Basic Application Scenario (last change: August 28, 2020)
  16. Extended Concept for Meaning Based Inferences. Version 1 (last change: 30.April 2020)
  17. Extended Concept for Meaning Based Inferences – Part 2. Version 1 (last change: 1.September 2020)
  18. Extended Concept for Meaning Based Inferences – Part 2. Version 2 (last change: 2.September 2020)
  19. Actor Epistemology and Semiotics. Version 1 (last change: 3.September 2020)
  20. KOMEGA REQUIREMENTS No.4, Version 3. Basic Application Scenario (last change: 4.September 2020)
  21. KOMEGA REQUIREMENTS No.4, Version 4. Basic Application Scenario (last change: 10.September 2020)
  22. KOMEGA REQUIREMENTS No.4, Version 5. Basic Application Scenario (last change: 13.September 2020)
  23. KOMEGA REQUIREMENTS: From the minimal to the basic Version. An Overview (last change: Oct 18, 2020)
  24. KOMEGA REQUIREMENTS: Basic Version with optional on-demand Computations (last change: Nov 15,2020)
  25. KOMEGA REQUIREMENTS:Interactive Simulations (last change: Nov 12,2020)
  26. KOMEGA REQUIREMENTS: Multi-Group Management (last change: December 13, 2020)
  27. KOMEGA-REQUIREMENTS: Start with a Political Program. (last change: November 28, 2020)
  28. OKSIMO SW: Minimal Basic Requirements (last change: January 8, 2021)

 

 

AAI THEORY V2 –A Philosophical Framework

eJournal: uffmm.org,
ISSN 2567-6458, 22.February 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: 23.February 2019 (continued the text)

Last change: 24.February 2019 (extended the text)

CONTEXT

In the overview of the AAI paradigm version 2 you can find this section  dealing with the philosophical perspective of the AAI paradigm. Enjoy reading (or not, then send a comment :-)).

THE DAILY LIFE PERSPECTIVE

The perspective of Philosophy is rooted in the everyday life perspective. With our body we occur in a space with other bodies and objects; different features, properties  are associated with the objects, different kinds of relations an changes from one state to another.

From the empirical sciences we have learned to see more details of the everyday life with regard to detailed structures of matter and biological life, with regard to the long history of the actual world, with regard to many interesting dynamics within the objects, within biological systems, as part of earth, the solar system and much more.

A certain aspect of the empirical view of the world is the fact, that some biological systems called ‘homo sapiens’, which emerged only some 300.000 years ago in Africa, show a special property usually called ‘consciousness’ combined with the ability to ‘communicate by symbolic languages’.

General setting of the homo sapiens species (simplified)
Figure 1: General setting of the homo sapiens species (simplified)

As we know today the consciousness is associated with the brain, which in turn is embedded in the body, which  is further embedded in an environment.

Thus those ‘things’ about which we are ‘conscious’ are not ‘directly’ the objects and events of the surrounding real world but the ‘constructions of the brain’ based on actual external and internal sensor inputs as well as already collected ‘knowledge’. To qualify the ‘conscious things’ as ‘different’ from the assumed ‘real things’ ‘outside there’ it is common to speak of these brain-generated virtual things either as ‘qualia’ or — more often — as ‘phenomena’ which are  different to the assumed possible real things somewhere ‘out there’.

PHILOSOPHY AS FIRST PERSON VIEW

‘Philosophy’ has many facets.  One enters the scene if we are taking the insight into the general virtual character of our primary knowledge to be the primary and irreducible perspective of knowledge.  Every other more special kind of knowledge is necessarily a subspace of this primary phenomenological knowledge.

There is already from the beginning a fundamental distinction possible in the realm of conscious phenomena (PH): there are phenomena which can be ‘generated’ by the consciousness ‘itself’  — mostly called ‘by will’ — and those which are occurring and disappearing without a direct influence of the consciousness, which are in a certain basic sense ‘given’ and ‘independent’,  which are appearing  and disappearing according to ‘their own’. It is common to call these independent phenomena ’empirical phenomena’ which represent a true subset of all phenomena: PH_emp  PH. Attention: These empirical phenomena’ are still ‘phenomena’, virtual entities generated by the brain inside the brain, not directly controllable ‘by will’.

There is a further basic distinction which differentiates the empirical phenomena into those PH_emp_bdy which are controlled by some processes in the body (being tired, being hungry, having pain, …) and those PH_emp_ext which are controlled by objects and events in the environment beyond the body (light, sounds, temperature, surfaces of objects, …). Both subsets of empirical phenomena are different: PH_emp_bdy PH_emp_ext = 0. Because phenomena usually are occurring  associated with typical other phenomena there are ‘clusters’/ ‘pattern’ of phenomena which ‘represent’ possible events or states.

Modern empirical science has ‘refined’ the concept of an empirical phenomenon by introducing  ‘standard objects’ which can be used to ‘compare’ some empirical phenomenon with such an empirical standard object. Thus even when the perception of two different observers possibly differs somehow with regard to a certain empirical phenomenon, the additional comparison with an ’empirical standard object’ which is the ‘same’ for both observers, enhances the quality, improves the precision of the perception of the empirical phenomena.

From these considerations we can derive the following informal definitions:

  1. Something is ‘empirical‘ if it is the ‘real counterpart’ of a phenomenon which can be observed by other persons in my environment too.
  2. Something is ‘standardized empirical‘ if it is empirical and can additionally be associated with a before introduced empirical standard object.
  3. Something is ‘weak empirical‘ if it is the ‘real counterpart’ of a phenomenon which can potentially be observed by other persons in my body as causally correlated with the phenomenon.
  4. Something is ‘cognitive‘ if it is the counterpart of a phenomenon which is not empirical in one of the meanings (1) – (3).

It is a common task within philosophy to analyze the space of the phenomena with regard to its structure as well as to its dynamics.  Until today there exists not yet a complete accepted theory for this subject. This indicates that this seems to be some ‘hard’ task to do.

BRIDGING THE GAP BETWEEN BRAINS

As one can see in figure 1 a brain in a body is completely disconnected from the brain in another body. There is a real, deep ‘gap’ which has to be overcome if the two brains want to ‘coordinate’ their ‘planned actions’.

Luckily the emergence of homo sapiens with the new extended property of ‘consciousness’ was accompanied by another exciting property, the ability to ‘talk’. This ability enabled the creation of symbolic languages which can help two disconnected brains to have some exchange.

But ‘language’ does not consist of sounds or a ‘sequence of sounds’ only; the special power of a language is the further property that sequences of sounds can be associated with ‘something else’ which serves as the ‘meaning’ of these sounds. Thus we can use sounds to ‘talk about’ other things like objects, events, properties etc.

The single brain ‘knows’ about the relationship between some sounds and ‘something else’ because the brain is able to ‘generate relations’ between brain-structures for sounds and brain-structures for something else. These relations are some real connections in the brain. Therefore sounds can be related to ‘something  else’ or certain objects, and events, objects etc.  can become related to certain sounds. But these ‘meaning relations’ can only ‘bridge the gap’ to another brain if both brains are using the same ‘mapping’, the same ‘encoding’. This is only possible if the two brains with their bodies share a real world situation RW_S where the perceptions of the both brains are associated with the same parts of the real world between both bodies. If this is the case the perceptions P(RW_S) can become somehow ‘synchronized’ by the shared part of the real world which in turn is transformed in the brain structures P(RW_S) —> B_S which represent in the brain the stimulating aspects of the real world.  These brain structures B_S can then be associated with some sound structures B_A written as a relation  MEANING(B_S, B_A). Such a relation  realizes an encoding which can be used for communication. Communication is using sound sequences exchanged between brains via the body and the air of an environment as ‘expressions’ which can be recognized as part of a learned encoding which enables the receiving brain to identify a possible meaning candidate.

DIFFERENT MODES TO EXPRESS MEANING

Following the evolution of communication one can distinguish four important modes of expressing meaning, which will be used in this AAI paradigm.

VISUAL ENCODING

A direct way to express the internal meaning structures of a brain is to use a ‘visual code’ which represents by some kinds of drawing the visual shapes of objects in the space, some attributes of  shapes, which are common for all people who can ‘see’. Thus a picture and then a sequence of pictures like a comic or a story board can communicate simple ideas of situations, participating objects, persons and animals, showing changes in the arrangement of the shapes in the space.

Pictorial expressions representing aspects of the visual and the auditory sens modes
Figure 2: Pictorial expressions representing aspects of the visual and the auditory sens modes

Even with a simple visual code one can generate many sequences of situations which all together can ‘tell a story’. The basic elements are a presupposed ‘space’ with possible ‘objects’ in this space with different positions, sizes, relations and properties. One can even enhance these visual shapes with written expressions of  a spoken language. The sequence of the pictures represents additionally some ‘timely order’. ‘Changes’ can be encoded by ‘differences’ between consecutive pictures.

FROM SPOKEN TO WRITTEN LANGUAGE EXPRESSIONS

Later in the evolution of language, much later, the homo sapiens has learned to translate the spoken language L_s in a written format L_w using signs for parts of words or even whole words.  The possible meaning of these written expressions were no longer directly ‘visible’. The meaning was now only available for those people who had learned how these written expressions are associated with intended meanings encoded in the head of all language participants. Thus only hearing or reading a language expression would tell the reader either ‘nothing’ or some ‘possible meanings’ or a ‘definite meaning’.

A written textual version in parallel to a pictorial version
Figure 3: A written textual version in parallel to a pictorial version

If one has only the written expressions then one has to ‘know’ with which ‘meaning in the brain’ the expressions have to be associated. And what is very special with the written expressions compared to the pictorial expressions is the fact that the elements of the pictorial expressions are always very ‘concrete’ visual objects while the written expressions are ‘general’ expressions allowing many different concrete interpretations. Thus the expression ‘person’ can be used to be associated with many thousands different concrete objects; the same holds for the expression ‘road’, ‘moving’, ‘before’ and so on. Thus the written expressions are like ‘manufacturing instructions’ to search for possible meanings and configure these meanings to a ‘reasonable’ complex matter. And because written expressions are in general rather ‘abstract’/ ‘general’ which allow numerous possible concrete realizations they are very ‘economic’ because they use minimal expressions to built many complex meanings. Nevertheless the daily experience with spoken and written expressions shows that they are continuously candidates for false interpretations.

FORMAL MATHEMATICAL WRITTEN EXPRESSIONS

Besides the written expressions of everyday languages one can observe later in the history of written languages the steady development of a specialized version called ‘formal languages’ L_f with many different domains of application. Here I am  focusing   on the formal written languages which are used in mathematics as well as some pictorial elements to ‘visualize’  the intended ‘meaning’ of these formal mathematical expressions.

Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)
Fig. 4: Properties of an acyclic directed graph with nodes (vertices) and edges (directed edges = arrows)

One prominent concept in mathematics is the concept of a ‘graph’. In  the basic version there are only some ‘nodes’ (also called vertices) and some ‘edges’ connecting the nodes.  Formally one can represent these edges as ‘pairs of nodes’. If N represents the set of nodes then N x N represents the set of all pairs of these nodes.

In a more specialized version the edges are ‘directed’ (like a ‘one way road’) and also can be ‘looped back’ to a node   occurring ‘earlier’ in the graph. If such back-looping arrows occur a graph is called a ‘cyclic graph’.

Directed cyclic graph extended to represent 'states of affairs'
Fig.5: Directed cyclic graph extended to represent ‘states of affairs’

If one wants to use such a graph to describe some ‘states of affairs’ with their possible ‘changes’ one can ‘interpret’ a ‘node’ as  a state of affairs and an arrow as a change which turns one state of affairs S in a new one S’ which is minimally different to the old one.

As a state of affairs I  understand here a ‘situation’ embedded in some ‘context’ presupposing some common ‘space’. The possible ‘changes’ represented by arrows presuppose some dimension of ‘time’. Thus if a node n’  is following a node n indicated by an arrow then the state of affairs represented by the node n’ is to interpret as following the state of affairs represented in the node n with regard to the presupposed time T ‘later’, or n < n’ with ‘<‘ as a symbol for a timely ordering relation.

Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token
Fig.6: Example of a state of affairs with a 2-dimensional space configured as a grid with a black and a white token

The space can be any kind of a space. If one assumes as an example a 2-dimensional space configured as a grid –as shown in figure 6 — with two tokens at certain positions one can introduce a language to describe the ‘facts’ which constitute the state of affairs. In this example one needs ‘names for objects’, ‘properties of objects’ as well as ‘relations between objects’. A possible finite set of facts for situation 1 could be the following:

  1. TOKEN(T1), BLACK(T1), POSITION(T1,1,1)
  2. TOKEN(T2), WHITE(T2), POSITION(T2,2,1)
  3. NEIGHBOR(T1,T2)
  4. CELL(C1), POSITION(1,2), FREE(C1)

‘T1’, ‘T2’, as well as ‘C1’ are names of objects, ‘TOKEN’, ‘BACK’ etc. are names of properties, and ‘NEIGHBOR’ is a relation between objects. This results in the equation:

S1 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), TOKEN(T2), WHITE(T2), POSITION(T2,2,1), NEIGHBOR(T1,T2), CELL(C1), POSITION(1,2), FREE(C1)}

These facts describe the situation S1. If it is important to describe possible objects ‘external to the situation’ as important factors which can cause some changes then one can describe these objects as a set of facts  in a separated ‘context’. In this example this could be two players which can move the black and white tokens and thereby causing a change of the situation. What is the situation and what belongs to a context is somewhat arbitrary. If one describes the agriculture of some region one usually would not count the planets and the atmosphere as part of this region but one knows that e.g. the sun can severely influence the situation   in combination with the atmosphere.

Change of a state of affairs given as a state which will be enhanced by a new object
Fig.7: Change of a state of affairs given as a state which will be enhanced by a new object

Let us stay with a state of affairs with only a situation without a context. The state of affairs is     a ‘state’. In the example shown in figure 6 I assume a ‘change’ caused by the insertion of a new black token at position (2,2). Written in the language of facts L_fact we get:

  1. TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)

Thus the new state S2 is generated out of the old state S1 by unifying S1 with the set of new facts: S2 = S1 {TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)}. All the other facts of S1 are still ‘valid’. In a more general manner one can introduce a change-expression with the following format:

<S1, S2, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2), NEIGHBOR(T3,T2)})>

This can be read as follows: The follow-up state S2 is generated out of the state S1 by adding to the state S1 the set of facts { … }.

This layout of a change expression can also be used if some facts have to be modified or removed from a state. If for instance  by some reason the white token should be removed from the situation one could write:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)})>

Another notation for this is S2 = S1 – {TOKEN(T2), WHITE(T2), POSITION(2,1)}.

The resulting state S2 would then look like:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1)}

And a combination of subtraction of facts and addition of facts would read as follows:

<S1, S2, subtract(S1,{TOKEN(T2), WHITE(T2), POSITION(2,1)}, add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would result in the final state S2:

S2 = {TOKEN(T1), BLACK(T1), POSITION(T1,1,1), CELL(C1), POSITION(1,2), FREE(C1),TOKEN(T3), BLACK(T3), POSITION(2,2)}

These simple examples demonstrate another fact: while facts about objects and their properties are independent from each other do relational facts depend from the state of their object facts. The relation of neighborhood e.g. depends from the participating neighbors. If — as in the example above — the object token T2 disappears then the relation ‘NEIGHBOR(T1,T2)’ no longer holds. This points to a hierarchy of dependencies with the ‘basic facts’ at the ‘root’ of a situation and all the other facts ‘above’ basic facts or ‘higher’ depending from the basic facts. Thus ‘higher order’ facts should be added only for the actual state and have to be ‘re-computed’ for every follow-up state anew.

If one would specify a context for state S1 saying that there are two players and one allows for each player actions like ‘move’, ‘insert’ or ‘delete’ then one could make the change from state S1 to state S2 more precise. Assuming the following facts for the context:

  1. PLAYER(PB1), PLAYER(PW1), HAS-THE-TURN(PB1)

In that case one could enhance the change statement in the following way:

<S1, S2, PB1,insert(TOKEN(T3,2,2)),add(S1,{TOKEN(T3), BLACK(T3), POSITION(2,2)})>

This would read as follows: given state S1 the player PB1 inserts a  black token at position (2,2); this yields a new state S2.

With or without a specified context but with regard to a set of possible change statements it can be — which is the usual case — that there is more than one option what can be changed. Some of the main types of changes are the following ones:

  1. RANDOM
  2. NOT RANDOM, which can be specified as follows:
    1. With PROBABILITIES (classical, quantum probability, …)
    2. DETERMINISTIC

Furthermore, if the causing object is an actor which can adapt structurally or even learn locally then this actor can appear in some time period like a deterministic system, in different collected time periods as an ‘oscillating system’ with different behavior, or even as a random system with changing probabilities. This make the forecast of systems with adaptive and/ or learning systems rather difficult.

Another aspect results from the fact that there can be states either with one actor which can cause more than one action in parallel or a state with multiple actors which can act simultaneously. In both cases the resulting total change has eventually to be ‘filtered’ through some additional rules telling what  is ‘possible’ in a state and what not. Thus if in the example of figure 6 both player want to insert a token at position (2,2) simultaneously then either  the rules of the game would forbid such a simultaneous action or — like in a computer game — simultaneous actions are allowed but the ‘geometry of a 2-dimensional space’ would not allow that two different tokens are at the same position.

Another aspect of change is the dimension of time. If the time dimension is not explicitly specified then a change from some state S_i to a state S_j does only mark the follow up state S_j as later. There is no specific ‘metric’ of time. If instead a certain ‘clock’ is specified then all changes have to be aligned with this ‘overall clock’. Then one can specify at what ‘point of time t’ the change will begin and at what point of time t*’ the change will be ended. If there is more than one change specified then these different changes can have different timings.

THIRD PERSON VIEW

Up until now the point of view describing a state and the possible changes of states is done in the so-called 3rd-person view: what can a person perceive if it is part of a situation and is looking into the situation.  It is explicitly assumed that such a person can perceive only the ‘surface’ of objects, including all kinds of actors. Thus if a driver of a car stears his car in a certain direction than the ‘observing person’ can see what happens, but can not ‘look into’ the driver ‘why’ he is steering in this way or ‘what he is planning next’.

A 3rd-person view is assumed to be the ‘normal mode of observation’ and it is the normal mode of empirical science.

Nevertheless there are situations where one wants to ‘understand’ a bit more ‘what is going on in a system’. Thus a biologist can be  interested to understand what mechanisms ‘inside a plant’ are responsible for the growth of a plant or for some kinds of plant-disfunctions. There are similar cases for to understand the behavior of animals and men. For instance it is an interesting question what kinds of ‘processes’ are in an animal available to ‘navigate’ in the environment across distances. Even if the biologist can look ‘into the body’, even ‘into the brain’, the cells as such do not tell a sufficient story. One has to understand the ‘functions’ which are enabled by the billions of cells, these functions are complex relations associated with certain ‘structures’ and certain ‘signals’. For this it is necessary to construct an explicit formal (mathematical) model/ theory representing all the necessary signals and relations which can be used to ‘explain’ the obsrvable behavior and which ‘explains’ the behavior of the billions of cells enabling such a behavior.

In a simpler, ‘relaxed’ kind of modeling  one would not take into account the properties and behavior of the ‘real cells’ but one would limit the scope to build a formal model which suffices to explain the oservable behavior.

This kind of approach to set up models of possible ‘internal’ (as such hidden) processes of an actor can extend the 3rd-person view substantially. These models are called in this text ‘actor models (AM)’.

HIDDEN WORLD PROCESSES

In this text all reported 3rd-person observations are called ‘actor story’, independent whether they are done in a pictorial or a textual mode.

As has been pointed out such actor stories are somewhat ‘limited’ in what they can describe.

It is possible to extend such an actor story (AS)  by several actor models (AM).

An actor story defines the situations in which an actor can occur. This  includes all kinds of stimuli which can trigger the possible senses of the actor as well as all kinds of actions an actor can apply to a situation.

The actor model of such an actor has to enable the actor to handle all these assumed stimuli as well as all these actions in the expected way.

While the actor story can be checked whether it is describing a process in an empirical ‘sound’ way,  the actor models are either ‘purely theoretical’ but ‘behavioral sound’ or they are also empirically sound with regard to the body of a biological or a technological system.

A serious challenge is the occurrence of adaptiv or/ and locally learning systems. While the actor story is a finite  description of possible states and changes, adaptiv or/ and locally learning systeme can change their behavior while ‘living’ in the actor story. These changes in the behavior can not completely be ‘foreseen’!

COGNITIVE EXPERT PROCESSES

According to the preceding considerations a homo sapiens as a biological system has besides many properties at least a consciousness and the ability to talk and by this to communicate with symbolic languages.

Looking to basic modes of an actor story (AS) one can infer some basic concepts inherently present in the communication.

Without having an explicit model of the internal processes in a homo sapiens system one can infer some basic properties from the communicative acts:

  1. Speaker and hearer presuppose a space within which objects with properties can occur.
  2. Changes can happen which presuppose some timely ordering.
  3. There is a disctinction between concrete things and abstract concepts which correspond to many concrete things.
  4. There is an implicit hierarchy of concepts starting with concrete objects at the ‘root level’ given as occurence in a concrete situation. Other concepts of ‘higher levels’ refer to concepts of lower levels.
  5. There are different kinds of relations between objects on different conceptual levels.
  6. The usage of language expressions presupposes structures which can be associated with the expressions as their ‘meanings’. The mapping between expressions and their meaning has to be learned by each actor separately, but in cooperation with all the other actors, with which the actor wants to share his meanings.
  7. It is assume that all the processes which enable the generation of concepts, concept hierarchies, relations, meaning relations etc. are unconscious! In the consciousness one can  use parts of the unconscious structures and processes under strictly limited conditions.
  8. To ‘learn’ dedicated matters and to be ‘critical’ about the quality of what one is learnig requires some disciplin, some learning methods, and a ‘learning-friendly’ environment. There is no guaranteed method of success.
  9. There are lots of unconscious processes which can influence understanding, learning, planning, decisions etc. and which until today are not yet sufficiently cleared up.

 

 

 

 

 

 

 

 

AAI – Actor-Actor Interaction. A Toy-Example, No.1

eJournal: uffmm.org, ISSN 2567-6458
13.Dec.2017
Email: info@uffmm.org

Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Contents

1 Problem ….. 3
2 AAI-Check ….. 3
3 Actor-Story (AS) …..  3
3.1 AS as a Text . . . . . . . . . . . . . . . . . .3
3.2 Translation of a Textual AS into a Formal AS …… 4
3.3 AS as a Formal Expression . . . . . . . . . .4
3.4 Translation of a Formal AS into a Pictorial AS… 5
4 Actor-Model (AM) …..  5
4.1 AM for the User as a Text . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .6
4.2 AM for the System as a Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Combined AS and AM as a Text …..  6
5.1 AM as an Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Simulation …..  7
6.1 Simulating the AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
6.2 Simulating the AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
6.3 Simulating AS with AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Appendix: Formalisms ….. 8
7.1 Set of Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
7.2 Predicate Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8 Appendix: The Meaning of Expressions …11
8.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.2 Changes by Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Abstract

Following the general concepts of the paper ’AAI – Actor-Actor Interaction. A Philosophy of Science View’ from 3.Oct.2017 this paper illustrates a simple application where the difference as well as the
interaction between an actor story and several actor models is shown. The details of interface-design as well as the usability-testing are not part of this example.(This example replaces the paper with the title
’AAI – Case Study Actor Story with Actor Model. Simple Grid-Environment’ from 15.Nov.2017). One special point is the meaning of the formal expressions of the actor story.

Attention: This toy example is not yet in fully conformance with the newly published Case-Study-Template

To read the full text see PDF

Clearly, one can debate whether a ‘toy-example’ makes sens, but the complexity of the concepts in this AAI-approach is to great to illustrate these in the beginning  with a realistic example without loosing the idea. The author of the paper has tried many — also very advanced — versions in the last years and this is the first time that he himself has the feeling that at least the idea is now clear enough. And from teaching students it is very clear, if you cannot explain an idea in a toy-example you never will be able to apply it to real big problems…

 

INTELLIGENT MACHINES – INTRODUCTION

eJournal: uffmm.org,
ISSN 2567-6458, 09.Oct 2017 – April 9, 2022, 13:30 h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

 Remark April 2022

This post from Oct 2017 will be reviewed in the new conceptual framework of an Applied Empirical Theory [AET] with an additional Dynamic Format [DF]. For more details see HERE.

OVERVIEW

A short story telling You, (i) how we interface the intelligent machines (IM) part with the actor-actor interaction (AAI) part, (ii) a first working definition of intelligent machines (IM) in this text, and (iii) defining intelligence and how one can this measure.

IM WITHIN AAI

In this blog we see IM not isolated, as a stand alone endeavor, but as embedded in a discipline called actor-actor interaction (AAI)(later called DAAI := Distributed Actor Actor Interaction).  AAI investigates complex tasks and looks how different kinds of actors are interacting in these contexts with technical systems. As far as the participating systems have been technical systems one speaks here of a system interface (SI) as that part of a technical system, which is interacting with the human actor. In the case of biological systems (mostly humans, but it could be animals as well), one speaks of the user interface (UI). In this text we generalize both cases by the general concept of an actor — biological and non-biological –, which has some actor interface (ActI), and this actor interface embraces all properties which are relevant for the interactions of the actor.

For the analysis of the behavior of actors in such task-environments one can distinguish two important concepts: the actor story (AS) describing the context as an observable process, as well as different actor models (AM). Actor models are special extensions of an actor story because an actor model describes the observable behavior of actors as a behavior function (BF) with a set of assumptions about possible internal states of the actors. The assumptions about possible internal states (IS) are either completely arbitrary or empirically motivated.

The embedding of IM within AAI can be realized through the concept of an actor model (UM) and the actor story (AS). Whatever is important for something which is called an intelligent machine application (IMA) can be defined as an actor model within an actor story. This embedding of IM within AAI offers many advantages.

This has to be explained with some more details.

An Intelligent Machine (IM) in an Actor Story

Let us assume that there exists a mathematical-graph representation of an actor story written as AS_{L_{ε}}. Such a graph has nodes which represent situations. Formally these are sets of properties, probably more fine-grained by subsets which represent different kinds of actors embedded in this situation as well as different kinds of non-actors.

Actors can be classified (as introduced above) as either biological actors (BA) or non-biological actors (NBA). Both kinds of actors can — in another reading — be subsumed under the general term of input-output-systems (IO-SYS). An input-output system can be a learning system or non-learning. Another basic property is that of being intelligent or non-intelligent. Being a learning system and being an intelligent system is usually strongly connected, but this must not necessarily be so. Being a learning system can be associated with being non-intelligent and being intelligent can be connected with being non-learning.(cf. Figure 1)

Classification of input-output systems according to learning, intelligence and beeing biological or not biological
Classification of input-output systems according to learning, intelligence and being biological or non-biological

While biological systems are always learning and intelligent, one can find non-biological systems of all types: non-learning and non-intelligent, non-intelligent and learning, non-learning and intelligent, and learning and intelligent.

Learning System

To classify a system as a learning system this requires the general ability to change the behavior of this system in time thus that there exists a time-span (t1,t2) after which the behavior as response to  certain critical stimuli has changed compared to the time before. [1] From this requirement it follows, that a learning system is an input-output system with at least one internal state which can change. Thus we have the general assumption:

Def: Learning System (LS)

  1. LS(x) iff
  2. x=<I, O, IS, phi >
  3. φ : I x IS —> IS x O
  4. I := Input
  5. O := Output
  6. IS := Internal states

Some x is a learning system (LS) if it is a structure containing sets for input (I), Output (O), as well as internal states (IS). These sets are operated by a behavior function φ which maps inputs and actual internal states to output as well as back to internal states. The set of possible learning functions is infinite.

Intelligent System

The term ‘intelligent’ and ‘intelligence’ is until now not standardized. This means that everybody is using it at little bit arbitrarily.

In this text we take the basic idea of a scientific usage of the term ‘intelligence’ from experimental psychology, which has developed clearly defined operational concepts since the end of the 19. Century which have been proved as quite stable in their empirical applications. [2a,b,c] 

The central idea of the psychological concept of the usage of the term ‘intelligence’ is to associate the usage of the term ‘intelligence’ with observable behavior of those actors, which shall be classified according defined methods of measurement.

In the case of experimental psychology the actors have been biological systems, mainly humans, in the first years of the research school children of certain ages. Because nobody did know what ‘intelligence’ means ‘as such’ one agreed to accept the observable behavior of children in certain task environments as ‘manifestations’ of a ‘presupposed unknown intelligence’. Thus the ability of children to solve defined tasks in a certain defined manner became a norm for what is called ‘intelligence’. Solving the tasks in a certain time with less than a certain amount of errors was used as a ‘baseline’ and all behavior deviating from the baseline was ‘better’ or ‘poorer’.

Thus the ‘content’ of the ‘meaning’ of the term ‘intelligence’ has been delegated to historical patterns of behavior which were common in a certain time-span in a certain geographical and cultural region.

While these behavior patterns can change during the course of time the general method of measurement is invariant.

In the time since then experimental psychology has modified and elaborated this first concept in some directions.

One direction is the modification of the kind of tasks which are used for the tests. With regard to the cultural context one has modified the content, thereby looking to find such kinds of task which seem to be ‘invariant’ with regard to the presupposed intelligence factor. This is an ongoing process.

The other direction is the focus on the actors as such. Because biological systems like humans change the development of their intelligence with age one has tried to find out ‘typical tasks for every age’. This too is an ongoing process.

This history of experimental psychology gives very interesting examples how one can approach the problem of the usage and the measurement of some X which we call ‘intelligence’.

In the context of an AAI-approach we have not only biological systems, but also non-biological systems. Thus most of the elaborated parameters of psychology for human actors are not general enough.

One possible strategy to generalize the intelligence-paradigm of experimental psychology could be to ‘free’ the selection of task sets from the narrow human cultures of the past and require only ‘clearly defined task sets with defined interfaces and defined contexts’. All these tasks sets can be arranged either in one super-set or in a parameterized field of sets. The sum of all these sets defines then a space of possible behavior and associated with this a space of possible measurable intelligence.

A task has then to be given as an actor story according to the AAI-paradigm. Such a specified actor story allows the formal definition of a complexity measure which can be used to measure the ‘amount of intelligence necessary to solve such a task’.

With such a more general and extendable approach to the measurement of observable intelligence one can compare all kinds of systems with each other. With such an approach one can further show objectively, where biological and non-biological systems differ generally, where they are similar, and to which extend they differ with regard to concrete circumstances.

Measuring Intelligence by Actor Stories

Presupposing actor stories (AS) (ideally formalized as mathematical graphs) on can define a first operational general measurement of intelligence.

Def: Task-Intelligence of a task τ (TInt(τ))

    1. Every defined task τ represents a graph g with one shortest path pmin(τ)= π_{min} from a start node to a goal node.
    2. Every such shortest path π_{min} has a certain number of nodes path-nodes(π_{min})=ν.
    3. The number of solved nodes (ν_{solved}) can become related against the total number of nodes ν as ν_{solved}/ν. We take TInt(τ)= ν_{solved}/ν. It follows that TInt(τ) is between 0 and 1: 0 ≤ TInt(τ)≤ 1.
    4. To every task  a maximal duration Δ_{max} is attached; all nodes which are solved within this maximal duration time Δ_{max} are declared as ‘solved’, all the others as ‘un-solved’.

The usual case will require more than one task to be realized. Thus we introduce the concept of a task field (TF).

Def: Task-Field of type x (TF_{x})
Def: Task-Field Intelligence (TFInt)

A task-field TF of type x includes a finite set of individual tasks like TF_{x} = { τ{x.1}, τ{x.2}, … , τ{x.n} } with n ≥ 2. The sum of all individual task intelligence values TInt(τ{x.i}) has to be normalized to 1, i.e. (TInt(τ{x.1}) + TInt(τ{x.2}) + … + TInt(τ{x.n}))/ n (with 0 in the nominator not allowed). Thus the value of the intelligence of a task field of type x TFInt(TF_{x}) is again in the domain of [0,1].

Because the different tasks in a task field TF can be of different difficulty it should be possible to introduce some weighting for the individual task intelligence values. This should not change the general mechanism.

Def: Combined Task-Fields (TF)

In face of the huge variety of possible task fields in this world it can make sens to introduce more general layers by grouping task fields of different types together to larger combined fields, like TF_{x,…,z} = TF_{x} ∪ TF_{y} ∪ … ∪ TF_{z}. The task field intelligence TFInt of such combined task fields would be computed as before.

Def: Omega Task-Field at time t (TF_{ω}(t))

The most comprehensive assembly of such combinations shall here be called the Omega-Task-Field at time t TF_{ω}(t). This indicates the known maximum of intelligence measurements at that point of time.

Measurement Comments

With these assumptions the term intelligence will be restricted to clearly defined domains either to an individual task, to a task-field of type x, or to some grouped task-fields or being related to the actual omega task-field. In every such domain the intelligence value is in the realm of [0,1] or written as some value between 0 or 100%.

Independent of the type of an actor — biological or not — one can measure the intelligence of such an actor with the same domains of defined tasks. As a result one can easily compare all known actors with regard to such defined task domains.

Because the acting actors can be quite different by their input-output capabilities it follows that every actor has to organize some interface which enables him to use the defined task. There are no special restrictions to the format of such an interface, but there is one requirement which has to be observed strictly: the interface as such is not allowed to do any kind of computation beyond providing only the necessary input from the task domain or to provide the necessary output to the domain. Only then are the different tests able to reveal some difference between the different actors.

If the tests show differences between certain types of actors with regard to a certain task or a task-field then this is a chance to develop smart assistive interfaces which can help the actor in question to overcome his weakness compared to the other type of actor. Thus this kind of measuring intelligence can be a strong supporter for a better world in the future.

Another consequence of the differing intelligence values can be to look to the inner structure of an actor with weaker values and asking how one could improve his capabilities. This can be done e.g. by different kinds of training or by improving his system structures.

COMMENTS

[1] Sara J.Shettleworth, Biological Approaches to the Study of Learning, pp.185 – 219, in: N.J.Mackintosh (Ed.), Animal Learning and Cognition, Academic Press, San Diego, New York, London et.al., 1994

[2a] Ernest R.Hilgard, Rita L.Atkinson, Richard C.Atkinson, Introduction to Psychology, Harcourt Brace Jovanovic, Inc., Psychology, 7th ed., New York, San Diego, Chicago et.al, 1979

[2b] Detlef H.Rost, Intelligenz. Fakten und Mythen, Belz Verlag, Weinheim – Basel, 2009

[2c] Detlef H.Rost, Handbuch Intelligenz, Beltz Verlag, Weinheim – Basel, 2013

AAI – Actor-Actor Interaction. A Philosophy of Science View

AAI – Actor-Actor Interaction.
A Philosophy of Science View
eJournal: uffmm.org, ISSN 2567-6458

Gerd Doeben-Henisch
info@uffmm.org
gerd@doeben-henisch.de

PDF

ABSTRACT

On the cover page of this blog you find a first general view on the subject matter of an integrated engineering approach for the future. Here we give a short description of the main idea of the analysis phase of systems engineering how this will be realized within the actor-actor interaction paradigm as described in this text.

INTRODUCTION

Overview of the analysis phase of systems engineering as realized within an actor-actor interaction paradigm
Overview of the analysis phase of systems engineering as realized within an actor-actor interaction paradigm

As you can see in figure Nr.1 there are the following main topics within the Actor-Actor Interaction (AAI) paradigm as used in this text (Comment: The more traditional formula is known as Human-Machine Interaction (HMI)):

Triggered by a problem document D_p from the problem phase (P) of the engineering process the AAI-experts have to analyze, what are the potential requirements following from this document, all the time also communicating with the stakeholder to keep in touch with the hidden intentions of the stakeholder.

The idea is to identify at least one task (T) with at least one goal state (G) which shall be arrived after running a task.

A task is assumed to represent a sequence of states (at least a start state and a goal state) which can have more than one option in every state, not excluding repetitions.

Every task presupposes some context (C) which gives the environment for the task.

The number of tasks and their length is in principle not limited, but their can be certain constraints (CS) given which have to be fulfilled required by the stakeholder or by some other important rules/ laws. Such constraints will probably limit the number of tasks as well as their length.

Actor Story

Every task as a sequence of states can be viewed as a story which describes a process. A story is a text (TXT) which is static and hides the implicit meaning in the brains of the participating actors. Only if an actor has some (learned) understanding of the used language then the actor is able to translate the perceptions of the process in an appropriate text and vice versa the text into corresponding perceptions or equivalently ‘thoughts’ representing the perceptions.

In this text it is assumed that a story is describing only the observable behavior of the participating actors, not their possible internal states (IS). For to describe the internal states (IS) it is further assumed that one describes the internal states in a new text called actor model (AM). The usual story is called an actor story (AS). Thus the actor story (AS) is the environment for the actor models (AM).

In this text three main modes of actor stories are distinguished:

  1. An actor story written in some everyday language L_0 called AS_L0 .
  2. A translation of the everyday language L_0 into a mathematical language L_math which can represent graphs, called AS_Lmath.
  3. A translation of the hidden meaning which resides in the brains of the AAI-experts into a pictorial language L_pict (like a comic strip), called AS_Lpict.

To make the relationship between the graph-version AS_Lmath and the pictorial version AS_Lpict visible one needs an explicit mapping Int from one version into the other one, like: Int : AS_Lmath <—> AS_Lpict. This mapping Int works like a lexicon from one language into another one.

From a philosophy of science point of view one has to consider that the different kinds of actor stories have a meaning which is rooted in the intended processes assumed to be necessary for the realization of the different tasks. The processes as such are dynamic, but the stories as such are static. Thus a stakeholder (SH) or an AAI-expert who wants to get some understanding of the intended processes has to rely on his internal brain simulations associated with the meaning of these stories. Because every actor has its own internal simulation which can not be perceived from the other actors there is some probability that the simulations of the different actors can be different. This can cause misunderstandings, errors, and frustrations.(Comment: This problem has been discussed in [DHW07])

One remedy to minimize such errors is the construction of automata (AT) derived from the math mode AS_Lmath of the actor stories. Because the math mode represents a graph one can derive Der from this version directly (and automatically) the description of an automaton which can completely simulate the actor story, thus one can assume Der(AS_Lmath) = AT_AS_Lmath.

But, from the point of view of Philosophy of science this derived automaton AT_AS_Lmath is still only a static text. This text describes the potential behavior of an automaton AT. Taking a real computer (COMP) one can feed this real computer with the description of the automaton AT AT_AS_Lmath and make the real computer behave like the described automaton. If we did this then we have a real simulation (SIM) of the theoretical behavior of the theoretical automaton AT realized by the real computer COMP. Thus we have SIM = COMP(AT_AS_Lmath). (Comment: These ideas have been discussed in [EDH11].)

Such a real simulation is dynamic and visible for everybody. All participating actors can see the same simulation and if there is some deviation from the intention of the stakeholder then this can become perceivable for everybody immediately.

Actor Model

As mentioned above the actor story (AS) describes only the observable behavior of some actor, but not possible internal states (IS) which could be responsible for the observable behavior.

If necessary it is possible to define for every actor an individual actor model; indeed one can define more than one model to explore the possibilities of different internal structures to enable a certain behavior.

The general pattern of actor models follows in this text the concept of input-output systems (IOSYS), which are in principle able to learn. What the term ‘learning’ designates concretely will be explained in later sections. The same holds of the term ‘intelligent’ and ‘intelligence’.

The basic assumptions about input-output systems used here reads a follows:

Def: Input-Output System (IOSYS)

IOSYS(x) iff x=< I, O, IS, phi>
phi : I x IS —> IS x O
I := Input
O := Output
IS := Internal

As in the case of the actor story (AS) the primary descriptions of actor models (AM) are static texts. To make the hidden meanings of these descriptions ‘explicit’, ‘visible’ one has again to convert the static texts into descriptions of automata, which can be feed into real computers which in turn then simulate the behavior of these theoretical automata as a real process.

Combining the real simulation of an actor story with the real simulations of all the participating actors described in the actor models can show a dynamic, impressive process which is full visible to all collaborating stakeholders and AAI-experts.

Testing

Having all actor stories and actor models at hand, ideally implemented as real simulations, one has to test the interaction of the elaborated actors with real actors, which are intended to work within these explorative stories and models. This is done by actor tests (former: usability tests) where (i) real actors are confronted with real tasks and have to perform in the intended way; (ii) real actors are interviewed with questionnaires about their subjective feelings during their task completion.

Every such test will yield some new insights how to change the settings a bit to gain eventually some improvements. Repeating these cycles of designing, testing, and modifying can generate a finite set of test-results T where possibly one subset is the ‘best’ compared to all the others. This can give some security that this design is probably the ‘relative best design’ with regards to T.

Further Readings:

  1. Analysis
  2. Simulation
  3. Testing
  4. User Modeling
  5. User Modeling and AI

For a newer version of the AAi-text see HERE..

REFERENCES

[DHW07] G. Doeben-Henisch and M. Wagner. Validation within safety critical systems engineering from a computation semiotics point of view.
Proceedings of the IEEE Africon2007 Conference, pages Pages: 1 – 7, 2007.
[EDH11] Louwrence Erasmus and Gerd Doeben-Henisch. A theory of the
system engineering process. In ISEM 2011 International Conference. IEEE, 2011.

EXAMPLE

For a toy-example to these concepts please see the post AAI – Actor-Actor Interaction. A Toy-Example, No.1