LOGIC. The Theory Of Inquiry (1938) by John Dewey – An oksimo Review – Part 3

eJournal: uffmm.org, ISSN 2567-6458, Aug 19-20, 2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

SCOPE

In the uffmm review section the different papers and books are discussed from the point of view of the oksimo paradigm. [2] Here the author reads the book “Logic. The Theory Of Inquiry” by John Dewey, 1938. [1]

Part I – Chapter I

THE PROBLEM OF LOGICAL SUBJECT-MATTER

In this chapter Dewey tries to characterize the subject-matter of logic. From the year 1938 backwards one can look  into a long history of thoughts  with  at least 2500 years dealing in one or another sense with what has been called ‘logic’. His rough judgment is that the participants of the logic language  game  “proximate subject-matter of logic” seem to be widely in agreement what it is, but in the case of the  “ultimate subject-matter of logic” language game  there seem to exist different or even conflicting opinions.(cf. p.8)

Logic as a philosophic theory

Dewey illustrates the variety of views about the ultimate subject-matter of logic by citing several different positions.(cf. p.10) Having done this Dewey puts all these views together into a kind of a ‘meta-view’ stating that logic “is a branch of philosophic theory and therefore can express different philosophies.”(p.10) But  exercising  philosophy  ” itself must satisfy logical requirements.”(p.10)

And in general he thinks that  “any statement that logic is so-and-so, can … be offered only as a hypothesis and an indication of a position to be developed.”(p.11)

Thus we see here that Dewey declares the ultimate logical subject-matter grounded in some philosophical perspective which should be able “to order and account for what has been called the proximate subject-matter.”(p.11)  But the philosophical theory “must possess the property of verifiable existence in some domain, no matter how hypothetical it is in reference to the field in which it is proposed to apply it.”(p.11) This is an interesting point because this implies the question in which sense a philosophical foundation of logic can offer a verifiable existence.

Inquiry

Dewey gives some  hint for a possible answer by stating “that all logical forms …  arise within the operation of inquiry and are concerned with control of inquiry so that it may yield warranted assertions.”(p.11) While the inquiry as a process is  real, the emergence of logical forms has to be located in the different kinds of interactions between the researchers and some additional environment  in the process. Here should some verifiable reality be involved which is reflected in accompanying language expressions used by the researchers for communication.  This implies further that the used language expressions — which can even talk about other language expressions — are associated with propositions which can be shown to be valid.[4]

And  — with some interesting similarity with the modern concept of ‘diversity’ — he claims that in avoidance of any kind of dogmatism  “any hypothesis, no matter how unfamiliar, should have a fair chance and be judged by its results.”(p.12)

While Dewey is quite clear to use the concept of inquiry as a process leading to some results which are  depending from the starting point and the realized processes, he mentions additionally concepts like  ‘methods’, ‘norms’, ‘instrumentalities’, and  ‘procedures’, but these concepts are rather fuzzy. (cf. p.14f)

Warranted assertibility

Part of an inquiry are the individual actors which have psychological states like ‘doubt’ or ‘belief’ or  ‘understanding’ (knowledge).(p.15) But from these concepts follows nothing about needed  logical forms or rules.(cf.p.16f)  Instead Dewey repeats his requirement with the words “In scientific inquiry, the criterion of what is taken to be settled, or to be knowledge, is being so settled that it is available as a resource in further inquiry; not being settled in such a way as not to be subject to revision in further inquiry.”(p.17) And therefore, instead of using fuzzy concepts like (subjective) ‘doubt’, ‘believe’ or ‘knowledge’, prefers to use the concept “warranted assertibility”. This says not only, that you can assert something, but  that you can assert it also with ‘warranty’ based on the known process which has led to this result.(cf. p.10)

Introducing rationality

At this point the story takes a first ‘new turn’ because Dewey introduces now a first characterization of  the concept ‘rationality’ (which is for him synonymous with ‘reasonableness’). While the basic terms of the descriptions in an inquiry process are at least partially descriptive (empirical)  expressions, they are not completely “devoid of rational standing”.(cf. p.17) Furthermore the classification of final situations in an inquiry as ‘results’ which can be understood as ‘confirmations’ of initial  assumptions, questions or problems,  is only given in relations talking about the whole process and thereby they are talking about matters which are not rooted in  limited descriptive facts only. Or, as Dewey states it, “relations which exist between means (methods) employed and conclusions attained as their consequence.”(p.17) Therefore the following practical principle is valid: “It is reasonable to search for and select the means that will, with the maximum probability, yield the consequences which are intended.”(p.18)  And: “Hence,… the descriptive statement of methods that achieve progressively stable beliefs, or warranted assertibility, is also a rational statement in case the relation between them as means and assertibility as consequence is ascertained.”(p.18)

Suggested framework for ‘rationality’

Although Dewey does not exactly define the format of relations between selected means and successful consequences it seems ‘intuitively’ clear that the researchers have to have some ‘idea’ of such a relation which serves then as a new ‘ground for abstract meaning’ in their ‘thinking’. Within the oksimo paradigm [2] one could describe the problem at hand as follows:

  1. The researchers participating in an inquiry process have perceptions of the process.
  2. They have associated cognitive processing as well as language processing, where both are bi-directional mapped into each other, but not 1-to-1.
  3. They can describe the individual properties, objects, actors, actions etc. which are part of the process in a timely order.
  4. They can with their cognitive processing build more abstract concepts based on these primary concepts.
  5. They can encode these more abstract cognitive structures and processes in propositions (and expressions) which correspond to these more abstract cognitive entities.
  6. They can construct rule-like cognitive structures (within the oksimo paradigm  called ‘change rules‘) with corresponding propositions (and expressions).
  7. They can evaluate those change rules whether they describe ‘successful‘ consequences.
  8. Change rules with successful consequences can become building blocks for those rules, which can be used for inferences/ deductions.

Thus one can look to the formal aspect of formal relations which can be generated by an inference mechanism, but such a formal inference must not necessarily yield results which are empirically sound. Whether this will be the case is a job on its own dealing with the encoded meaning of the inferred expressions and the outcome of the inquiry.(cf. p.19,21)

Limitations of formal logic

From this follows that the concrete logical operators as part of the inference machinery have to be qualified by their role within the more general relation between goals, means and success. The standard operators of modern formal logic are only a few and they are designed for a domain where you have a meaning space  with only two objects: ‘being true’, being false’. In the real world of everyday experience we have a nearly infinite space of meanings. To describe this everyday large meaning space the standard logic of today is too limited. Normal language teaches us, how we can generate as many operators as we need  only by using normal language. Inferring operators directly from normal language is not only more powerful but at the same time much, much easier to apply.[2]

Inquiry process – re-formulated

Let us fix a first hypothesis here. The ideas of Dewey can be re-framed with the following assumptions:

  1. By doing an inquiry process with some problem  (question,…) at the start and proceeding with clearly defined actions, we can reach final states which either are classified as being a positive answer (success) of the problem of the beginning or not.
  2. If there exists a repeatable inquiry process with positive answers the whole process can be understood as a new ‘recipe’ (= complex operation, procedure, complex method, complex rule,law,  …) how to get positive answers for certain kinds of questions.
  3. If a recipe is available from preceding experiments one can use this recipe to ‘plan’ a new process to reach a certain ‘result’ (‘outcome’, ‘answer’, …).
  4. The amount of failures as part of the whole number of trials in applying a recipe can be used to get some measure for the probability and quality of the recipe.
  5. The description of a recipe needs a meta-level of ‘looking at’ the process. This meta-level description is sound (‘valid’) by the interaction with reality but as such the description  includes some abstraction which enables a minimal rationality.
Habit

At this point Dewey introduces another term ‘habit’ which is not really very clear and which not really does explain more, but — for whatever reason — he introduces such a term.(cf. p.21f)

The intuition behind the term ‘habit’ is that independent of the language dimension there exists the real process driven by real actors doing real actions. It is further — tacitly —  assumed that these real actors have some ‘internal processing’ which is ‘causing’ the observable actions. If these observable actions can be understood/ interpreted as an ‘inquiry process’ leading to some ‘positive answers’ then Dewey calls the underlying processes all together a ‘habit’: “Any habit is a way or manner of action, not a particular act or deed. “(p.20) If one observes such a real process one can describe it with language expressions; then it gets the format of a ‘rule’, a principle’ or a ‘law’.(cf. p.20)

If one would throw away the concept  ‘habit’, nothing would be missing. Whichever  internal processes are assumed, a description of these will be bound to its observability and will depend of some minimal  language mechanisms. These must be explained. Everything beyond these is not necessary to explain rational behavior.[5]

At the end of chapter I Dewey points to some additional aspects in the context of logic. One aspect is the progressive character of logic as discipline in the course of history.(cf. p.22)[6]

Operational

Another aspect is introduced by his statement “The subject-matter of logic is determined operationally.”(p.22) And he characterizes the meaning of the term ‘operational’ as representing the “conditions by which subject-matter is (1) rendered fit to serve as means and (2) actually functions as such means in effecting the objective transformation which is the end of the inquiry.”(p.22) Thus, again, the concept of inquiry is the general framework organizing means to get to a successful end. This inquiry has an empirical material (or ‘existential‘) basis which additionally can be described symbolically. The material basis can be characterized by parts of it called ‘means’ which are necessary to enable objective transformations leading to the end of the inquiry.(cf. p.22f)

One has to consider at this point that the fact of the existential (empirical) basis of every inquiry process should not mislead to the view that this can work without a symbolic dimension! Besides extremely simple processes every process needs for its coordination between different brains a symbolic communication which has to use certain expressions of a language. Thus   the cognitive concepts of the empirical  means and the followed rules can only get ‘fixed’ and made ‘clear’ with the usage of accompanying symbolic expressions.

Postulational logic

Another aspect mentioned by Dewey is given by the statement: “Logical forms are postulational.“(p.24) Embedded in the framework of an inquiry Dewey identifies requirements (demands, postulates, …) in the beginning of the inquiry which have to be fulfilled through the inquiry process. And Dewey sees such requirements as part of the inquiry process itself.(cf. p.24f) If during such an inquiry process some kinds of logical postulates will be used they have no right on their own independent of the real process! They can only be used as long as they are in agreement with the real process.  With the words of Dewey: “A postulate is thus neither arbitrary nor externally a priori. It is not the former because it issues from the relation of means to the end to be reached. It is not the latter, because it is not imposed upon inquiry from without, but is an acknowledgement of that to which the undertaking of inquiry commits us.”(p.26)  .

Logic naturalistic

Dewey comments further on the topic that “Logic is a naturalistic theory.“(p.27 In some sense this is trivial because humans are biological systems and therefore every process is a biological (natural) process, also logical thinking as part of it.

Logic is social

Dewey mentions further that “Logic is a social discipline.“(p.27) This follows from the fact that “man is naturally a being that lives in association with others in communities possessing language, and therefore enjoying a transmitted culture. Inquiry is a mode of activity that is socially conditioned and that has cultural consequences.”(p.27)  And therefore: “Any theory of logic has to take some stand on the question whether symbols are ready-made clothing for meanings that subsist independently, or whether they are necessary conditions for the existence of meanings —  in terms often used, whether language is the dress of ‘thought’ or is something without which ‘thought’ cannot be.” (27f) This can be put also in the following  general formula by Dewey: “…in every interaction that involves intelligent direction, the physical environment is part of a more inclusive social or cultural environment.” (p.28) The central means of culture is Language, which “is the medium in which culture exists and through which it is transmitted. Phenomena that are not recorded cannot be even discussed. Language is the record that perpetuates occurrences and renders them amenable to public consideration. On the other hand, ideas or meanings that exist only in symbols that are not communicable are fantastic beyond imagination”.(p.28)

Autonomous logic

The final aspect about logic which is mentioned by Dewey looks to the position which states that “Logic is autonomous“.(p.29) Although the position of the autonomy of logic — in various varieties — is very common in history, but Dewey argues against this position. The main point is — as already discussed before — that the open framework of an inquiry gives the main point of reference and logic must fit to this framework.[7]

SOME DISCUSSION

For a discussion of these ideas of Dewey see the next uocoming post.

COMMENTS

[1] John Dewey, Logic. The Theory Of Inquiry, New York, Henry Holt and Company, 1938  (see: https://archive.org/details/JohnDeweyLogicTheTheoryOfInquiry with several formats; I am using the kindle (= mobi) format: https://archive.org/download/JohnDeweyLogicTheTheoryOfInquiry/%5BJohn_Dewey%5D_Logic_-_The_Theory_of_Inquiry.mobi . This is for the direct work with a text very convenient.  Additionally I am using a free reader ‘foliate’ under ubuntu 20.04: https://github.com/johnfactotum/foliate/releases/).  The page numbers in the text of the review — like (p.13) — are the page numbers of the ebook as indicated in the ebook-reader foliate.(There exists no kindle-version for linux (although amazon couldn’t work without linux servers!))

[2] Gerd Doeben-Henisch, 2021, uffmm.org, THE OKSIMO PARADIGM
An Introduction (Version 2), https://www.uffmm.org/wp-content/uploads/2021/03/oksimo-v1-part1-v2.pdf

[3] The new oksimo paradigm does exactly this. See oksimo.org

[4] For the conceptual framework for the term ‘proposition’ see the preceding part 2, where the author describes the basic epistemological assumptions of the oksimo paradigm.

[5] Clearly it is possible and desirable to extend our knowledge about the internal processing of human persons. This is mainly the subject-matter of biology, brain research, and physiology. Other disciplines are close by like Psychology, ethology, linguistics, phonetics etc. The main problem with all these disciplines is that they are methodologically disconnected: a really integrated theory is not yet possible and not in existence. Examples of integrations like Neuro-Psychology are far from what  they should be.

[6] A very good overview about the development of logic can be found in the book The Development of Logic by William and Martha Kneale. First published 1962 with many successive corrected reprints by Clarendon Press, Oxford (and other cities.)

[7] Today we have the general problem that the concept of formal logic has developed the concept of logical inference in so many divergent directions that it is not a simple problem to evaluate all these different ‘kinds of logic’.

MEDIA

This is another unplugged recording dealing with the main idea of Dewey in chapter I: what is logic and how relates logic to a scientific inquiry.

ENGINEERING AND SOCIETY: The Role of Preferences

eJournal: uffmm.org,
ISSN 2567-6458, 4.May 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

FINAL HYPOTHESIS

This suggests that a symbiosis between creative humans and computing algorithms is an attractive pairing. For this we have to re-invent our official  learning processes in schools and universities to train the next generation of humans in a more inspired and creative usage of algorithms in a game-like learning processes.

CONTEXT

The overall context is given by the description of the Actor-Actor Interaction (AAI) paradigm as a whole.  In this text the special relationship between engineering and the surrounding society is in the focus. And within this very broad and rich relationship the main interest lies in the ethical dimension here understood as those preferences of a society which are more supported than others. It is assumed that such preferences manifesting themselves  in real actions within a space of many other options are pointing to hidden values which guide the decisions of the members of a society. Thus values are hypothetical constructs based on observable actions within a cognitively assumed space of possible alternatives. These cognitively represented possibilities are usually only given in a mixture of explicitly stated symbolic statements and different unconscious factors which are influencing the decisions which are causing the observable actions.

These assumptions represent  until today not a common opinion and are not condensed in some theoretical text. Nevertheless I am using these assumptions here because they help to shed some light on the rather complex process of finding a real solution to a stated problem which is rooted in the cognitive space of the participants of the engineering process. To work with these assumptions in concrete development processes can support a further clarification of all these concepts.

ENGINEERING AND SOCIETY

DUAL: REAL AND COGNITIVE

The relationship between an engineering process and the preferences of a society
The relationship between an engineering process and the preferences of a society

As assumed in the AAI paradigm the engineering process is that process which connects the  event of  stating a problem combined with a first vision of a solution with a final concrete working solution.

The main characteristic of such an engineering process is the dual character of a continuous interaction between the cognitive space of all participants of the process with real world objects, actions, and processes. The real world as such is a lose collection of real things, to some extend connected by regularities inherent in natural things, but the visions of possible states, possible different connections, possible new processes is bound to the cognitive space of biological actors, especially to humans as exemplars of the homo sapiens species.

Thus it is a major factor of training, learning, and education in general to see how the real world can be mapped into some cognitive structures, how the cognitive structures can be transformed by cognitive operations into new structures and how these new cognitive structures can be re-mapped into the real world of bodies.

Within the cognitive dimension exists nearly infinite sets of possible alternatives, which all indicate possible states of a world, whose feasibility is more or less convincing. Limited by time and resources it is usually not possible to explore all these cognitively tapped spaces whether and how they work, what are possible side effects etc.

PREFERENCES

Somehow by nature, somehow by past experience biological system — like the home sapiens — have developed   cultural procedures to induce preferences how one selects possible options, which one should be selected, under which circumstances and with even more constraints. In some situations these preferences can be helpful, in others they can  hide possibilities which afterwards can be  re-detected as being very valuable.

Thus every engineering process which starts  a transformation process from some cognitively given point of view to a new cognitively point of view with a following up translation into some real thing is sharing its cognitive space with possible preferences of  the cognitive space of the surrounding society.

It is an open case whether the engineers as the experts have an experimental, creative attitude to explore without dogmatic constraints the   possible cognitive spaces to find new solutions which can improve life or not. If one assumes that there exist no absolute preferences on account of the substantially limit knowledge of mankind at every point of time and inferring from this fact the necessity to extend an actual knowledge further to enable the mastering of an open unknown future then the engineers will try to explore seriously all possibilities without constraints to extend the power of engineering deeper into the heart of the known as well as unknown universe.

EXPLORING COGNITIVE POSSIBILITIES

At the start one has only a rough description of the problem and a rough vision of a wanted solution which gives some direction for the search of an optimal solution. This direction represents also a kind of a preference what is wanted as the outcome of the process.

On account of the inherent duality of human thinking and communication embracing the cognitive space as well as the realm of real things which both are connected by complex mappings realized by the brain which operates  nearly completely unconscious a long process of concrete real and cognitive actions is necessary to materialize cognitive realities within a  communication process. Main modes of materialization are the usage of symbolic languages, paintings (diagrams), physical models, algorithms for computation and simulations, and especially gaming (in several different modes).

As everybody can know  these communication processes are not simple, can be a source of  confusions, and the coordination of different brains with different cognitive spaces as well as different layouts of unconscious factors  is a difficult and very demanding endeavor.

The communication mode gaming is of a special interest here  because it is one of the oldest and most natural modes to learn but in the official education processes in schools and  universities (and in companies) it was until recently not part of the official curricula. But it is the only mode where one can exercise the dimensions of preferences explicitly in combination with an exploring process and — if one wants — with the explicit social dimension of having more than one brain involved.

In the last about 50 – 100 years the term project has gained more and more acceptance and indeed the organization of projects resembles a game but it is usually handled as a hierarchical, constraints-driven process where creativity and concurrent developing (= gaming) is not a main topic. Even if companies allow concurrent development teams these teams are cognitively separated and the implicit cognitive structures are black boxes which can not be evaluated as such.

In the presupposed AAI paradigm here the open creative space has a high priority to increase the chance for innovation. Innovation is the most valuable property in face of an unknown future!

While the open space for a real creativity has to be executed in all the mentioned modes of communication the final gaming mode is of special importance.  To enable a gaming process one has explicitly to define explicit win-lose states. This  objectifies values/ preferences hidden   in the cognitive space before. Such an  objectification makes things transparent, enables more rationality and allows the explicit testing of these defined win-lose states as feasible or not. Only tested hypothesis represent tested empirical knowledge. And because in a gaming mode whole groups or even all members of a social network can participate in a  learning process of the functioning and possible outcome of a presented solution everybody can be included.  This implies a common sharing of experience and knowledge which simplifies the communication and therefore the coordination of the different brains with their unconsciousness a lot.

TESTING AND EVALUATION

Testing a proposed solution is another expression for measuring the solution. Measuring is understood here as a basic comparison between the target to be measured (here the proposed solution) and the before agreed norm which shall be used as point of reference for the comparison.

But what can be a before agreed norm?

Some aspects can be mentioned here:

  1. First of all there is the proposed solution as such, which is here a proposal for a possible assistive actor in an assumed environment for some intended executive actors which has to fulfill some job (task).
  2. Part of this proposed solution are given constraints and non-functional requirements.
  3. Part of this proposed solution are some preferences as win-lose states which have to be reached.
  4. Another difficult to define factor are the executive actors if they are biological systems. Biological systems with their basic built in ability to act free, to be learning systems, and this associated with a not-definable large unconscious realm.

Given the explicit preferences constrained by many assumptions one can test only, whether the invited test persons understood as possible instances of the  intended executive actors are able to fulfill the defined task(s) in some predefined amount of time within an allowed threshold of making errors with an expected percentage of solved sub-tasks together with a sufficient subjective satisfaction with the whole process.

But because biological executive actors are learning systems they  will behave in different repeated  tests differently, they can furthermore change their motivations and   their interests, they can change their emotional commitment, and because of their   built-in basic freedom to act there can be no 100% probability that they will act at time t as they have acted all the time before.

Thus for all kinds of jobs where the process is more or less fixed, where nothing new  will happen, the participation of biological executive actors in such a process is questionable. It seems (hypothesis), that biological executing actors are better placed  in jobs where there is some minimal rate of curiosity, of innovation, and of creativity combined with learning.

If this hypothesis is empirically sound (as it seems), then all jobs where human persons are involved should have more the character of games then something else.

It is an interesting side note that the actual research in robotics under the label of developmental robotics is struck by the problem how one can make robots continuously learning following interesting preferences. Given a preference an algorithm can work — under certain circumstances — often better than a human person to find an optimal solution, but lacking such a preference the algorithm is lost. And actually there exists not the faintest idea how algorithms should acquire that kind of preferences which are interesting and important for an unknown future.

On the contrary, humans are known to be creative, innovative, detecting new preferences etc. but they have only limited capacities to explore these creative findings until some telling endpoint.

This suggests that a symbiosis between creative humans and computing algorithms is an attractive pairing. For this we have to re-invent our official  learning processes in schools and universities to train the next generation of humans in a more inspired and creative usage of algorithms in a game-like learning processes.