Category Archives: collective man-machine intelligence

THE COLLECTIVE MAN-MACHINE INTELLIGENCE Paradigm WITHIN SUSTAINABLE DEVELOPMENT

eJournal: uffmm.org
ISSN 2567-6458, 23.March 2023 – April 4, 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text starts the topic of the Collective Man-Machine Intelligence Paradigm within Sustainable Development.

OUTLINE

For most readers the divers content of this blog is hard to understand if told that all these parts belong to one coherent picture. But indeed, there exists one coherent picture. This is the first publication of this one coherent picture.

FIGURE : This figure outlines the first time the intended view of the new ‘Collective Man-Maschine Intelligence’ paradigm within a certain view of ‘Sustainable Development’. The mentioned different kinds of certain algorithms are arbitrary; only the ‘oksimo.R Software’ has a general meaning pointing to a new type of software which is at the same time editor and simulator of a real (sustainable) empirical theory, which can also be used for gaming.

Looking deeper into this figure you can perhaps get a rough idea, which kinds of questions had to be answered before this unified view could be formulated. And every subset of this view is backed up by complete formal specifications and even formal theories. Telling the story ‘afterwards’ is often ‘simple’, but to find all the different parts in the ‘overall picture’ one after the other is rather tedious. At last I needed about 50 years of research …

In the next weeks I will write some more comments. As always there are many ‘threads’ working in parallel and I have to complete some others before.

The Everyday Application Scenario

(The following text is an English translation from an originally German text partially generated with the www.DeepL.com/Translator (free version))

Having a meta-theoretical concept of a ‘sustainable empirical theory (SET)’ accompanied by the meta-theoretical concept of ‘collective intelligence (CI)’ it isn’t straightforward how these components are working together in an everyday scenario. The following figure gives a rough outline of that framework which — probably — has to be assumed.

FIGURE : Outline of the everyday scenario applying a sustainable empirical theory (SET) together with ‘collective intelligence (CI)’. For more explanations see the text.

CONCEPTS AND PROCESSES

To have abstract (meta-theoretical) concepts it isn’t sufficient to change the real world only with these. It needs always some ‘translation’ of abstract meanings into concrete, real processes which are ‘working in everyday real environments’. Thus, every ‘concept’ needs a bundle of ‘processes’ associated with the meaning of the abstract concept which are capable to bring the abstract meaning ‘into life’.

Theory Concept

A structural concept describes e.g. on a meta-level what a ‘sustainable empirical theory’ is and compares this concept with the concept ‘game’ and ‘theater play’. Since it can quickly become very time-consuming to write down complete theories by hand, it can be very helpful to have a software (there is one under the name ‘oksimo.R’) that supports citizens in writing down the ‘text of a theory’ together with other citizens in ‘normal language’ and also to ‘simulate’ it as needed; furthermore, it would be good to be able to ‘play’ a theory interactively (and ultimately even much more).

Having the text of a theory, trying it out and developing it further is one thing. But the way to a theory can be tedious and long. It requires a great deal of ‘experience’, ‘knowledge’ and multiple forms of what is usually very vaguely called ‘intelligence’.

Concept Collective Intelligence

Intelligence typically occurs in the context of ‘biological systems’, in ‘humans’ and ‘non-humans’. More recently, there are also examples of vague intelligence being realized by ‘machines’. In the end, all these different phenomena, which are roughly summarized under the term ‘intelligence’, form a pattern which could be considered as ‘collective intelligence’ under a certain consideration. There are many prominent examples of this in the field of ‘non-human biological systems’, and then especially in ‘human biological systems’ with their ‘coordinated behavior’ in connection with their ‘symbolic languages’.

The great challenge of the future is to bring together these different ‘types of individual and collective intelligence’ into a real constructive-collective intelligence.

Concept Empirical Data

The most general form of a language is the so-called ‘normal language’ or ‘everyday language’. It contains in one concept everything we know today about languages.

An interesting aspect is the fact that the everyday language forms for each special kind of language (logic, mathematics, …) that ‘meta-language’, on whose basis the other special language is ‘introduced’.

The possible ‘elements of meaning and structures of meaning’, out of which the everyday language structures have been formed, originate from the space of everyday life and its world of events.

While the normal perceptual processes in coordination among the different speaker-listeners can already provide a lot of valuable descriptions of everyday properties and processes, specialized observation processes in the form of ‘standardized measurement processes’ can considerably increase the accuracy of descriptions. The central moment is that all participating speaker-listeners interested in a ‘certain topic’ (physics, chemistry, spatial relations, game moves, …) agree on ‘agreed description procedures’ for all ‘important properties’, which everyone performs in the same way in a transparent and reproducible way.

Processes in Everyday Life

As pointed out above whatever conceptual structures may have been agreed upon, they can only ‘come into effect’ (‘come to life’) if there are enough people who are willing to live all those ‘processes’ concretely within the framework of everyday life. This requires space, time, the necessary resources and a sufficiently strong and persistent ‘motivation’ to live these processes every day anew.

Thus, in addition to humans, animals and plants and their needs, there is now a huge amount of artificial structures (houses, roads, machines,…), each of which also makes certain demands on its environment. Knowing these requirements and ‘coordinating/managing’ them in such a way that they enable positive ‘synergies’ is a huge challenge, which – according to the impression in 2023 – often overtaxes mankind.

Pierre Lévy : Collective Intelligence – Chapter 1 – Introduction

eJournal: uffmm.org, ISSN 2567-6458, 17.March 2022 – 22.March 2022, 8:40
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

SCOPE

In the uffmm review section the different papers and books are discussed from the point of view of the oksimo paradigm. [1] In the following text the author discusses some aspects of the book “Collective Intelligence. mankind’s emerging world in cyberspace” by Pierre Lévy (translated by Robert Bonono),1997 (French: 1994)[2]

PREVIEW

Before starting a more complete review here a notice in advance.

Only these days I started reading this book of Pierre Lévy after working more than 4 years intensively with the problem of an open knowledge space for everybody as genuine part of the cyberspace. I have approached the problem from several disciplines culminating in a new theory concept which has additionally a direct manifestation in a new kind of software too. While I am now are just testing version 2 of this software and having in parallel worked through several papers of the early, the middle, and the late Karl Popper [3], I detected this book of Lévy [*] and was completely impressed by the preface of this book. His view of mankind and cyberspace is intellectual deep and a real piece of art. I had the feeling that this text could be without compromise a direct preview of our software paradigm although I didn’t know about him before.

Looking to know more about him I detected some more interesting books but especially also his blog intlekt – metadata [4], where he develops his vision of a new language for a new ‘collective intelligence’ being practiced in the cyberspace. While his ideas about ‘collective intelligence’ associated with the ‘cyberspace’ are fascinating, it appears to me that his ideas about a new language are strongly embedded in ‘classical’ concepts of language, semiotics, and computer, concepts which — in my view — are not sufficient for a new language enabling collective intelligence.

Thus it can become an exciting reading with continuous reflections about the conditions about ‘collective intelligence’ and the ‘role of language’ within this.

Chapter 1: Introduction

Position lévy

The following description of the position of Lévy described in his 1st chapter is clearly an ‘interpretation’ from the ‘viewpoint’ of the writer at this time. This is more or less ‘inevitable’. [5]

A good starting point for the project of ‘understanding the book’ seems to be the historical outline which Lévy gives on the pages 5-10. Starting with the appearance of the homo sapiens he characterizes different periods of time with different cultural patterns triggered by the homo sapiens. In the last period, which is still lasting, knowledge takes radical new ‘forms’; one central feature is the appearance of the ‘cyberspace’.

Primarily the cyberspace is ‘machine-based’, some material structure, enhanced with a certain type of dynamics enabled by algorithms working in the machine. But as part of the cultural life of the homo sapiens the cyberspace is also a cultural reality increasingly interacting directly with individuals, groups, institutions, companies, industry, nature, and even more. And in this space enabled by interactions the homo sapiens does not only encounter with technical entities alone, but also with effects/ events/ artifacts produced by other homo sapiens companions.

Lévy calls this a “re-creation of the social bond based on reciprocal apprenticeship, shared skills, imagination, and collective intelligence.” (p.10) And he adds as a supplement that “collective intelligence is not a purely cognitive object.” (p.10)

Looking into the future Lévy assumes two main axes: “The renewal of the social bond through our relation to knowledge and collective intelligence itself.” (p.11)

Important seems to be that ‘knowledge’ is also not be confined to ‘facts alone’ but it ‘lives’ in the reziproke interactions of human actors and thereby knowledge is a dynamic process.(cf. p.11) Humans as part of such knowledge processes receive their ‘identities’ from this flow. (cf. p.12) One consequence from this is “… the other remains enigmatic, becomes a desirable being in every respect.”(p.12) With some further comment: “No one knows everything, everyone knows something, all knowledge resides in humanity. There is no transcendent store of knowledge and knowledge is simply the sum of what we know.”(p.13f)

‘Collective intelligence’ dwells nearby to dynamic knowledge: “The basis and goal of collective intelligence is the mutual recognition and enrichment of individuals rather than the cult of fetishized or hypostatized communities.”(p.13) Thus Lévy can state that collective intelligence “is born with culture and growth with it.”(p.16) And making it more concrete with a direct embedding in a community: “In an intelligent community the specific objective is to permanently negotiate the order of things, language, the role of the individual, the identification and definition of objects, the reinterpretation of memory. Nothing is fixed.”(p.17)

These different aspects are accumulating in the vision of “a new humanism that incorporates and enlarges the scope of self knowledge into a form of group knowledge and collective thought. … [the] process of collective intelligence [is] leading to the creation of a distinct sense of community.”(p.17)

One side effect of such a new humanism could be “new forms of democracy, better suited to the complexity of contemporary problems…”.(p.18)

First COMMENTS

At this point I will give only some few comments, waiting with more general and final thoughts until the end of the reading of the whole text.

Shortened Timeline – Wrong Picture

The timeline which Lévy is using is helpful, but this timeline is ‘incomplete’. What is missing is the whole time ‘before’ the advent of the homo sapiens within the biological evolution. And this ‘absence’ hides the understanding of one, if not ‘the’, most important concept of all life, including the homo sapiens and its cultural process.

This central concept is today called ‘sustainable development’. It points to a ‘dynamical structure’, which is capable of ‘adapting to an ever changing environment’. Life on the planet earth is only possible from the very beginning on account of this fundamental capability starting with the first cells and being kept strongly alive through all the 3.5 Billion years (10^9) in all the following fascinating developments.

This capability to be able to ‘adapt to an ever changing environment’ implies the ability to change the ‘working structure, the body’ in a way, that the structure can change to respond in new ways, if the environment changes. Such a change has two sides: (i) the real ‘production’ of the working structures of a living system, and (ii) the ‘knowledge’, which is necessary to ‘inform’ the processes of formation and keeping an organism ‘in action’. And these basic mechanisms have additionally (iii) to be ‘distributed in a whole population’, whose sheer number gives enough redundancy to compensate for ‘wrong proposals’.

Knowing this the appearance of the homo sapiens life form manifests a qualitative shift in the structure of the adaption so far: surely prepared by several Millions of years the body of the homo sapiens with an unusual brain enabled new forms of ‘understanding the world’ in close connection with new forms of ‘communication’ and ‘cooperation’. With the homo sapiens the brains became capable to talk — mediated by their body and the surrounding body world — with other brains hidden in other bodies in a way, which enabled the sharing of ‘meaning’ rooted in the body world as well in the own body. This capability created by communication a ‘network of distributed knowledge’ encoded in the shared meaning of individual meaning functions. As long as communication with a certain meaning function with the shared meanings ‘works’, as long does this distributed knowledge’ exist. If the shared meaning weakens or breaks down this distributed knowledge is ‘gone’.

Thus, a homo sapiens population has not to wait for another generation until new varieties of their body structures could show up and compete with the changing environment. A homo sapiens population has the capability to perceive the environment — and itself — in a way, that allows additionally new forms of ‘transformations of the perceptions’ in a way, that ‘cognitive varieties of perceived environments’ can be ‘internally produced’ and being ‘communicated’ and being used for ‘sequences of coordinated actions’ which can change the environment and the homo sapiens them self.

The cultural history then shows — as Lévy has outlined shortly on his pages 5-10 — that the homo sapiens population (distributed in many competing smaller sub-populations) ‘invented’ more and more ‘behavior pattern’, ‘social rules’ and a rich ‘diversity of tools’ to improve communication and to improve the representation and processing of knowledge, which in turn helped for even more complex ‘sequences of coordinated actions’.

Sustainability & Collective Intelligence

Although until today there are no commonly accepted definitions of ‘intelligence’ and of ‘knowledge’ available [6], it makes some sense to locate ‘knowledge’ and ‘intelligence’ in this ‘communication based space of mutual coordinated actions’. And this embedding implies to think about knowledge and intelligence as a property of a population, which ‘collectively’ is learning, is understanding, is planning, is modifying its environment as well as them self.

And having this distributed capability a population has all the basics to enable a ‘sustainable development’.

Therefore the capability for a sustainable development is an emergent capability based on the processes enabled by a distributed knowledge enabled by a collective intelligence.

Having sketched out this then all the wonderful statements of Lévy seem to be ‘true’ in that they describe a dynamic reality which is provided by biological life as such.

A truly Open Space with Real Boundaries

Looking from the outside onto this biological mystery of sustainable processes based on collective intelligence using distributed knowledge one can identify incredible spaces of possible continuations. In principle these spaces are ‘open spaces’.

Looking to the details of this machinery — because we are ‘part of it’ — we know by historical and everyday experience that these processes can fail every minute, even every second.

To ‘improve’ a given situation one needs (i) not only a criterion which enables a judgment about something to be classified as being ‘not good’ (e.g. the given situation), one needs further (ii) some ‘minimal vision’ of a ‘different situation’, which can be classified by a criterion as being ‘better’. And, finally, one needs (iii) a minimal ‘knowledge’ about possible ‘actions’ which can change the given situation in successive steps to transform it into the envisioned ‘new better situation’ functioning as a ‘goal’.

Looking around, looking back, everybody has surely experiences from everyday life that these three tasks are far from being trivial. To judge something to be ‘not good’ or ‘not good enough’ presupposes a minimum of ‘knowledge’ which should be sufficiently evenly be ‘distributed’ in the ‘brains of all participants’. Without a sufficient agreement no common judgment will be possible. At the time of this writing it seems that there is plenty of knowledge around, but it is not working as a coherent knowledge space accepted by all participants. Knowledge battles against knowledge. The same is effective for the tasks (ii) and (iii).

There are many reasons why it is no working. While especially the ‘big challenges’ are of ‘global nature’ and are following a certain time schedule there is not too much time available to ‘synchronize’ the necessary knowledge between all. Mankind has until now supportet predominantly the sheer amount of knowledge and ‘individual specialized solutions’, but did miss the challenge to develop at the same time new and better ‘common processes’ of ‘shared knowledge’. The invention of computer, networks of computer, and then the multi-faceted cyberspace is a great and important invention, but is not really helpful as long as the cyberspace has not become a ‘genuin human-like’ tool for ‘distributed human knowledge’ and ‘distributed collective human-machine intelligence’.

Truth

One of the most important challenges for all kinds of knowledge is the ability to enable a ‘knowledge inspired view’ of the environment — including the actor — which is ‘in agreement with the reality of the environment’; otherwise the actions will not be able to support life in the long run. [7] Such an ‘agreement’ is a challenge, especially if the ‘real processes’ are ‘complex’ , ‘distributed’ and are happening in ‘large time frames’. As all human societies today demonstrate, this fundamental ability to use ’empirically valid knowledge’ is partially well developed, but in many other cases it seems to be nearly not in existence. There is a strong — inborn ! — tendency of human persons to think that the ‘pictures in their heads’ represent ‘automatically’ such a knowledge what is in agreement with the real world. It isn’t. Thus ‘dreams’ are ruling the everyday world of societies. And the proportion of brains with such ‘dreams’ seems to grow. In a certain sense this is a kind of ‘illness’: invisible, but strongly effective and highly infectious. Science alone seems to be not a sufficient remedy, but it is a substantial condition for a remedy.

COMMENTS

[*] The decisive hint for this book came from Athene Sorokowsky, who is member of my research group.

[1] Gerd Doeben-Henisch,The general idea of the oksimo paradigm: https://www.uffmm.org/2022/01/24/newsletter/, January 2022

[2] Pierre Lévy in wkp-en: https://en.wikipedia.org/wiki/Pierre_L%C3%A9vy

[3] Karl Popper in wkp-en: https://en.wikipedia.org/wiki/Karl_Popper. One of the papers I have written commenting on Popper can be found HERE.

[4] Pierre Lévy, intlekt – metadata, see: https://intlekt.io/blog/

[5] Who wants to know, what Lévy ‘really’ has written has to go back to the text of Lévy directly. … then the reader will read the text of Lévy with ‘his own point of view’ … indeed, even then the reader will not know with certainty, whether he did really understand Lévy ‘right’. … reading a text is always a ‘dialogue’ .. .

[6] Not in Philosophie, not in the so-called ‘Humanities’, not in the Social Sciences, not in the Empirical Sciences, and not in Computer Science!

[7] The ‘long run’ can be very short if you misjudge in the traffic a situation, or a medical doctor makes a mistake or a nuclear reactor has the wrong sensors or ….

Continuation

See HERE.

HMI Analysis for the CM:MI paradigm. Part 1

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, February 25, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Last change: March 16, 2021 (Some minor corrections)
HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 1
Introduction

Since January 2021 an intense series of posts has been published how the new ideas manifested in the new software published in this journal  can adequately be reflected in the DAAI theoretical framework. Because these ideas included in the beginning parts of philosophy, philosophy of science, philosophy of engineering, these posts have been first published in the German Blog of the author (cognitiveagent.org). This series of posts started with an online lecture for students of the University of Leipzig together with students of the ‘Hochschule für Technik, Wirtschaft und Kultur (HTWK)’ January 12, 2021.  Here is the complete list of posts:

In what follows in this text is an English version of the following 5 posts. This is not a 1-to-1 translation but rather a new version:

HMI Analysis as Part of Systems Engineering

HMI analysis as pat of systems engineering illustrated with the oksimo software
HMI analysis for the CM:MI paradigm illustrated with the oksimo software concept

As described in the original DAAI theory paper the whole topic of HMI is here understood as a job within the systems engineering paradigm.

The specification process is a kind of a ‘test’ whether the DAAI format of the HMI analysis works with this new  application too.

To remember, the main points of the integrated engineering concept are the following ones:

  1. A philosophical  framework (Philosophy of Science, Philosophy of Engineering, …), which gives the fundamentals for such a process.
  2. The engineering process as such where managers and engineers start the whole process and do it.
  3. After the clarification of the problem to be solved and a minimal vision, where to go, it is the job of the HMI analysis to clarify which requirements have to be fulfilled, to find an optimal solution for the intended product/ service. In modern versions of the HMI analysis substantial parts of the context, i.e. substantial parts of the surrounding society, have to be included in the analysis.
  4. Based on the HMI analysis  in  the logical design phase a mathematical structure has to be identified, which integrates all requirements sufficiently well. This mathematical structure has to be ‘map-able’ into a set of algorithms written in  appropriate programming languages running on  an appropriate platform (the mentioned phases Problem, Vision, HMI analysis, Logical Design are in reality highly iterative).
  5. During the implementation phase the algorithms will be translated into a real working system.
Which Kinds of Experts?

While the original version of the DAAI paper is assuming as ‘experts’ only the typical manager and engineers of an engineering process including all the typical settings, the new extended version under the label CM:MI (Collective Man-Machine Intelligence) has been generalized to any kind of human person as an expert, which allows a maximum of diversity. No one is the ‘absolute expert’.

Collective Intelligence

As ‘intelligence’ is understood here the whole of knowledge, experience, and motivations which can be the moving momentum inside of a human person. As ‘collective’  is meant  the situation, where more than one person is communicating with other persons to share it’s intelligence.

Man-Machine Symbiosis

Today there are discussions going around  about the future of man and (intelligent) machines. Most of these discussions are very weak because they are lacking clear concepts of intelligent machines as well of what is a human person. In the CM:MI paradigm the human person (together with all other biological systems)  is seen at the center of the future  (by  reasons based on modern theories of biological evolution) and the  intelligent machines are seen as supporting devices (although it is assumed here to use ‘strong’ intelligence compared to the actual ‘weak’ machine intelligence today).

CM:MI by Design

Although we know, that groups of many people are ‘in principal’ capable of sharing intelligence to define problems, visions, constructing solutions, testing the solutions etc., we know too, that the practical limits of the brains and the communication are quite narrow. For special tasks a computer can be much, much better. Thus the CM:MI paradigm provides an environment for groups of people to do the shared planning and testing in a new way, only using normal language. Thus the software is designed to enable new kinds of shared knowledge about shared common modes of future worlds. Only with such a truly general framework the vision of a sustainable society as pointed out by the United Nations since 1992 can become real.

Continuation

Look here.