THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 5. Oksimo as Theory?

eJournal: uffmm.org
ISSN 2567-6458, 24.March – 24.March 2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the  oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

DERIVATION

In formal logic exists the concept of logical derivation ‘⊢’ written as

EX e

saying that one can get the expression e out of the set of expressions E by applying the rules X.

In the oksimo case we have sets of expressions ES to represent either a given starting state S or to represent as EV a given vision V. Furthermore  we have change rules X operating on sets of expressions and we can derive sequences of states of expressions <E1, E2, …, En> by applying the change rules X with the aid of a simulator Σ onto these expressions written as

ESΣ,X <E1, E2, …, En>

Thus given an initial set of expressions ES one can derive a whole sequence of expression sets Ei by applying the change rules.

While all individual expressions of the start set ES are by assumption classified as true it holds for the derived sets of expressions Ei  that these expressions are correct with regard to the used change rules X but whether these sets of expressions are also true with regard to a given  situation Si considered as a possible future state Sfuti has to be proved separately! The reason for this unclear status results from the fact that the change rules X represent changes which the authoring experts consider as possible changes which they want to apply but they cannot guarantee the empirical validity for all upcoming times   only by thinking. This implicit uncertainty can be handled a little bit with the probability factor π of an individual change rule. The different degrees of certainty in the application of a change rule can give an approximation of this uncertainty. Thus as longer the chain of derivations is becoming as lower the assumed probability will develop.

SIMPLE OKSIMO THEORY [TOKSIMO]

Thus if we have some human actors Ahum, an environment ENV, some starting situation S as part of the environment ENV, a first set of expressions ES representing only true expressions with regard to the starting situation S, a set of elaborated change rules X, and a simulator Σ then one can  define a simple  oksimo-like theory Toksimo as follows:

TOKSIMO(x) iff x = <ENV, S, Ahum, ES, X, Σ, ⊢Σ,X, speakL(), makedecidable()>

The human actors can describe a given situation S as part of an environment ENV as a set of expressions ES which can be proved with makedecidable() as true. By defining a set of change rules X and a simulator Σ one can define  a formal derivation relation Σ,X which allows the derivation of a sequence of sets of expressions <E1, E2, …, En> written as

EST,Σ,X <E1, E2, …, En>

While the truth of the first set of expressions ES has been proved in the beginning, the truth of the derived sets of expressions has to be shown explicitly for each set Ei separately. Given is only the formal correctness of the derived expressions according to the change rules X and the working of the simulator.

VALIDADED SIMPLE OKSIMO THEORY [TOKSIMO.V]

One can extend the simple oksimo theory TOKSIMO to a biased  oksimo theory TOKSIMO.V if one includes in the theory a set of vision expressions EV. Vision expressions can describe a possible situation in the future Sfut which is declared as a goal to be reached. With a given vision document EV the simulator can check for every new derived set of expressions Ei to which degree the individual expressions e of the set of vision expressions EV are already reached.

FROM THEORY TO ENGINEERING

But one has to keep in mind that the purely formal achievement of a given vision document EV does not imply that the corresponding situation Sfut    is a real situation.  The corresponding situation Sfut  is first of all only an idea in the mind of the experts.  To transfer this idea into the real environment as a real situation is a process on its own known as engineering.

 

THE OKSIMO CASE as SUBJECT FOR PHILOSOPHY OF SCIENCE. Part 4. Describing Change

eJournal: uffmm.org
ISSN 2567-6458, 24.March – 24.March 2021
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This text is part of a philosophy of science  analysis of the case of the oksimo software (oksimo.com). A specification of the oksimo software from an engineering point of view can be found in four consecutive  posts dedicated to the HMI-Analysis for  this software.

CHANGE

AS described in part 1 of the philosophy of science analysis of the oksimo behavior space it is here assumed — following  the ideas of  von Uexküll — that every biological species SP embedded in a real environment ENV transforms this environment  in its species specific internal representation  ENVSP which is no 1-to-1 mapping. Furthermore we know from modern Biology and brain research that the human brain cuts its sensory perceptions P into time-slices P1, P2, … which have durations between about 50 – 700 milliseconds and which are organized as multi-modal structures for further processing. The results of this processing are different kinds of abstracted structures which represent — not in a 1-to-1 fashion — different aspects of a given situation S which   in the moment of being processed and then being stored is not any longer actual, ‘not now’, but ‘gone‘, ‘past‘.

Thus if we as human actors are speaking about change then we are primarily speaking about the difference which our brain can compute comparing the actual situation S being kept in an actual time-slice P0 and those abstracted structures A(P) coming out of preceding time slices interacting in many various ways with other available abstracted structures:  Diff(A(P0), A(P)) = Δint. Usually we assume automatically that the perceived internal change Δint corresponds to a change in the actual situation S leading to a follow-up situation S’ which differs with regard to the species specific perception represented in Δint as Δext = Diff(S, S’). As psychological tests can  reveal  this automatic (unconscious) assumption that a perceived change Δint corresponds to a real external change Δext must not be the case. There is a real difference between Δint, Δext and on account of this difference there exists the possibility that we can detect an error  comparing our ideas with the real world environment. Otherwise — in the absence of an error —  a congruence can be interpreted as a confirmation of our ideas.

EXPRESSIONS CAN FOLLOW REAL PROPERTIES

As described in the preceding posts about a decidable start state S and a vision V  it is possible to map a perceived actual situation S in a set of expressions ES={e1, e2, …, en }. This general assumption is valid for all real states S, which results in the fact that a series of real states S1, S2, …, Sn is conceivable where every such real state Si can be associated with a set of expressions Ei which contain individual expressions ei which represent according to the presupposed meaning function φ certain aspects/ properties Pi of the corresponding real situation Si.  Thus, if two consecutive real states Si, Si+1 are include perceived  differences  indicated by some properties then it is possible to express these differences by corresponding expressions ei as part of the whole set of expressions Ei and Ei+1. If e.g. in the successor of Si one property px expressed by ex  is missing which is present in Si then the corresponding set Ei+1 should not include the expression ex. Or if the successor state Si+1 contains a property py expressed by the expression ey which is not yet given in Si then this fact too indicates a difference. Thus the differing pair (Si, Si+1)  could correspond to the pair (Ei, Ei+1) with ex as part of Ei but not any more in Ei+1 and the expression ey not part of Ei but then in Ei+1.

The general schema could be described as:

Si+1 = Si -{px} + {py} (the real dimension)

Ei+1 = Ei – {ex} + {ey} (the symbolic dimension)

Between the real dimension and the symbolic dimension is the body with the brain offering all the neural processing which is necessary to enable such complex mappings. This can bne expressed by the following pragmatic recipe:

symbolicarticulation: S x body[brain] —> E

symbolicarticulation(S,body[brain]) = E

Having a body with a brain embedded in an actual (real) situation S the body (with the brain) can produce symbolic expressions corresponding to certain properties of the situation S.

DESCRIBING CHANGE

Assuming that symbolic articulation is possible and that there is some regular mapping between an actual situation S and a set of expressions E it is conceivable to describe the generation of two successive actual states S, S’  as follows:

Apply a Change Rule ξ of X
  • We have a given actual situation S.
  • We have a group of human actors Ahum which are using a language L.
  • The group generates a decidable description of S as a set of expressions ELS following the rules of language L.
  • Thus we have symbolicarticulation(S, Ahum) = ELS
  • The group of human actors defines a finite set of change rules X which describe which expressions Eminus should be removed from ES and which expressions Eplus should be added to ES to get the successor state  ES‘ represented in a symbolic space:
  • ES‘ = ES – Eminus + Eplus . An individual change rule ξ of X has the format:
  • IF COND THEN with probability π REMOVE Eminus and ADD Eplus.
  • COND is a set of expressions which shall be a subset of the given set ES saying: COND ⊆ ES. If this condition is satisfied (fulfilled) then the rule can be applied following probability  π.
  • Thus applying a change rule ξ to a given state S means to operate on the corresponding set of expressions ES of  S as follows:
  • applychange: S x ES x {ξ}    —> ES
  • There can be more than only one change rule ξ as a finite set X = {ξ1, ξ2, …, ξn}. They have all to be applied in a random order. Thus we get:
  • applychange: S x ES x X   —> ES‘ or applychange(S,ES,X) = ES
Simulation

If one has a given actual state S with a finite set of change rules X we know now how to apply this finite set of change rules X to a given state description  ES. But if we would enlarge the set of change rules X in a way that this set X* not only contains rules for the given actual state description ES but also for a finite number of other possible state descriptions ES* then one could repeat the application of the change rules X* several times by using the last outcome desribing ES‘ to make ES‘ to the new actual state description ES. Proceeding in this way we can generate a whole sequence of state decriptions: <ES.0, ES.1, …, ES.n> where for each pair (ES.i, ES.i+1) it holds that  applychange(Si,ES.i,X) = ES.i+1

Such a repetitive application of the applychange() rule we call here a simulation: S x ES x X   —> <ES.0, ES.1, …, ES.n> with the condition  for each pair (ES.i, ES.i+1) that it holds that  applychange(Si,ES.i,X) = ES.i+1also written as: simulation(S , ES, X) = <ES.0, ES.1, …, ES.n>.

A device which can operate a simulation is called a simulator ∑. A simulator is either a human actor or a computer with an appropriate algorithm.

 

HMI Analysis for the CM:MI paradigm. Part 3. Actor Story and Theories

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, March 2, 2021,
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Last change: March 2, 2021 13:59h (Minor corrections)

HISTORY

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI] further extended to the Collective Man-Machine Intelligence [CM:MI] paradigm.  This document is part of the Case Studies section.

HMI ANALYSIS, Part 3: Actor Story and  Theories

Context

This text is preceded by the following texts:

Introduction

Having a vision is that moment  where something really new in the whole universe is getting an initial status in some real brain which can enable other neural events which  can possibly be translated in bodily events which finally can change the body-external outside world. If this possibility is turned into reality than the outside world has been changed.

When human persons (groups of homo sapiens specimens) as experts — here acting as stakeholder and intended users as one but in different roles! — have stated a problem and a vision document, then they have to translate these inevitably more fuzzy than clear ideas into the concrete terms of an everyday world, into something which can really work.

To enable a real cooperation  the experts have to generate a symbolic description of their vision (called specification) — using an everyday language, possibly enhanced by special expressions —  in a way that  it can became clear to the whole group, which kind of real events, actions and processes are intended.

In the general case an engineering specification describes concrete forms of entanglements of human persons which enable  these human persons to cooperate   in a real situation. Thereby the translation of  the vision inside the brain  into the everyday body-external reality happens. This is the language of life in the universe.

WRITING A STORY

To elaborate a usable specification can metaphorically be understood  as the writing of a new story: which kinds of actors will do something in certain situations, what kinds of other objects, instruments etc. will be used, what kinds of intrinsic motivations and experiences are pushing individual actors, what are possible outcomes of situations with certain actors, which kind of cooperation is  helpful, and the like. Such a story is  called here  Actor Story [AS].

COULD BE REAL

An Actor Story must be written in a way, that all participating experts can understand the language of the specification in a way that   the content, the meaning of the specification is either decidable real or that it eventually can become real.  At least the starting point of the story should be classifiable as   being decidable actual real. What it means to be decidable actual real has to be defined and agreed between the participating experts before they start writing the Actor Story.

ACTOR STORY [AS]

An Actor Story assumes that the described reality is classifiable as a set of situations (states) and  a situation as part of the Actor Story — abbreviated: situationAS — is understood  as a set of expressions of some everyday language. Every expression being part of an situationAS can be decided as being real (= being true) in the understood real situation.

If the understood real situation is changing (by some event), then the describing situationAS has to be changed too; either some expressions have to be removed or have to be added.

Every kind of change in the real situation S* has to be represented in the actor story with the situationAS S symbolically in the format of a change rule:

X: If condition  C is satisfied in S then with probability π  add to S Eplus and remove from  S Eminus.

or as a formula:

S’π = S + Eplus – Eminus

This reads as follows: If there is an situationAS S and there is a change rule X, then you can apply this change rule X with probability π onto S if the condition of X is satisfied in S. In that case you have to add Eplus to S and you have to remove Eminus from S. The result of these operations is the new (successor) state S’.

The expression C is satisfied in S means, that all elements of C are elements of S too, written as C ⊆ S. The expression add Eplus to S means, that the set Eplus is unified with the set S, written as Eplus ∪ S (or here: Eplus + S). The expression remove Eminus from S means, that the set Eminus is subtracted from the set S, written as S – Eminus.

The concept of apply change rule X to a given state S resulting in S’ is logically a kind of a derivation. Given S,X you will derive by applicating X the new  S’. One can write this as S,X ⊢X S’. The ‘meaning’ of the sign ⊢  is explained above.

Because every successor state S’ can become again a given state S onto which change rules X can be applied — written shortly as X(S)=S’, X(S’)=S”, … — the repeated application of change rules X can generate a whole sequence of states, written as SQ(S,X) = <S’, S”, … Sgoal>.

To realize such a derivation in the real world outside of the thinking of the experts one needs a machine, a computer — formally an automaton — which can read S and X documents and can then can compute the derivation leading to S’. An automaton which is doing such a job is often called a simulator [SIM], abbreviated here as ∑. We could then write with more information:

S,X ⊢ S’

This will read: Given a set S of many states S and a set X of change rules we can derive by an actor story simulator ∑ a successor state S’.

A Model M=<S,X>

In this context of a set S and a set of change rules X we can speak of a model M which is defined by these two sets.

A Theory T=<M,>

Combining a model M with an actor story simulator enables a theory T which allows a set of derivations based on the model, written as SQ(S,X,⊢) = <S’, S”, … Sgoal>. Every derived final state Sgoal in such a derivation is called a theorem of T.

An Empirical Theory Temp

An empirical theory Temp is possible if there exists a theory T with a group of experts which are using this theory and where these experts can interpret the expressions used in theory T by their built-in meaning functions in a way that they always can decide whether the expressions are related to a real situation or not.

Evaluation [ε]

If one generates an Actor Story Theory [TAS] then it can be of practical importance to get some measure how good this theory is. Because measurement is always an operation of comparison between the subject x to be measured and some agreed standard s one has to clarify which kind of a standard for to be good is available. In the general case the only possible source of standards are the experts themselves. In the context of an Actor Story the experts have agreed to some vision [V] which they think to be a better state than a  given state S classified as a problem [P]. These assumptions allow a possible evaluation of a given state S in the ‘light’ of an agreed vision V as follows:

ε: V x S —> |V ⊆ S|[%]
ε(V,S) = |V ⊆ S|[%]

This reads as follows: the evaluation ε is a mapping from the sets V and S into the number of elements from the set V included in the set S converted in the percentage of the number of elements included. Thus if no  element of V is included in the set S then 0% of the vision is realized, if all elements are included then 100%, etc. As more ‘fine grained’ the set V is as more ‘fine grained’  the evaluation can be.

An Evaluated Theory Tε=<M,,ε>

If one combines the concept of a  theory T with the concept of evaluation ε then one can use the evaluation in combination with the derivation in the way that every  state in a derivation SQ(S,X,⊢) = <S’, S”, … Sgoal> will additionally be evaluated, thus one gets sequences of pairs as follows:

SQ(S,X,⊢∑,ε) = <(S’,ε(V,S’)), (S”,ε(V,S”)), …, (Sgoal, ε(V,Sgoal))>

In the ideal case Sgoal is evaluated to 100% ‘good’. In real cases 100% is only an ideal value which usually will only  be approximated until some threshold.

An Evaluated Theory Tε with Algorithmic Intelligence Tε,α=<M,,ε,α>

Because every theory defines a so-called problem space which is here enhanced by some evaluation function one can add an additional operation α (realized by an algorithm) which can repeat the simulator based derivations enhanced with the evaluations to identify those sets of theorems which are qualified as the best theorems according to some criteria given. This operation α is here called algorithmic intelligence of an actor story AS]. The existence of such an algorithmic intelligence of an actor story [αAS] allows the introduction of another derivation concept:

S,X ⊢∑,ε,α S* ⊆  S’

This reads as follows: Given a set S and a set X an evaluated theory with algorithmic intelligence Tε,α can derive a subset S* of all possible theorems S’ where S* matches certain given criteria within V.

WHERE WE ARE NOW

As it should have become clear now the work of HMI analysis is the elaboration of a story which can be done in the format of different kinds of theories all of which can be simulated and evaluated. Even better, the only language you have to know is your everyday language, your mother tongue (mathematics is understood here as a sub-language of the everyday language, which in some special cases can be of some help). For this theory every human person — in all ages! — can be a valuable  colleague to help you in understanding better possible futures. Because all parts of an actor story theory are plain texts, everybody ran read and understand everything. And if different groups of experts have investigated different  aspects of a common field you can merge all texts by only ‘pressing a button’ and you will immediately see how all these texts either work together or show discrepancies. The last effect is a great opportunity  to improve learning and understanding! Together we represent some of the power of life in the universe.

CONTINUATION

See here.

 

 

 

 

 

 

 

 

OKSIMO SW – Minimal Basic Requirements

Integrating Engineering and the Human Factor (info@uffmm.org)
eJournal uffmm.org ISSN 2567-6458, January 8, 2021
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is an integrated  engineering theory called Distributed Actor-Actor Interaction [DAAI]. This includes Human Machine Intelligence [HMIntelligence]  as part of Human Machine Interaction [HMI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly dealing with python programming – and a section about a web-server with Dragon. This document is part of the Case Studies section.

CONTENT

In the long way of making the theory  as well as the software [SW] more concrete we have reached January 5, 2021 a first published version on [www.]oksimo.com.  This version contains a sub-part of the whole concept which I call here the Minimal Basic Version [MBV] of the osimo SW. This minimal basic will be tested until the end of february 2021. Then we will add stepwise all the other intended features.

THE MINIMAL BASIC VERSION

oksimo SW Minimal Basic Version Jan 3, 2021
oksimo SW Minimal Basic Version Jan 3, 2021

If one compares this figure with the figure of the Multi-Group Management from Dec 5, 2020 one can easily detect simplifications for the first modul now called Vision [V] as well as for the last modul called Evaluation [EVAL].

While the basic modules States [S], Change Rules [X] and Simulator [SIM] stayed the same the mentioned first and last module have slightly changed in the sense that they have become simplified.

During the first tests with the oksimo reloaded SW it became clear that for a simulation unified with evaluation  it is sufficient to have at least one vision V to be compared with an actual state S whether parts of the vision V are also part of the state S. This induced the requirement that a vision V has to be understood as a collection of statements where earch statement describes some aspect of a vision as a whole.

Example 1: Thus a global vision of a city to have a ‘Kindergarten’ could be extended with facts like ‘It is free for all children’, ‘I is constructed in an ecological acceptable manner’, …

Example 2: A global vision to have a system interface [SI] for the oksimo reloaded SW could include statements (facts) like: ‘The basic mode is text input in an everyday language’, ‘In an advanced mode you can use speech-recognition tools to enter a text into the system’, ‘The basic mode of the simulation output is text-based’, ‘In an advanced mode you can use text-to-speech SW to allow audio-output of the simulation’, ….

Vision V – Statement S: The citizen which will work with the oksimo reloaded SW has now only to distinguish between the vision V which points into some — as such — unknown future and the given situation S describing some part of the everyday world. The vision with all its possible different partial views (statements, facts) can then be used to a evaluate a given state S whether the vision is already part of it or not. If during a simulation a state S* has been reached and the global vision ‘The city has a Kindergarten’ is part of S*  but not the partial aspects ‘It is free for all children’, ‘I is constructed in an ecological acceptable manner’,  then only one third of the vision has been fulfilled: eval(V,S*)= 33,3 … %. As one can see the amount of vision facts determines the fineness of the evaluation.

Requirements Point of View: In Software Engineering [SWE] and — more general — in Human-Machine Interaction [HMI] as part of System Engineering [SE] the analysis phase is characterized by a list of functional and non-functional requirements [FR, NFR]. Both concepts are in the oksimo SW parts of the vision modul. Everything you think of  to be important for your vision you can write down as some aspect of the vision.  And if you want to structure your vision into several parts you can edit different vision documents which for a simulation can be united to one document again.

Change Rules [X]: In the minimal basic version only three components of a change rule X will be considered: The condition [COND] part which checks whether an actual state S satisfies (fulfills)  the condition; the Eplus part which contains facts which shall be added to the actual state S for the next turn; the Eminus part which contains facts which shall be removed from the actual state S für the next turn. Other components like Probability [PROB] or Model [MODEL] will be added in the future.

KOMEGA REQUIREMENTS: Interactive Simulations

Integrating Engineering and the Human Factor (info@uffmm.org) eJournal uffmm.org ISSN 2567-6458, Nov 12, 2020
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

CONTENT

Introducing the interactive mode of simulation besides the existing
passive mode.

PDF DOCUMENT

requirements-interactive-simulations12nov2020

KOMEGA REQUIREMENTS: From the minimal to the basic version

ISSN 2567-6458, 18.October  2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document is part of the Case Studies section.

CONTENT

Here we present the ideas how to extend the minimal version to a first basic version. At least two more advanced levels will follow.

VIDEO (EN)

(Last change: Oct 17, 2020)

VIDEO(DE)

(last change: Oct 18, 2020)

KOMEGA REQUIREMENTS No.4, Version 1

ISSN 2567-6458, 26.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF DOCUMENT

requirements-no4-v1-26Aug2020

The Simulator as a Learning Artificial Actor [LAA]. Version 1

ISSN 2567-6458, 23.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

Abstract

The analysis of the main application scenario revealed that classical
logical inference concepts are insufficient for the assistance of human ac-
tors during shared planning. It turned out that the simulator has to be
understood as a real learning artificial actor which has to gain the required
knowledge during the process.

PDF DOCUMENT

LearningArtificialActor-v1 (last change: Aug 23, 2020)

KOMEGA REQUIREMENTS No.3, Version 1. Basic Application Scenario – Editing S

ISSN 2567-6458, 26.July – 12.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF DOCUMENT

requirements-no3-v1-12Aug2020 (Last update: August 12, 2020)

KOMEGA REQUIREMENTS No.2. Actor Story Overview

ISSN 2567-6458, 26.July – 12.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF DOCUMENT

requirements-no2-v1-11Aug2020 (Last change: August 12, 2020)

REVIEWING TARSKI’s SEMANTIC and MODEL CONCEPT. 85 Years Later …

eJournal: uffmm.org, ISSN 2567-6458,
8.August  2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

85 Years Later

The two papers of Tarski, which I do discuss here, have been published in 1936. Occasionally I have already read these paper many years ago but at that time I could not really work with these papers. Formally they seemed to be ’correct’, but in the light of my ’intuition’ the message appeared to me somehow ’weird’, not really in conformance with my experience of how knowledge and language are working in the real world. But at that time I was not able to explain my intuition to myself sufficiently. Nevertheless, I kept these papers – and some more texts of Tarski – in my bookshelves for an unknown future when my understanding would eventually change…
This happened the last days.

review-tarski-semantics-models-v1-printed

BACK TO REVIEWING SECTION

Here

 

CASE STUDY 1. FROM DAAI to ACA. Transforming HMI into ACA (Applied Cultural Anthropology)

eJournal: uffmm.org
ISSN 2567-6458, 28.July 2020
Email: info@uffmm.org

Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Abstract

The collection of papers in the Case Studies Section deals with the
possible applications of the general concept of a GCA Generative Cul-
tural Anthropology to all kinds of cultural processes. The GCA paradigm
has been derived from the formalized DAAI Distributed Actor-Actor In-
teraction theory, which in turn is a development based on the common
HMI Human Machine Interaction paradigm reformulated within the Sys-
tems Engineering paradigm. The GCA is a very general and strong theory
paradigm, but, saying this, it is for most people difficult to understand,
because it is highly interdisciplinary, and it needs some formal technical
skills, which are not too common. During the work in the last three
months it became clear, that the original HMI and DAAI approach can
also be understood as the case of something which one could call ACA
Applied Cultural Anthropology as part of an GCA. The concept of ACA
is more or less directly understandable for most people.

case1-daai-aca-v1

KOMEGA REQUIREMENTS No.1. Basic Application Scenario

KOMEGA REQUIREMENTS No.1. Basic Application Scenario

ISSN 2567-6458, 26.July – 11.August 2020
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

As described in the uffmm eJournal  the wider context of this software project is a generative theory of cultural anthropology [GCA] which is an extension of the engineering theory called Distributed Actor-Actor Interaction [DAAI]. In  the section Case Studies of the uffmm eJournal there is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

PDF TEXT:

requirements-no1-v3-11Aug2020 (published: Aug-11, 2020; this version replaces the version from 7.August 2020)

requirements-no1-v2-2-7Aug2020 (published: Aug-7, 2020; this version replaces the version from 6.August 2020)

requirements-no1-v2-6Aug2020 (published: Aug-6, 2020; this version replaces the version from 25.July 2020)

requirements-no1-25july2020-v1-pub (published: July-26, 2020)

ACI – TWO DIFFERENT READINGS

eJournal: uffmm.org
ISSN 2567-6458, 11.-12.May 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Change: May-17, 2019 (Some Corrections, ACI associations)
Change: May-20, 2019 (Reframing ACI with AAI)
CONTEXT

This text is part of the larger text dealing with the Actor-Actor Interaction (AAI)  paradigm.

HCI – HMI – AAI ==> ACI ?

Who has followed the discussion in this blog remembers several different phases in the conceptual frameworks used here.

The first paradigm called Human-Computer Interface (HCI) has been only mentioned by historical reasons.  The next phase Human-Machine Interaction (HMI) was the main paradigm in the beginning of my lecturing in 2005. Later, somewhere 2011/2012, I switched to the paradigm Actor-Actor Interaction (AAI) because I tried to generalize over  the different participating machines, robots, smart interfaces, humans as well as animals. This worked quite nice and some time I thought that this is now the final formula. But reality is often different compared to  our thinking. Many occasions showed up where the generalization beyond the human actor seemed to hide the real processes which are going on, especially I got the impression that very important factors rooted in the special human actor became invisible although they are playing decisive role in many  processes. Another punch against the AAI view came from application scenarios during the last year when I started to deal with whole cities as actors. At the end  I got the feeling that the more specialized expressions like   Actor-Cognition Interaction (ACI) or  Augmented Collective Intelligence (ACI) can indeed help  to stress certain  special properties  better than the more abstract AAI acronym, but using structures like ACI  within general theories and within complex computing environments it became clear that the more abstract acronym AAI is in the end more versatile and simplifies the general structures. ACI became a special sub-case

HISTORY

To understand this oscillation between AAI and  ACI one has to look back into the history of Human Computer/ Machine Interaction, but not only until the end of the World War II, but into the more extended evolutionary history of mankind on this planet.

It is a widespread opinion under the researchers that the development of tools to help mastering material processes was one of the outstanding events which changed the path of  the evolution a lot.  A next step was the development of tools to support human cognition like scripture, numbers, mathematics, books, libraries etc. In this last case of cognitive tools the material of the cognitive  tools was not the primary subject the processes but the cognitive contents, structures, even processes encoded by the material structures of the tools.

Only slowly mankind understood how the cognitive abilities and capabilities are rooted in the body, in the brain, and that the brain represents a rather complex biological machinery which enables a huge amount of cognitive functions, often interacting with each other;  these cognitive functions show in the light of observable behavior clear limits with regard to the amount of features which can be processed in some time interval, with regard to precision, with regard to working interconnections, and more. And therefore it has been understood that the different kinds of cognitive tools are very important to support human thinking and to enforce it in some ways.

Only in the 20th century mankind was able to built a cognitive tool called computer which could show   capabilities which resembled some human cognitive capabilities and which even surpassed human capabilities in some limited areas. Since then these machines have developed a lot (not by themselves but by the thinking and the engineering of humans!) and meanwhile the number and variety of capabilities where the computer seems to resemble a human person or surpasses human capabilities have extend in a way that it has become a common slang to talk about intelligent machines or smart devices.

While the original intention for the development of computers was to improve the cognitive tools with the intend  to support human beings one can  get today  the impression as if the computer has turned into a goal on its own: the intelligent and then — as supposed — the super-intelligent computer appears now as the primary goal and mankind appears as some old relic which has to be surpassed soon.

As will be shown later in this text this vision of the computer surpassing mankind has some assumptions which are

What seems possible and what seems to be a promising roadmap into the future is a continuous step-wise enhancement of the biological structure of mankind which absorbs the modern computing technology by new cognitive interfaces which in turn presuppose new types of physical interfaces.

To give a precise definition of these new upcoming structures and functions is not yet possible, but to identify the actual driving factors as well as the exciting combinations of factors seems possible.

COGNITION EMBEDDED IN MATTER
Actor-Cognition Interaction (ACI): A simple outline of the whole paradigm
Cognition within the Actor-Actor Interaction (AAI)  paradigm: A simple outline of the whole paradigm

The main idea is the shift of the focus away from the physical grounding of the interaction between actors looking instead more to the cognitive contents and processes, which shall be mediated  by the physical conditions. Clearly the analysis of the physical conditions as well as the optimal design of these physical conditions is still a challenge and a task, but without a clear knowledge manifested in a clear model about the intended cognitive contents and processes one has not enough knowledge for the design of the physical layout.

SOLVING A PROBLEM

Thus the starting point of an engineering process is a group of people (the stakeholders (SH)) which identify some problem (P) in their environment and which have some minimal idea of a possible solution (S) for this problem. This can be commented by some non-functional requirements (NFRs) articulating some more general properties which shall hold through the whole solution (e.g. ‘being save’, ‘being barrier-free’, ‘being real-time’ etc.). If the description of the problem with a first intended solution including the NFRs contains at least one task (T) to be solved, minimal intended users (U) (here called executive actors (eA)), minimal intended assistive actors (aA) to assist the user in doing the task, as well as a description of the environment of the task to do, then the minimal ACI-Check can be passed and the ACI analysis process can be started.

COGNITION AND AUGMENTED COLLECTIVE INTELLIGENCE

If we talk about cognition then we think usually about cognitive processes in an individual person.  But in the real world there is no cognition without an ongoing exchange between different individuals by communicative acts. Furthermore it has to be taken into account that the cognition of an individual person is in itself partitioned into two unequal parts: the unconscious part which covers about 99% of all the processes in the body and in the brain and about 1% which covers the conscious part. That an individual person can think somehow something this person has to trigger his own unconsciousness by stimuli to respond with some messages from his before unknown knowledge. Thus even an individual person alone has to organize a communication with his own unconsciousness to be able to have some conscious knowledge about its own unconscious knowledge. And because no individual person has at a certain point of time a clear knowledge of his unconscious knowledge  the person even does not really know what to look for — if there is no event, not perception, no question and the like which triggers the person to interact with its unconscious knowledge (and experience) to get some messages from this unconscious machinery, which — as it seems — is working all the time.

On account of this   logic of the individual internal communication with the individual cognition  an external communication with the world and the manifested cognition of other persons appears as a possible enrichment in the   interactions with the distributed knowledge in the different persons. While in the following approach it is assumed to represent the different knowledge responses in a common symbolic representation viewable (and hearable)  from all participating persons it is growing up a possible picture of something which is generally more rich, having more facets than a picture generated by an individual person alone. Furthermore can such a procedure help all participants to synchronize their different knowledge fragments in a bigger picture and use it further on as their own picture, which in turn can trigger even more aspects out of the distributed unconscious knowledge.

If one organizes this collective triggering of distributed unconscious knowledge within a communication process not only by static symbolic models but beyond this with dynamic rules for changes, which can be interactively simulated or even played with defined states of interest then the effect of expanding the explicit and shared knowledge will be boosted even more.

From this background it makes some sense to turn the wording Actor-Cognition Interaction into the wording Augmented Collective Intelligence where Intelligence is the component of dynamic cognition in a system — here a human person –, Collective means that different individual person are sharing their unconscious knowledge by communicative interactions, and Augmented can be interpreted that one enhances, extends this sharing of knowledge by using new tools of modeling, simulation and gaming, which expands and intensifies the individual learning as well as the commonly shared opinions. For nearly all problems today this appears to be  absolutely necessary.

ACI ANALYSIS PROCESS

Here it will be assumed that there exists a group of ACI experts which can supervise  other actors (stakeholders, domain experts, …) in a process to analyze the problem P with the explicit goal of finding a satisfying solution (S+).

For the whole ACI analysis process an appropriate ACI software should be available to support the ACI experts as well as all the other domain experts.

In this ACI analysis process one can distinguish two main phases: (1) Construct an actor story (AS) which describes all intended states and intended changes within the actor story. (2) Make several tests of the actor story to exploit their explanatory power.

ACTOR STORY (AS)

The actor story describes all possible states (S) of the tasks (T) to be realized to reach intended goal states (S+). A mapping from one state to a follow-up state will be described by a change rule (X). Thus having start state (S0) and appropriate change rules one can construct the follow-up states from the actual state (S*)  with the aid of the change rules. Formally this computation of the follow-up state (S’) will be computed by a simulator function (σ), written as: σ: S* x X  —> S.

SEVERAL TESTS

With the aid of an explicit actor story (AS) one can define the non-functional requirements (NFRs) in a way that it will become decidable whether  a NFR is valid with regard to an actor story or not. In this case this test of being valid can be done as an automated verification process (AVP). Part of this test paradigm is the so-called oracle function (OF) where one can pose a question to the system and the system will answer the question with regard to all theoretically possible states without the necessity to run a (passive) simulation.

If the size of the group is large and it is important that all members of the group have a sufficient similar knowledge about the problem(s) in question (as it is the usual case in a city with different kinds of citizens) then is can be very helpful to enable interactive simulations or even games, which allow a more direct experience of the possible states and changes. Furthermore, because the participants can act according to their individual reflections and goals the process becomes highly uncertain and nearly unpredictable. Especially for these highly unpredictable processes can interactive simulations (and games) help to improve a common understanding of the involved factors and their effects. The difference between a normal interactive simulation and a game is given in the fact that a game has explicit win-states whereas the interactive simulations doesn’t. Explicit win-states can improve learning a lot.

The other interesting question is whether an actor story AS with a certain idea for an assistive actor (aA) is usable for the executive actors. This requires explicit measurements of the usability which in turn requires a clear norm of reference with which the behavior of an executive actor (eA) during a process can be compared. Usually is the actor Story as such the norm of reference with which the observable behavior of the executing actors will be compared. Thus for the measurement one needs real executive actors which represent the intended executive actors and one needs a physical realization of the intended assistive actors called mock-up. A mock-up is not yet  the final implementation of the intended assistive actor but a physical entity which can show all important physical properties of the intended assistive actor in a way which allows a real test run. While in the past it has been assumed to be sufficient to test a test person only once it is here assumed that a test person has to be tested at least three times. This follows from the assumption that every executive (biological) actor is inherently a learning system. This implies that the test person will behave differently in different tests. The degree of changes can be a hint of the easiness and the learnability of the assistive actor.

COLLECTIVE MEMORY

If an appropriate ACI software is available then one can consider an actor story as a simple theory (ST) embracing a model (M) and a collection of rules (R) — ST(x) iff x = <M,R> –which can be used as a kind of a     building block which in turn can be combined with other such building blocks resulting in a complex network of simple theories. If these simple theories are stored in a  public available data base (like a library of theories) then one can built up in time a large knowledge base on their own.

 

 

ENGINEERING AND SOCIETY: The Role of Preferences

eJournal: uffmm.org,
ISSN 2567-6458, 4.May 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

FINAL HYPOTHESIS

This suggests that a symbiosis between creative humans and computing algorithms is an attractive pairing. For this we have to re-invent our official  learning processes in schools and universities to train the next generation of humans in a more inspired and creative usage of algorithms in a game-like learning processes.

CONTEXT

The overall context is given by the description of the Actor-Actor Interaction (AAI) paradigm as a whole.  In this text the special relationship between engineering and the surrounding society is in the focus. And within this very broad and rich relationship the main interest lies in the ethical dimension here understood as those preferences of a society which are more supported than others. It is assumed that such preferences manifesting themselves  in real actions within a space of many other options are pointing to hidden values which guide the decisions of the members of a society. Thus values are hypothetical constructs based on observable actions within a cognitively assumed space of possible alternatives. These cognitively represented possibilities are usually only given in a mixture of explicitly stated symbolic statements and different unconscious factors which are influencing the decisions which are causing the observable actions.

These assumptions represent  until today not a common opinion and are not condensed in some theoretical text. Nevertheless I am using these assumptions here because they help to shed some light on the rather complex process of finding a real solution to a stated problem which is rooted in the cognitive space of the participants of the engineering process. To work with these assumptions in concrete development processes can support a further clarification of all these concepts.

ENGINEERING AND SOCIETY

DUAL: REAL AND COGNITIVE

The relationship between an engineering process and the preferences of a society
The relationship between an engineering process and the preferences of a society

As assumed in the AAI paradigm the engineering process is that process which connects the  event of  stating a problem combined with a first vision of a solution with a final concrete working solution.

The main characteristic of such an engineering process is the dual character of a continuous interaction between the cognitive space of all participants of the process with real world objects, actions, and processes. The real world as such is a lose collection of real things, to some extend connected by regularities inherent in natural things, but the visions of possible states, possible different connections, possible new processes is bound to the cognitive space of biological actors, especially to humans as exemplars of the homo sapiens species.

Thus it is a major factor of training, learning, and education in general to see how the real world can be mapped into some cognitive structures, how the cognitive structures can be transformed by cognitive operations into new structures and how these new cognitive structures can be re-mapped into the real world of bodies.

Within the cognitive dimension exists nearly infinite sets of possible alternatives, which all indicate possible states of a world, whose feasibility is more or less convincing. Limited by time and resources it is usually not possible to explore all these cognitively tapped spaces whether and how they work, what are possible side effects etc.

PREFERENCES

Somehow by nature, somehow by past experience biological system — like the home sapiens — have developed   cultural procedures to induce preferences how one selects possible options, which one should be selected, under which circumstances and with even more constraints. In some situations these preferences can be helpful, in others they can  hide possibilities which afterwards can be  re-detected as being very valuable.

Thus every engineering process which starts  a transformation process from some cognitively given point of view to a new cognitively point of view with a following up translation into some real thing is sharing its cognitive space with possible preferences of  the cognitive space of the surrounding society.

It is an open case whether the engineers as the experts have an experimental, creative attitude to explore without dogmatic constraints the   possible cognitive spaces to find new solutions which can improve life or not. If one assumes that there exist no absolute preferences on account of the substantially limit knowledge of mankind at every point of time and inferring from this fact the necessity to extend an actual knowledge further to enable the mastering of an open unknown future then the engineers will try to explore seriously all possibilities without constraints to extend the power of engineering deeper into the heart of the known as well as unknown universe.

EXPLORING COGNITIVE POSSIBILITIES

At the start one has only a rough description of the problem and a rough vision of a wanted solution which gives some direction for the search of an optimal solution. This direction represents also a kind of a preference what is wanted as the outcome of the process.

On account of the inherent duality of human thinking and communication embracing the cognitive space as well as the realm of real things which both are connected by complex mappings realized by the brain which operates  nearly completely unconscious a long process of concrete real and cognitive actions is necessary to materialize cognitive realities within a  communication process. Main modes of materialization are the usage of symbolic languages, paintings (diagrams), physical models, algorithms for computation and simulations, and especially gaming (in several different modes).

As everybody can know  these communication processes are not simple, can be a source of  confusions, and the coordination of different brains with different cognitive spaces as well as different layouts of unconscious factors  is a difficult and very demanding endeavor.

The communication mode gaming is of a special interest here  because it is one of the oldest and most natural modes to learn but in the official education processes in schools and  universities (and in companies) it was until recently not part of the official curricula. But it is the only mode where one can exercise the dimensions of preferences explicitly in combination with an exploring process and — if one wants — with the explicit social dimension of having more than one brain involved.

In the last about 50 – 100 years the term project has gained more and more acceptance and indeed the organization of projects resembles a game but it is usually handled as a hierarchical, constraints-driven process where creativity and concurrent developing (= gaming) is not a main topic. Even if companies allow concurrent development teams these teams are cognitively separated and the implicit cognitive structures are black boxes which can not be evaluated as such.

In the presupposed AAI paradigm here the open creative space has a high priority to increase the chance for innovation. Innovation is the most valuable property in face of an unknown future!

While the open space for a real creativity has to be executed in all the mentioned modes of communication the final gaming mode is of special importance.  To enable a gaming process one has explicitly to define explicit win-lose states. This  objectifies values/ preferences hidden   in the cognitive space before. Such an  objectification makes things transparent, enables more rationality and allows the explicit testing of these defined win-lose states as feasible or not. Only tested hypothesis represent tested empirical knowledge. And because in a gaming mode whole groups or even all members of a social network can participate in a  learning process of the functioning and possible outcome of a presented solution everybody can be included.  This implies a common sharing of experience and knowledge which simplifies the communication and therefore the coordination of the different brains with their unconsciousness a lot.

TESTING AND EVALUATION

Testing a proposed solution is another expression for measuring the solution. Measuring is understood here as a basic comparison between the target to be measured (here the proposed solution) and the before agreed norm which shall be used as point of reference for the comparison.

But what can be a before agreed norm?

Some aspects can be mentioned here:

  1. First of all there is the proposed solution as such, which is here a proposal for a possible assistive actor in an assumed environment for some intended executive actors which has to fulfill some job (task).
  2. Part of this proposed solution are given constraints and non-functional requirements.
  3. Part of this proposed solution are some preferences as win-lose states which have to be reached.
  4. Another difficult to define factor are the executive actors if they are biological systems. Biological systems with their basic built in ability to act free, to be learning systems, and this associated with a not-definable large unconscious realm.

Given the explicit preferences constrained by many assumptions one can test only, whether the invited test persons understood as possible instances of the  intended executive actors are able to fulfill the defined task(s) in some predefined amount of time within an allowed threshold of making errors with an expected percentage of solved sub-tasks together with a sufficient subjective satisfaction with the whole process.

But because biological executive actors are learning systems they  will behave in different repeated  tests differently, they can furthermore change their motivations and   their interests, they can change their emotional commitment, and because of their   built-in basic freedom to act there can be no 100% probability that they will act at time t as they have acted all the time before.

Thus for all kinds of jobs where the process is more or less fixed, where nothing new  will happen, the participation of biological executive actors in such a process is questionable. It seems (hypothesis), that biological executing actors are better placed  in jobs where there is some minimal rate of curiosity, of innovation, and of creativity combined with learning.

If this hypothesis is empirically sound (as it seems), then all jobs where human persons are involved should have more the character of games then something else.

It is an interesting side note that the actual research in robotics under the label of developmental robotics is struck by the problem how one can make robots continuously learning following interesting preferences. Given a preference an algorithm can work — under certain circumstances — often better than a human person to find an optimal solution, but lacking such a preference the algorithm is lost. And actually there exists not the faintest idea how algorithms should acquire that kind of preferences which are interesting and important for an unknown future.

On the contrary, humans are known to be creative, innovative, detecting new preferences etc. but they have only limited capacities to explore these creative findings until some telling endpoint.

This suggests that a symbiosis between creative humans and computing algorithms is an attractive pairing. For this we have to re-invent our official  learning processes in schools and universities to train the next generation of humans in a more inspired and creative usage of algorithms in a game-like learning processes.