eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Extending the main page another important idea has to be noticed: quantum logic, originally created in the realm of modern physics, has brought forward a formalism dealing with superposition states (states of substantial uncertainty for the observer). This formalism has meanwhile entered other disciplines, especially disciplines dealing with cognition and decision processes (see as an excellent example the book: Jerome R. Busemeyer and Peter D. Bruza, Quantum Models of Cognition and Decision, Cambridge University Press, Cambridge (UK), 2012).
As it turns out there is a bad and a good message for the AAI paradigm: the ‘bad’ message is, that the AAI formalism so far is written in a non-quantum logic style. Thus it seems as if the AAI paradigm is stuck with the classical pre-quantum view of the world. The ‘good’ message is, that this ‘pre-quantum’ style is only at the ‘surface’ of the AAI paradigm. If one considers the ‘actor models’ – which are a substantial component of the AAI paradigm – as ‘truly quantum-like systems‘ (what they are in the ‘normal case’), then one can think of the ‘actors’ as systems having three components at least: (i) a biological basis (or some equivalent matter) consisting of highly entangled quantum systems, which are organized as ‘biological bodies‘ with a brain; (ii) a ‘consciousness‘ interacting with (iii) an ‘unconsciousness‘. The consciousness is heavily depending from the behavior of the unconsciousness in a way which resembles a superposition state! By ‘learning‘ the system can store some ‘procedures’ for later activation in the unconsciousness, but the stored procedures (a) can not override the superposition state completely and (b) the stored procedures are not immune against changes in time. Thus from the point of ‘decisions’ and of ‘thinking’ an actor is always an inherently in-deterministic system which can better be described with a quantum-logic similar formalism than with a non-quantum-logic formalism.
In general one should abandon the term ‘quantum’ from the formalism because the domain of reference are not some physical ‘quanta’ below the atoms but complete learning systems with a stochastic unconsciousness as basis for learning.
To implement these quantum logic perspective into the AAI paradigm does not change the paradigm as a whole but primarily the descriptions of the participating actors.
As a consequence of this change the simulation process has to be seen in a new way: because every participating actor is a truly indeterministic system, the whole state at some time point t is a superposition state. Therefore every concrete simulation is a ‘selection’ of ‘one path out of many possible ones’. Thus a concrete simulation can only show one fragment of an unknown bigger space of possible other runs. And their is another point: because all actors are ‘learning’ actors in the unrestricted sense (known artificial intelligence systems today are strongly restricted learners!) the actors in the process are ‘changing’. Thus an actor at time point t+x is not the same as the actor with the same ‘name’ at an earlier time point t! To draw conclusions about possible ‘repetitions in the future’ is therefore dangerous. The future in a quantum-like world will never repeat the past.
See next.