Category Archives: interface

WHAT IS LIFE? Homo Sapiens Event – First Outlines

Author: Gerd Doeben-Henisch

Changelog: March 2, 2025 – March 2, 2025

Email: info@uffmm.org

TRANSLATION: The following text is a translation from a German version into English. For the translation I am using the software @chatGPT4o with manual modifications.

CONTENT TREE

This text is part of the TOPIC Philosophy of Science.

CONTEXT

This is not another interim reflection but a continuation in the main thread of the text project ‘What is Life?’

MAIN THREADS: What is Life?

  1.  Jan 17, 2025 : “WHAT IS LIFE? WHAT ROLE DO WE PLAY? IST THERE A FUTURE?”
  2.  Jan 18, 2025 : “WHAT IS LIFE? … DEMOCRACY – CITIZENS”
  3. Jan 21, 2025 : WHAT IS LIFE? … PHILOSOPHY OF LIFE
  4. Feb 10, 2025 : WHAT IS LIFE? … If life is ‘More,’ ‘much more’ …

INSERTIONS SO FAR:

  1. Feb 15, 2025 : INSERTION: A Brief History of the Concept of Intelligence and Its Future
  2. Feb 18, 2025 : INSERTION: BIOLOGICAL INTELLIGENCE NEEDS LEARNING. Structural Analysis 
  3. Feb 20, 2025 : INSERTION : INTELLIGENCE – LEARNING – KNOWLEDGE – MATERIAL CONDITIONS; AI

TRANSITION

In text No. 4, “WHAT IS LIFE? … When Life is ‘More,’ ‘Much More’ …”, there is a central passage that should be recalled here. Following the revelation of the empirically strong acceleration in the development of complexity of life on this planet, it states:

“The curve tells the ‘historical reality’ that ‘classical biological systems’ up to Homo sapiens were able to generate with their ‘previous means.’ However, with the emergence of the ‘Homo’ type, and especially with the life form ‘Homo sapiens,’ entirely new properties come into play. With the sub-population of Homo sapiens, there is a life form that, through its ‘cognitive’ dimension and its novel ‘symbolic communication,’ can generate the foundations for action at an extremely faster and more complex level.”

Following this “overall picture,” much suggests that the emergence of Homo sapiens (that is, us) after approximately 3.5 billion years of evolution, preceded by about 400 million years of molecular development, does not occur randomly. It is hard to overlook that the emergence of Homo sapiens lies almost at the “center of the developmental trajectory.” This fact can—or must?—raise the question of whether a “special responsibility” for Homo sapiens derives from this, concerning the “future of all life” on this planet—or even beyond? This leads to the second quotation from text No. 4:

“How can a ‘responsibility for global life’ be understood by us humans, let alone practically implemented by individual human beings? How should humans, who currently live approximately 60–120 years, think about a development that must be projected millions or even more years into the future?”

Such “responsibility with a view toward the future” would—from the perspective of life as a whole—only make sense if Homo sapiens were indeed the “only currently existing life form” that possesses exactly those characteristics required for “assuming responsibility” in this current phase of life’s development.

PRELIMINARY NOTE

The following text will gradually explain how all these elements are interconnected. At this stage, references to relevant literature will be kept to a minimum, as each section would otherwise require countless citations. Nevertheless, occasional remarks will be made. If the perspective presented in the “What is Life” texts proves fundamentally viable, it would need to be further refined and embedded into current specialized knowledge in a subsequent iteration. This process could involve contributions from various perspectives. For now, the focus is solely on developing a new, complex working hypothesis, grounded in existing knowledge.


THE HOMO SAPIENS EVENT

In modern science fiction novels and films, extraterrestrials are a popular device used to introduce something extraordinary to planet Earth—whether futuristic advancements or adventurous developments from the future appearing on Earth. Of course, these are thought constructs, through which we humans tell ourselves stories, as storytelling has been an essential part of human culture since the very beginning.

Against this backdrop, it is remarkable that the Homo Sapiens Event (HSE) has not yet received a comparable level of empathic attention. Yet, the HSE possesses all the ingredients to surpass even the boldest science fiction novels and films known to us. The developmental timeline on planet Earth alone spans approximately 3.9 billion years.

If we open ourselves to the idea that the biological might be understood as the direct unfolding of properties inherently present in the non-biological—and thus ultimately in energy itself, from which the entire known universe emerged—then we are dealing with a maximal event whose roots are as old as the known universe.

Ultimately—since energy remains more unknown than known to us—the HSE, as a property of energy, could even be older than the known universe itself.

IMAGE 1: Homo Sapiens Event (HSE)

PHILOSOPHICAL APPROACH

In this text, the Homo Sapiens Event (HSE) is discussed or written about because this is the only way in which the author’s brain can exchange thoughts with the brains of readers. This means that—regardless of the content—without some form of communication, there can be no exchange between different brains.

For Homo sapiens, such communication has, from the very beginning, occurred through a symbolic language, embedded in a variety of actions, gestures, facial expressions, vocal tones, and more. Therefore, it makes sense to render this mechanism of symbolic language within a human communication process transparent enough to understand when and what kind of content can be exchanged via symbolic communication.

When attempting to explain this mechanism of symbolic communication, it becomes evident that certain preconditions must be made explicit in advance—without these, the subsequent explanation cannot function.

To encompass the broadest possible perspective on the symbolic communication occurring here, the author of this text adopts the term “philosophical perspective”—in the sense that it is intended to include all known and conceivable perspectives.

Three Isolated Perspectives (Within Philosophy)

In addition to the perspective of biology (along with many other supporting disciplines), which has been used to describe the development of the biological on planet Earth up to the Homo Sapiens Event (HSE), some additional perspectives will now be introduced. These perspectives, while grounded in the biological framework, can provide valuable insights:

Empirical Neuroscience: It is concerned with the description and analysis of observable processes in the human brain.

Phenomenology: A subdiscipline of both philosophy and psychology, it serves to describe and analyze subjective experiences.

Empirical Psychology: It focuses on the description and analysis of observable human behavior.

IMAGE 2: (Hand-drawn sketch, illustrating the developmental process) Philosophical Perspective with the subdisciplines ‘Phenomenology,’ ‘(Empirical) Psychology,’ and ‘Neuroscience’

If these three perspectives are arranged side by side, the phenomenological view includes only our own (subjective) experiences, without a direct connection to the body or the world outside the body. This is the perspective with which every human is born and which accompanies them throughout life as the “normal view of things.”

From the perspective of empirical psychology, observable behavior of humans is the central focus (other life forms can also be studied in this way, though this falls more under biology). However, the phenomena of subjective experience are not accessible within the framework of empirical psychology. While the observable properties of the brain as an empirical object, as well as those of the body, are in principle accessible to empirical psychology, the empirical properties of the brain are generally assigned to (empirical) neuroscience, and those of the body to (empirical) physiology.

From the perspective of (empirical) neuroscience, the observable properties of the brain are accessible, but not the phenomena of subjective experience or observable behavior (nor the observable properties of the body).

It becomes clear that in the chosen systematic approach to scientific perspectives, each discipline has its own distinct observational domain, which is completely separate from the observational domains of the other disciplines! This means that each of these three perspectives can develop views of its object that differ fundamentally from those of the others. Considering that all three perspectives deal with the same real object—concrete instances of Homo sapiens (HS)—one must ask: What status should we assign to these three fundamentally different perspectives, along with their partial representations of Homo sapiens? Must we, in the scientific view, divide one material object into three distinct readings of Homo sapiens (HS): the HS-Phenomenal, the HS-Behavioral, and the HS-Brain?

In scientific practice, researchers are, of course, aware that the contents of the individual observational perspectives interact with one another in some way. Science today knows that subjective experiences (Ph) strongly correlate with certain brain events (N). Similarly, it is known that certain behaviors (Vh) correlate both with subjective experiences (Ph) and with brain events (N). In order to at least observe these interactions between different domains (Ph-Vh, Ph-N, N-Vh), interdisciplinary collaborations have long been established, such as Neurophenomenology (N-Ph) and Neuropsychology (N-Vh). The relationship between psychology and phenomenology is less clear. Early psychology was heavily introspective and thus hardly distinguishable from pure phenomenology, while empirical psychology still struggles with theoretical clarity today. The term “phenomenological psychology (Ph-Vh)” appears occasionally, though without a clearly defined subject area.

While there are some interdisciplinary collaborations, a fully integrated perspective is still nowhere to be found.

The following section will attempt to present a sketch of the overall system, highlighting important subdomains and illustrating the key interactions between these areas.

Sketch of the Overall System

The following “sketch of the overall system” establishes a conceptual connection between the domains of subjective experiences (Ph), brain events (N), bodily events (BDY), the environment of the body (W), and the observable behavior (Vh) of the body in the world.

IMAGE 3: (Hand-drawn sketch, illustrating the developmental process) Depicting the following elements: (1) Subjective experiences (Ph), (2) Brain events (N), (3) Bodily events (BDY), (4) Observable behavior (Vh) of the body in the world, (5) The environment of the body (W). In the lower-left corner of the image, a concrete instance of Homo sapiens (HS) is indicated, observing the world (W) along with the various bodies (BDY) of other Homo sapiens individuals. This HS can document its observations in the form of a text, using language (L).

IMAGE 3b: Hand-drawn sketch, illustrating the developmental process – The core idea for the concept of ‘Contextual Consciousness (CCONSC)’

As can be seen, the different domains are numbered from (1) to (5), with number (1) assigned to the domain of subjective experiences (Ph). This is motivated by the fact that, due to the structure of the human body, we perceive ourselves and all other events in the form of such subjective experiences as phenomena. Where these phenomena originate—whether from the brain, the body, or the surrounding world—is not directly apparent from the phenomena themselves. They are our phenomena.

While philosophers like Kant—and all his contemporaries—were still limited to considering the possible world and themselves solely from the perspective of their own phenomena, empirical sciences since around 1900 have gradually uncovered the processes behind the phenomena, localized in the brain, allowing them to be examined more concretely. Over time, increasingly precise correlations in time between brain events (N) and subjective experiences (Ph) were discovered.

One significant breakthrough was the ability to establish a temporal relationship between subjective experiences (Ph) and brain events (N). This suggested that while our subjective experiences cannot be measured directly as experiences, their temporal relationships with brain events allow for the localization of specific areas in the brain whose functioning appears to be a prerequisite for our subjective experience. This also provided a first empirical concretization of the common concept of consciousness, which can be formulated as a working hypothesis:

What we refer to as consciousness (CONSC, 1) corresponds to subjective experiences (Ph) that are enabled by brain events (N) occurring in specific areas of the brain. How exactly this can be understood will be explained further below.

The brain events (N) localized in the brain (BRAIN, 2) form a complex event space that has been increasingly researched since around 1900. It is generally clear that this space is highly dynamic, manifesting in the fact that all events interact with each other in multiple ways. The brain is structurally distinct from the rest of the body, but at the same time, it maintains exchange processes with the body (BDY, 3) and the brain’s event space (BRAIN, 2). This exchange occurs via interfaces that can (i) translate body events into brain events and (ii) translate brain events into bodily events.

Examples of (i) include our sensory organs (eyes, ears, smell), which transform light, sound, or airborne molecules into brain events. Examples of (ii) include brain events that, for instance, activate muscles, leading to movements, or regulate glandular secretions, which influence bodily processes in various ways.

The body space (BODY, 4) is approximately 450 times larger than the space of brain events. It consists of multiple regions known as organs, which have complex internal structures and interact in diverse ways. Bodily events also maintain a complex exchange with brain events.

With the surrounding world (W,5), there are two types of exchange relationships. First, (i) interfaces where bodily events appear as excretions in the event space of the world (W), and second, (ii) bodily events that are directly controlled by brain events (e.g., in the case of movements). Together, these two forms of events constitute the OUTPUT (4a) of the body into the surrounding world (W). Conversely, there is also an INPUT (4b) from the world into the body’s event space. Here, we can distinguish between (i) events of the world that directly enter the body (e.g., nutrition intake) and (ii) events of the world that, through sensory interfaces of the body, are translated into brain events (e.g., seeing, hearing).

Given this setup, an important question arises:

How does the brain distinguish among the vast number of brain events (N)—whether an event is (i) an N originating from within the brain itself, (ii) an N originating from bodily events (BDY), or (iii) an N originating—via the body—from the external world (W)?

In other words: How can the brain recognize whether a given brain event (N) is (i) N from N, (ii) N from BDY, or (iii) N from W?

This question will be addressed further with a proposed working hypothesis.

Concept of ‘Consciousness’; Basic Assumptions

In the preceding section, an initial working hypothesis was proposed to characterize the concept of consciousness: what we refer to as consciousness (CONSC, 1) pertains to subjective experiences (Ph) that are enabled by brain events (N) occurring in specific regions of the brain.

This working hypothesis will now be refined by introducing additional assumptions. While all of these assumptions are based on scientific and philosophical knowledge, which are supported by various forms of justification, many details remain unresolved, and a fully integrated theory is still lacking. The following additional assumptions apply:

  1. Normally, all phenomena that we can explicitly experience subjectively are classified as part of explicit consciousness (ECONSC ⊆ CONSC). We then say that we are aware of something.
  2. However, there is also a consciousness of something that is not directly correlated with any explicit phenomenon. These are situations in which we assume relationships between phenomena, even though these relationships themselves are not experienced as phenomena. Examples include:
    • Spoken sounds that refer to phenomena,
    • Comparative size relations between phenomena,
    • Partial properties of a phenomenon,
    • The relationship between current and remembered phenomena,
    • The relationship between perceived and remembered phenomena.
      This form of consciousness that exists in the context of phenomena but is not itself a phenomenon will be referred to here as contextual consciousness (CCONSC ⊆ CONSC). Here, too, we can say that we are aware of something, but in a somewhat different manner.
  3. This distinction between explicit consciousness (ECONSC) and contextual consciousness (CCONSC) suggests that the ability to be aware of something is broader than what explicit consciousness alone implies. This leads to the working hypothesis that what we intuitively call consciousness (CONSC) is the result of the way our brain operates.

Basic Assumptions on the Relationship Between Brain Events and Consciousness

Given today’s neuroscientific findings, the brain appears as an exceedingly complex system. For the considerations in this text, the following highly simplified working hypotheses are formulated:

  1. Empirical brain events are primarily generated and processed by specialized cells called neurons (N). A neuron can register events from many other neurons and generate exactly one event, which can then be transmitted to many other neurons. This output event can also be fed back as an input event to the generating neuron (direct feedback loops). Time and intensity also play a role in the generation and transmission of events.
  2. The arrangement of neurons is both serial (an event can be transmitted from one neuron to the next, and so on, with modifications occurring along the way) and hierarchical (layers exist in which events from lower layers can be represented in a compressed or abstracted form in higher layers).

From this, the basic assumptions about the relationship between brain events and conscious events are as follows:

  1. Some brain events become explicitly conscious phenomena (ECONSC).
  2. Contextual consciousness (CCONSC) occurs when a network of neurons represents a relationship between different units. The relationship itself is then consciously known, but since a relationship is not an object (not an explicit phenomenon), we can know these relationships, but they do not appear explicitly as phenomena (e.g., the explicit phenomenon of a “red car” in text and the perceptual object of a “red car”—we can know the relationship between them, but it is not explicitly given).
  3. The concept of consciousness (CONSC) thus consists at least of explicit phenomenal consciousness (ECONSC) and contextual consciousness (CCONSC). A more detailed analysis of both the phenomenal space (Ph) and the working processes of the brain (N) as the domain of all brain events will allow for further differentiation of these working hypotheses.

After these preliminary considerations regarding the different event spaces in which a Homo sapiens (HS) can participate through different access modalities (W – BDY – N(CONSC)), the following section will provide an initial sketch of the role of language (L) (with further elaborations to follow).

Descriptive Texts

As previously indicated, within each of the listed observational perspectives—observable behavior (Vh), subjective experiences (Ph), and brain events (N) (see IMAGE 2)—texts are created through which actors exchange their individual views. Naturally, these texts must be formulated in a language that all participants can understand and actively use.

Unlike everyday language, modern scientific discourse imposes minimal requirements on these texts. Some of these requirements can be described as follows:

  1. For all linguistic expressions that refer to observable events within the domain of a given perspective, it must be clear how their empirical reference to a real object can be verified intersubjectively. In the verification process, it must be possible to determine at least one of the following: (i) It applies (is true), (ii) It does not apply (is false), (iii) A decision is not possible (undetermined)
  2. It must also be clear: (i) Which linguistic expressions are not empirical but abstract, (ii) How these abstract expressions relate to other abstract expressions or empirical expressions, (iii) To what extent expressions that are themselves not empirical can still be evaluated in terms of truth or falsehood through their relationships to other expressions

How these requirements are practically implemented remains, in principle, open—as long as they function effectively among all participating actors.

While these requirements can, in principle, be fulfilled within the perspective of empirical psychology and neuroscience, a phenomenological perspective cannot fully meet at least the first requirement, since the subjective phenomena of an individual actor cannot be observed by other actors. This is only possible—and even then, only partially—through indirect means.

For example, if there is a subjective phenomenon (such as an optical stimulus, a smell, or a sound) that correlates with something another actor can also perceive, then one could say: “I see a red light,” and the other actor can assume that the speaker is seeing something similar to what they themselves are seeing.

However, if someone says, “I have a toothache,” the situation becomes more difficult—because the other person may never have experienced toothache before and therefore does not fully understand what the speaker means. With the vast range of bodily sensations, emotions, dreams, and other subjective states, it becomes increasingly challenging to synchronize perceptual content.

The Asymmetry Between Empirical and Non-Empirical Perspectives

This indicates a certain asymmetry between empirical and non-empirical perspectives. Using the example of empirical psychology and neuroscience, we can demonstrate that we can engage empirically with the reality surrounding us—yet, as actors, we remain irreversibly anchored in a phenomenological (subjective) perspective.

The key question arises: How can we realize a transition from the inherently built-in phenomenological perspective to an empirical perspective?

Where is the missing link? What constitutes the possible connection that we cannot directly perceive?

Referring to IMAGE 3, this question can be translated into the following format: How can the brain recognize whether a given brain event (N) originates from
(i) another brain event (N from N),
(ii) a bodily event (N from BDY),
(iii) an external world event (N from W)?

This question will be explored further in the following sections.

Outlook

The following text will provide a more detailed explanation of the functioning of symbolic language, particularly in close cooperation with thinking. It will also illustrate that individual intelligence unfolds its true power only in the context of collective human communication and cooperation.

chatGBT about Rationality: Emotions, Mystik, Unconscious, Conscious, …

eJournal: uffmm.org
ISSN 2567-6458, 15.January 2023 – 16.January 2023
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

CONTEXT

This texts reflects some ideas following the documented chat No.4.as part of the uffmm.org blog.

Remark: See for a follow-up reflection the text of my post “chatGPT – How drunk do you have to be …” from 15./16.
February 2023.

Chatbots as Interfaces to the Human Knowledge Cloud?

Already at the end of the documented chat No.4 I had the impression, that an interaction with the chatbot chatGBT is somehow different compared to what most people until know have reported or stated in some reflected way about chatGBT.

In a first — and still a little bit vague — conclusion I have stated: “Apropos ‘rational’: that is a point which did surprise me really: as a kind of a summary it came out “that human rationality is composed of emotions, spiritual experience as well as conscious as well as unconscious cognitive processes. This is clearly not what most philosophers today would say. But it follows from the ‘richness of the facts’  which came as a resonance out of this chat. Not that the chatbot would have given this summary in advance as an important characterization of rationality, but as a human counterpart I could summarize all this properties out of the different separated statements [of chatGBT].”

And, indeed, the millions, if not yet billions, of documents in the world wide web are reflecting fragments of knowledge generated by humans which as a whole form a ‘cloud of knowledge’. The reflected echo of the real world through the medium of human brains is distributed in libraries and in the digital space. No individual person as such can make use of it; it is by far too big to be comprehensible.

Meanwhile search-algorithms can help us to make fragments of this ‘human knowledge cloud’ visible, but the search-results so far are ‘transformed’ in a way which is only of very limited use.

My encounter with chatGBT revealed some new glimpses of a possible new paradigm which perhaps wasn’t intended by openai themselves, but which seems now to be in reach: the individual brain has a limited capacity for ‘many documents’, but it has still an incredible ability to ‘transform’ billions of events into complex abstract patterns, inducing complex networks of relations, complex models, even complex theories.

If one looks to a chatbot like chatGBT as an ‘interface’ between a single human person and the ‘human knowledge cloud’, and this by only using ‘everyday language’, then — depending from the quality of the chatbot — this individual human can only with some ideas and questions ‘trigger’ those documents in the huge ‘human knowledge cloud’ which somehow are ‘fitting’ the triggering words. Thus this individual human person is step-wise encountering those fragments of the ‘human knowledge cloud’ which are in ‘resonance’ with his own words. In a bad case this interaction resembles those ‘echo chambers’ of the internet and the real world where people only get back what they put in.

But in a creative case the input of the individual human person can trigger fragments which are somehow confirming, but somehow non-confirming. This can be a trigger onto the the individual human person to generate some new ideas to feed back again the chatbot interface. While the ‘human knowledge cloud’ at a certain moment of time as such is ‘given’ and will not create ‘something new’, an individual person as an ever running learning process (in principle) could generate new aspects and therefore transform the feedbacks out of the ‘human knowledge cloud’ into some ‘new configurations’.

This principle as such is not new. The human brains are working since millions of years with a mechanisms, where the billions of abstract-concrete cognitive entities derived from perceptions and thinking are ‘stored’ in a more or less ‘unconscious space’ called memory, and only if some actual perception or thinking is ‘touching’ some of these stored entities by some ‘kind of similarity’ these will be re-activated and will become part of the actual perceiving and actual thinking. Thus ‘actual new things’ can become merged with ‘past stored things’ forming some new-past construct. This inherent duality of ‘new-past’ is the basis for that important human capability to be able to transcend the almighty presence and escape its clasp.

If we switch to the level of the human population then the ‘Human knowledge cloud’ plays the role of the ‘unconscious memory system’ collecting ‘past things’, and some kinds of chatbots (if they would be good enough) could play the role of the ‘merger mechanism’ bringing together the ‘past’ (given in the ‘Human knowledge cloud’ ) and the ‘presence’ (given in the actual living human person) and it is then up to the human person to generate some useful new-past patterns of thoughts and possible actions.

In case of the chat No.4 the human actor triggered lots of questions and suggestions to get ‘out of the human knowledge cloud’ those fragments which are somehow corresponding to the triggering words. And after about 8000 signs in the chat the chat ended up in these paragraphs:

HumanOK, this all sums up to the conclusion that human rationality is composed of emotions, spiritual experience as well as conscious as well as unconscious cognitive processes. Do I miss something important?

Machine (citing human documents): No, you have accurately summed up the components of human rationality. Additionally, human rationality is also composed of social and cultural influences, which can shape and inform our understanding of the world and our decisions. Additionally, human rationality is often impacted by our values and beliefs, which can provide a moral foundation for our behavior and decision making. Finally, human rationality is also impacted by our environment, which can provide a source of information and insight.

By itself the chatbot would not have been able to start with such a characterization. He can ‘reach out’ in the ‘Human knowledge cloud’, but the bot algorithm as such has not — as far as research can see at the moment — any kind of ‘creative rational power’ to transform the ‘given knowledge’ into some new ‘helpful’ knowledge. But at the other side, the human persons would not be able too to make use of ‘all the available knowledge’.

In the course of interaction the human questions could ‘drive’ the bot to collect ‘interesting facts’which could then become ‘accepted’ by the bot because they haven become ‘part of the chat’. Thus at the end of the chat the bot could accept that human rationality is composed of emotions, spiritual experience as well as conscious as well as unconscious cognitive processes. A human person ‘helped him’ to state this. This bot algorithm as such does not know anything and he cannot understand anything. Because chatbots — until now — do not possess real emotions, no real mystical experience, no unconscious or conscious human-like cognitive processes, they have no intelligence in the human format.

It is an open question what kind of ‘intelligence’ they have at all. Until know there is great number of ‘definitions’ around. No one is accepted as ‘that’ definition, especially the relationship between the ‘collection of machine intelligence definitions’ and the possible — also not really existing — collection of ‘human intelligence definitions’ is more or less unclear. Thus we are somehow ‘dreaming’ of intelligence, but nobody can really explain what it is …. We could seriously try, if we want …. but who wants it?

STARTING WITH PYTHON3 – The very beginning – part 9

Journal: uffmm.org,
ISSN 2567-6458, July 24-25, 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email:gerd@doeben-henisch.de

CONTEXT

This is the next step in the python3 programming project. The overall context is still the python Co-Learning project.

SUBJECT

In this file you will see a first encounter between the AAI paradigm (described in the theory part of this uffmm blog) and some applications of the python programming language. A simple virtual world with objects and actors can become activated with a free selectable size, amount of objects and amount of actors. In later post lots of experiments with this virtual world will be described as well as many extensions.

SOURCE CODE
Main file: vw4.py

The main file ‘vw4.py’ describes the start of a virtual world and then allows a loop to run this world n-many times.

Import file: vwmanager.py

The main file ‘vw4.py’ is using many functions to enable the process. All these functions are collected in the file ‘vwmanager.py’. This file will automatically be loaded during run time of the program vw4.py.

COMMENTS

comment-vw4

DEMO

TEST RUN AUG 19, 2919, 12:56h

gerd@Doeben-Henisch:~/code$ python3 vw4.py
Amount of information: 1 is maximum, 0 is minimum0
Number of columns (= equal to rows!) of 2D-grid ?4
[‘_’, ‘_’, ‘_’, ‘_’]

[‘_’, ‘_’, ‘_’, ‘_’]

[‘_’, ‘_’, ‘_’, ‘_’]

[‘_’, ‘_’, ‘_’, ‘_’]

Percentage (as integer) of obstacles in the 2D-grid?77
Percentage (as integer) of Food Objects in the 2D-grid ?44
Percentage (as integer) of Actor Objects in the 2D-grid ?15

Objects as obstacles

[0, 2, ‘O’]

[0, 3, ‘O’]

[1, 2, ‘O’]

[2, 3, ‘O’]

Objects as food

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Objects as actor

[1, 3, ‘A’, [0, 1000, 100, 500, 0]]

[3, 2, ‘A’, [1, 1000, 100, 500, 0]]

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘A’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘A’, ‘F’]

END OF PREPARATION

WORLD CYCLE STARTS

—————————————————-
Real percentage of obstacles = 25.0
Real percentage of food = 37.5
Real percentage of actors = 12.5
—————————————————-
How many CYCLES do you want?25
Singe Step = 1 or Continous = 0?1
Length of olA 2

—————————————————–

WORLD AT CYCLE = 0

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘A’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘A’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 1000, 100, 500, -1]]

[2, 1, ‘A’, [1, 1000, 100, 500, 8]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 1

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘A’]

[‘F’, ‘A’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 900, 100, 500, -1]]

[2, 1, ‘A’, [1, 900, 100, 500, 0]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 2

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘A’]

[‘F’, ‘A’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 800, 100, 500, -1]]

[1, 1, ‘A’, [1, 1300, 100, 500, 1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 500, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 3

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘A’, ‘O’, ‘A’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 700, 100, 500, -1]]

[2, 0, ‘A’, [1, 1700, 100, 500, 6]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 600, 100]]

[2, 0, ‘F’, [2, 500, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 4

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘A’]

[‘A’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 600, 100, 500, -1]]

[1, 0, ‘A’, [1, 1600, 100, 500, 1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 700, 100]]

[2, 0, ‘F’, [2, 600, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 5

[‘F’, ‘_’, ‘O’, ‘O’]

[‘A’, ‘F’, ‘O’, ‘A’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 500, 100, 500, -1]]

[1, 1, ‘A’, [1, 2000, 100, 500, 3]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 300, 100]]

[2, 0, ‘F’, [2, 700, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 6

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘A’, ‘O’, ‘A’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 400, 100, 500, -1]]

[1, 1, ‘A’, [1, 1900, 100, 500, -1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 400, 100]]

[2, 0, ‘F’, [2, 800, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 7

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘A’, ‘O’, ‘A’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 300, 100, 500, -1]]

[1, 1, ‘A’, [1, 1800, 100, 500, -1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 500, 100]]

[2, 0, ‘F’, [2, 900, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 8

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘A’, ‘O’, ‘A’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 200, 100, 500, -1]]

[1, 1, ‘A’, [1, 1700, 100, 500, -1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 600, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 2

—————————————————–

WORLD AT CYCLE = 9

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘A’, ‘O’, ‘A’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 3, ‘A’, [0, 100, 100, 500, 0]]

[1, 0, ‘A’, [1, 1600, 100, 500, 7]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 700, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 10

[‘F’, ‘_’, ‘O’, ‘O’]

[‘A’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 0, ‘A’, [1, 1500, 100, 500, -1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 800, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 11

[‘F’, ‘_’, ‘O’, ‘O’]

[‘A’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 0, ‘A’, [1, 1400, 100, 500, -1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 900, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 12

[‘F’, ‘_’, ‘O’, ‘O’]

[‘A’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 0, ‘A’, [1, 1300, 100, 500, -1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 13

[‘F’, ‘_’, ‘O’, ‘O’]

[‘A’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[2, 0, ‘A’, [1, 1700, 100, 500, 5]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 500, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 14

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘A’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 1, ‘A’, [1, 2100, 100, 500, 2]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 500, 100]]

[2, 0, ‘F’, [2, 600, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 15

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘A’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[0, 0, ‘A’, [1, 2500, 100, 500, 8]]

[0, 0, ‘F’, [0, 500, 100]]

[1, 1, ‘F’, [1, 600, 100]]

[2, 0, ‘F’, [2, 700, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 16

[‘A’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[0, 0, ‘A’, [1, 2400, 100, 500, -1]]

[0, 0, ‘F’, [0, 600, 100]]

[1, 1, ‘F’, [1, 700, 100]]

[2, 0, ‘F’, [2, 800, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 17

[‘A’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[0, 0, ‘A’, [1, 2300, 100, 500, -1]]

[0, 0, ‘F’, [0, 700, 100]]

[1, 1, ‘F’, [1, 800, 100]]

[2, 0, ‘F’, [2, 900, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 18

[‘A’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[0, 0, ‘A’, [1, 2200, 100, 500, -1]]

[0, 0, ‘F’, [0, 800, 100]]

[1, 1, ‘F’, [1, 900, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 19

[‘A’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[0, 0, ‘A’, [1, 2100, 100, 500, -1]]

[0, 0, ‘F’, [0, 900, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 20

[‘A’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[0, 0, ‘A’, [1, 2000, 100, 500, -1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 21

[‘A’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[0, 0, ‘A’, [1, 1900, 100, 500, 0]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 22

[‘A’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[0, 1, ‘A’, [1, 1800, 100, 500, 3]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 1000, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 23

[‘F’, ‘A’, ‘O’, ‘O’]

[‘_’, ‘F’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 1, ‘A’, [1, 2200, 100, 500, 5]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 500, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

Length of olA 1

—————————————————–

WORLD AT CYCLE = 24

[‘F’, ‘_’, ‘O’, ‘O’]

[‘_’, ‘A’, ‘O’, ‘_’]

[‘F’, ‘_’, ‘F’, ‘O’]

[‘F’, ‘_’, ‘_’, ‘F’]

Press key c for continuation!c
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Updated energy levels in olF and olA
[1, 1, ‘A’, [1, 2100, 100, 500, -1]]

[0, 0, ‘F’, [0, 1000, 100]]

[1, 1, ‘F’, [1, 600, 100]]

[2, 0, ‘F’, [2, 1000, 100]]

[2, 2, ‘F’, [3, 1000, 100]]

[3, 0, ‘F’, [4, 1000, 100]]

[3, 3, ‘F’, [5, 1000, 100]]

 

THE BIG PICTURE: HCI – HMI – AAI in History – Engineering – Society – Philosophy

eJournal: uffmm.org,
ISSN 2567-6458, 20.April 2019
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

A first draft version …

CONTEXT

The context for this text is the whole block dedicated to the AAI (Actor-Actor Interaction)  paradigm. The aim of this text is to give the big picture of all dimensions and components of this subject as it shows up during April 2019.

The first dimension introduced is the historical dimension, because this allows a first orientation in the course of events which lead  to the actual situation. It starts with the early days of real computers in the thirties and forties of the 20 century.

The second dimension is the engineering dimension which describes the special view within which we are looking onto the overall topic of interactions between human persons and computers (or machines or technology or society). We are interested how to transform a given problem into a valuable solution in a methodological sound way called engineering.

The third dimension is the whole of society because engineering happens always as some process within a society.  Society provides the resources which can be used and spends the preferences (values) what is understood as ‘valuable’, as ‘good’.

The fourth dimension is Philosophy as that kind of thinking which takes everything into account which can be thought and within thinking Philosophy clarifies conditions of thinking, possible tools of thinking and has to clarify when some symbolic expression becomes true.

HISTORY

In history we are looking back in the course of events. And this looking back is in a first step guided by the  concepts of HCI (Human-Computer Interface) and  HMI (Human-Machine Interaction).

It is an interesting phenomenon how the original focus of the interface between human persons and the early computers shifted to  the more general picture of interaction because the computer as machine developed rapidly on account of the rapid development of the enabling hardware (HW)  the enabling software (SW).

Within the general framework of hardware and software the so-called artificial intelligence (AI) developed first as a sub-topic on its own. Since the last 10 – 20 years it became in a way productive that it now  seems to become a normal part of every kind of software. Software and smart software seem to be   interchangeable. Thus the  new wording of augmented or collective intelligence is emerging intending to bridge the possible gap between humans with their human intelligence and machine intelligence. There is some motivation from the side of society not to allow the impression that the smart (intelligent) machines will replace some day the humans. Instead one is propagating the vision of a new collective shape of intelligence where human and machine intelligence allows a symbiosis where each side gives hist best and receives a maximum in a win-win situation.

What is revealing about the actual situation is the fact that the mainstream is always talking about intelligence but not seriously about learning! Intelligence is by its roots a static concept representing some capabilities at a certain point of time, while learning is the more general dynamic concept that a system can change its behavior depending from actual external stimuli as well as internal states. And such a change includes real changes of some of its internal states. Intelligence does not communicate this dynamics! The most demanding aspect of learning is the need for preferences. Without preferences learning is impossible. Today machine learning is a very weak example of learning because the question of preferences is not a real topic there. One assumes that some reward is available, but one does not really investigate this topic. The rare research trying to do this job is stating that there is not the faintest idea around how a general continuous learning could happen. Human society is of no help for this problem while human societies have a clash of many, often opposite, values, and they have no commonly accepted view how to improve this situation.

ENGINEERING

Engineering is the art and the science to transform a given problem into a valuable and working solution. What is valuable decides the surrounding enabling society and this judgment can change during the course of time.  Whether some solution is judged to be working can change during the course of time too but the criteria used for this judgment are more stable because of their adherence to concrete capabilities of technical solutions.

While engineering was and is  always  a kind of an art and needs such aspects like creativity, innovation, intuition etc. it is also and as far as possible a procedure driven by defined methods how to do things, and these methods are as far as possible backed up by scientific theories. The real engineer therefore synthesizes art, technology and science in a unique way which can not completely be learned in the schools.

In the past as well as in the present engineering has to happen in teams of many, often many thousands or even more, people which coordinate their brains by communication which enables in the individual brains some kind of understanding, of emerging world pictures,  which in turn guide the perception, the decisions, and the concrete behavior of everybody. And these cognitive processes are embedded — in every individual team member — in mixtures of desires, emotions, as well as motivations, which can support the cognitive processes or obstruct them. Therefore an optimal result can only be reached if the communication serves all necessary cognitive processes and the interactions between the team members enable the necessary constructive desires, emotions, and motivations.

If an engineering process is done by a small group of dedicated experts  — usually triggered by the given problem of an individual stakeholder — this can work well for many situations. It has the flavor of a so-called top-down approach. If the engineering deals with states of affairs where different kinds of people, citizens of some town etc. are affected by the results of such a process, the restriction to  a small group of experts  can become highly counterproductive. In those cases of a widespread interest it seems promising to include representatives of all the involved persons into the executing team to recognize their experiences and their kinds of preferences. This has to be done in a way which is understandable and appreciative, showing esteem for the others. This manner of extending the team of usual experts by situative experts can be termed bottom-up approach. In this usage of the term bottom-up this is not the opposite to top-down but  is reflecting the extend in which members of a society are included insofar they are affected by the results of a process.

SOCIETY

Societies in the past and the present occur in a great variety of value systems, organizational structures, systems of power etc.  Engineering processes within a society  are depending completely on the available resources of a society and of its value systems.

The population dynamics, the needs and wishes of the people, the real territories, the climate, housing, traffic, and many different things are constantly producing demands to be solved if life shall be able and continue during the course of time.

The self-understanding and the self-management of societies is crucial for their ability to used engineering to improve life. This deserves communication and education to a sufficient extend, appropriate public rules of management, otherwise the necessary understanding and the freedom to act is lacking to use engineering  in the right way.

PHILOSOPHY

Without communication no common constructive process can happen. Communication happens according to many  implicit rules compressed in the formula who when can speak how about what with whom etc. Communication enables cognitive processes of for instance  understanding, explanations, lines of arguments.  Especially important for survival is the ability to make true descriptions and the ability to decide whether a statement is true or not. Without this basic ability communication will break down, coordination will break down, life will break down.

The basic discipline to clarify the rules and conditions of true communication, of cognition in general, is called Philosophy. All the more modern empirical disciplines are specializations of the general scope of Philosophy and it is Philosophy which integrates all the special disciplines in one, coherent framework (this is the ideal; actually we are far from this ideal).

Thus to describe the process of engineering driven by different kinds of actors which are coordinating themselves by communication is primarily the task of philosophy with all their sub-disciplines.

Thus some of the topics of Philosophy are language, text, theory, verification of a  theory, functions within theories as algorithms, computation in general, inferences of true statements from given theories, and the like.

In this text I apply Philosophy as far as necessary. Especially I am introducing a new process model extending the classical systems engineering approach by including the driving actors explicitly in the formal representation of the process. Learning machines are included as standard tools to improve human thinking and communication. You can name this Augmented Social Learning Systems (ASLS). Compared to the wording Augmented Intelligence (AI) (as used for instance by the IBM marketing) the ASLS concept stresses that the primary point of reference are the biological systems which created and create machine intelligence as a new tool to enhance biological intelligence as part of biological learning systems. Compared to the wording Collective Intelligence (CI) (as propagated by the MIT, especially by Thomas W.Malone and colleagues) the spirit of the CI concept seems to be   similar, but perhaps only a weak similarity.

ACTOR-ACTOR INTERACTION [AAI] WITHIN A SYSTEMS ENGINEERING PROCESS (SEP). An Actor Centered Approach to Problem Solving

eJournal: uffmm.org, ISSN 2567-6458
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

ATTENTION: The actual Version  you will find HERE.

Draft version 22.June 2018

Update 26.June 2018 (Chapter AS-AM Summary)

Update 4.July 2018 (Chapter 4 Actor Model; improving the terminology of environments with actors, actors as input-output systems, basic and real interface, a first typology of input-output systems…)

Update 17.July 2018 (Preface, Introduction new)

Update 19.July 2018 (Introduction final paragraph!, new chapters!)

Update 20.July 2018 (Disentanglement of chapter ‘Simulation & Verification’ into two independent chapters; corrections in the chapter ‘Introduction’; corrections in chapter ‘AAI Analysis’; extracting ‘Simulation’ from chapter ‘Actor Story’ to new chapter ‘Simulation’; New chapter ‘Simulation’; Rewriting of chapter ‘Looking Forward’)

Update 22.July 2018 (Rewriting the beginning of the chapter ‘Actor Story (AS)’, not completed; converting chapter ‘AS+AM Summary’ to ‘AS and AM Philosophy’, not completed)

Update 23.July 2018 (Attaching a new chapter with a Case Study illustrating an actor story (AS). This case study is still unfinished. It is a case study of  a real project!)

Update 7.August 2018 (Modifying chapter Actor Story, the introduction)

Update 8.August 2018 (Modifying chapter  AS as Text, Comic, Graph; especially section about the textual mode and the pictorial mode; first sketch for a mapping from the textual mode into the pictorial mode)

Update 9.August 2018 (Modification of the section ‘Mathematical Actor Story (MAS) in chapter 4).

Update 11.August 2018 (Improving chapter 3 ‘Actor Story; nearly complete rewriting of chapter 4 ‘AS as text, comic, graph’.)

Update 12.August 2018 (Minor corrections in the chapters 3+4)

Update 13.August 2018 (I am still catched by the chapters 3+4. In chapter  the cognitive structure of the actors has been further enhanced; in chapter 4 a complete example of a mathematical actor story could now been attached.)

Update 14.August 2018 (minor corrections to chapter 4 + 5; change-statements define for each state individual combinatorial spaces (a little bit like a quantum state); whether and how these spaces will be concretized/ realized depends completely from the participating actors)

Update 15.August 2018 (Canceled the appendix with the case study stub and replaced it with an overview for  a supporting software tool which is needed for the real usage of this theory. At the moment it is open who will write the software.)

Update 2.October 2018 (Configuring the whole book now with 3 parts: I. Theory, II. Application, III. Software. Gerd has his focus on part I, Zeynep will focus on part II and ‘somebody’ will focus on part III (in the worst case we will — nevertheless — have a minimal version :-)). For a first quick overview about everything read the ‘Preface’ and the ‘Introduction’.

Update 4.November 2018 (Rewriting the Introduction (and some minor corrections in the Preface). The idea of the rewriting was to address all the topics which will be discussed in the book and pointing out to the logical connections between them. This induces some wrong links in the following chapters, which are not yet updated. Some chapters are yet completely missing. But to improve the clearness of the focus and the logical inter-dependencies helps to elaborate the missing texts a lot. Another change is the wording of the title. Until now it is difficult to find a title which is exactly matching the content. The new proposal shows the focus ‘AAI’ but lists the keywords of the main topics within AAA analysis because these topics are usually not necessarily associated with AAI.)

ACTOR-ACTOR INTERACTION [AAI]. An Actor Centered Approach to Problem Solving. Combining Engineering and Philosophy

by

GERD DOEBEN-HENISCH in cooperation with  LOUWRENCE ERASMUS, ZEYNEP TUNCER

LATEST  VERSION AS PDF

BACKGROUND INFORMATION 19.Dec.2018: Application domain ‘Communal Planning and e-Gaming’

BACKGROUND INFORMATION 24.Dec.2018: The AAI-paradigm and Quantum Logic

PRE-VIEW: NEW EXPANDED AAI THEORY 23.January 2019: Outline of the new expanded  AAI Paradigm. Before re-writing the main text with these ideas the new advanced AAI theory will first be tested during the summer 2019 within a lecture with student teams as well as in  several workshops outside the Frankfurt University of Applied Sciences with members of different institutions.

AASE – Actor-Actor Systems Engineering. Theory & Applications. Micro-Edition (Vers.9)

eJournal: uffmm.org, ISSN 2567-6458
13.June  2018
Email: info@uffmm.org
Authors: Gerd Doeben-Henisch, Zeynep Tuncer,  Louwrence Erasmus
Email: doeben@fb2.fra-uas.de
Email: gerd@doeben-henisch.de

PDF

CONTENTS

1 History: From HCI to AAI …
2 Different Views …
3 Philosophy of the AAI-Expert …
4 Problem (Document) …
5 Check for Analysis …
6 AAI-Analysis …
6.1 Actor Story (AS) . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1 Textual Actor Story (TAS) . . . . . . . . . . . . . . .
6.1.2 Pictorial Actor Story (PAT) . . . . . . . . . . . . . .
6.1.3 Mathematical Actor Story (MAS) . . . . . . . . . . .
6.1.4 Simulated Actor Story (SAS) . . . . . . . . . . . . .
6.1.5 Task Induced Actor Requirements (TAR) . . . . . . .
6.1.6 Actor Induced Actor Requirements (UAR) . . . . . .
6.1.7 Interface-Requirements and Interface-Design . . . .
6.2 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Actor and Actor Story . . . . . . . . . . . . . . . . .
6.2.2 Actor Model . . . . . . . . . . . . . . . . . . . . . .
6.2.3 Actor as Input-Output System . . . . . . . . . . . .
6.2.4 Learning Input-Output Systems . . . . . . . . . . . .
6.2.5 General AM . . . . . . . . . . . . . . . . . . . . . .
6.2.6 Sound Functions . . . . . . . . . . . . . . . . . . .
6.2.7 Special AM . . . . . . . . . . . . . . . . . . . . . .
6.2.8 Hypothetical Model of a User – The GOMS Paradigm
6.2.9 Example: An Electronically Locked Door . . . . . . .
6.2.10 A GOMS Model Example . . . . . . . . . . . . . . .
6.2.11 Further Extensions . . . . . . . . . . . . . . . . . .
6.2.12 Design Principles; Interface Design . . . . . . . . .
6.3 Simulation of Actor Models (AMs) within an Actor Story (AS) .
6.4 Assistive Actor-Demonstrator . . . . . . . . . . . . . . . . . .
6.5 Approaching an Optimum Result . . . . .
7 What Comes Next: The Real System
7.1 Logical Design, Implementation, Validation . . . .
7.2 Conceptual Gap In Systems Engineering? . . .
8 The AASE-Paradigm …
References

Abstract

This text is based on the the paper “AAI – Actor-Actor Interaction. A Philosophy of Science View” from 3.Oct.2017 and version 11 of the paper “AAI – Actor-Actor Interaction. An Example Template” and it   transforms these views in the new paradigm ‘Actor- Actor Systems Engineering’ understood as a theory as well as a paradigm for and infinite set of applications. In analogy to the slogan ’Object-Oriented Software Engineering (OO SWE)’ one can understand the new acronym AASE as a systems engineering approach where the actor-actor interactions are the base concepts for the whole engineering process. Furthermore it is a clear intention to view the topic AASE explicitly from the point of view of a theory (as understood in Philosophy of Science) as well as from the point of view of possible applications (as understood in systems engineering). Thus the classical term of Human-Machine Interaction (HMI) or even the older Human-Computer Interaction (HCI) is now embedded within the new AASE approach. The same holds for the fuzzy discipline of Artificial Intelligence (AI) or the subset of AI called Machine Learning (ML). Although the AASE-approach is completely in its beginning one can already see how powerful this new conceptual framework  is.

 

 

ACTOR-ACTOR INTERACTION. Philosophy of the Actor

eJournal: uffmm.org, ISSN 2567-6458
16.March 2018
Email: info@uffmm.org
Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Frankfurt University of Applied Sciences (FRA-UAS)
Institut for New Media (INM, Frankfurt)

PDF

CONTENTS

I   A Vision as a Problem to be Solved … 1
II   Language, Meaning & Ontology …  2
     II-A   Language Levels . . . . . . . . .  . . 2
     II-B  Common Empirical Matter .  . . . . . 2
     II-C   Perceptual Levels . . . . . . .  . . . . 3
     II-D   Space & Time . . . . . . . .  . . . . . 4
     II-E    Different Language Modes . . . 4
     II-F    Meaning of Expressions & Ontology … 4
     II-G   True Expressions . . . . . . .  . . . .  5
     II-H   The Congruence of Meaning  . . . .  5
III   Actor Algebra … 6
IV   World Algebra  … 7
V    How to continue … 8
VI References … 8

Abstract

As preparation for this text one should read the chapter about the basic layout of an Actor-Actor Analysis (AAA) as part of an systems engineering process (SEP). In this text it will be described which internal conditions one has to assume for an actor who uses a language to talk about his observations oft he world to someone else in a verifiable way. Topics which are explained in this text are e.g. ’language’,’meaning’, ’ontology’, ’consciousness’, ’true utterance’, ’synonymous expression.

AAI – Actor-Actor Interaction. A Toy-Example, No.1

eJournal: uffmm.org, ISSN 2567-6458
13.Dec.2017
Email: info@uffmm.org

Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

Contents

1 Problem ….. 3
2 AAI-Check ….. 3
3 Actor-Story (AS) …..  3
3.1 AS as a Text . . . . . . . . . . . . . . . . . .3
3.2 Translation of a Textual AS into a Formal AS …… 4
3.3 AS as a Formal Expression . . . . . . . . . .4
3.4 Translation of a Formal AS into a Pictorial AS… 5
4 Actor-Model (AM) …..  5
4.1 AM for the User as a Text . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .6
4.2 AM for the System as a Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Combined AS and AM as a Text …..  6
5.1 AM as an Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Simulation …..  7
6.1 Simulating the AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
6.2 Simulating the AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
6.3 Simulating AS with AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Appendix: Formalisms ….. 8
7.1 Set of Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
7.2 Predicate Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8 Appendix: The Meaning of Expressions …11
8.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.2 Changes by Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Abstract

Following the general concepts of the paper ’AAI – Actor-Actor Interaction. A Philosophy of Science View’ from 3.Oct.2017 this paper illustrates a simple application where the difference as well as the
interaction between an actor story and several actor models is shown. The details of interface-design as well as the usability-testing are not part of this example.(This example replaces the paper with the title
’AAI – Case Study Actor Story with Actor Model. Simple Grid-Environment’ from 15.Nov.2017). One special point is the meaning of the formal expressions of the actor story.

Attention: This toy example is not yet in fully conformance with the newly published Case-Study-Template

To read the full text see PDF

Clearly, one can debate whether a ‘toy-example’ makes sens, but the complexity of the concepts in this AAI-approach is to great to illustrate these in the beginning  with a realistic example without loosing the idea. The author of the paper has tried many — also very advanced — versions in the last years and this is the first time that he himself has the feeling that at least the idea is now clear enough. And from teaching students it is very clear, if you cannot explain an idea in a toy-example you never will be able to apply it to real big problems…

 

INTELLIGENT MACHINES – INTRODUCTION

eJournal: uffmm.org,
ISSN 2567-6458, 09.Oct 2017 – April 9, 2022, 13:30 h
Email: info@uffmm.org
Author: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

 Remark April 2022

This post from Oct 2017 will be reviewed in the new conceptual framework of an Applied Empirical Theory [AET] with an additional Dynamic Format [DF]. For more details see HERE.

OVERVIEW

A short story telling You, (i) how we interface the intelligent machines (IM) part with the actor-actor interaction (AAI) part, (ii) a first working definition of intelligent machines (IM) in this text, and (iii) defining intelligence and how one can this measure.

IM WITHIN AAI

In this blog we see IM not isolated, as a stand alone endeavor, but as embedded in a discipline called actor-actor interaction (AAI)(later called DAAI := Distributed Actor Actor Interaction).  AAI investigates complex tasks and looks how different kinds of actors are interacting in these contexts with technical systems. As far as the participating systems have been technical systems one speaks here of a system interface (SI) as that part of a technical system, which is interacting with the human actor. In the case of biological systems (mostly humans, but it could be animals as well), one speaks of the user interface (UI). In this text we generalize both cases by the general concept of an actor — biological and non-biological –, which has some actor interface (ActI), and this actor interface embraces all properties which are relevant for the interactions of the actor.

For the analysis of the behavior of actors in such task-environments one can distinguish two important concepts: the actor story (AS) describing the context as an observable process, as well as different actor models (AM). Actor models are special extensions of an actor story because an actor model describes the observable behavior of actors as a behavior function (BF) with a set of assumptions about possible internal states of the actors. The assumptions about possible internal states (IS) are either completely arbitrary or empirically motivated.

The embedding of IM within AAI can be realized through the concept of an actor model (UM) and the actor story (AS). Whatever is important for something which is called an intelligent machine application (IMA) can be defined as an actor model within an actor story. This embedding of IM within AAI offers many advantages.

This has to be explained with some more details.

An Intelligent Machine (IM) in an Actor Story

Let us assume that there exists a mathematical-graph representation of an actor story written as AS_{L_{ε}}. Such a graph has nodes which represent situations. Formally these are sets of properties, probably more fine-grained by subsets which represent different kinds of actors embedded in this situation as well as different kinds of non-actors.

Actors can be classified (as introduced above) as either biological actors (BA) or non-biological actors (NBA). Both kinds of actors can — in another reading — be subsumed under the general term of input-output-systems (IO-SYS). An input-output system can be a learning system or non-learning. Another basic property is that of being intelligent or non-intelligent. Being a learning system and being an intelligent system is usually strongly connected, but this must not necessarily be so. Being a learning system can be associated with being non-intelligent and being intelligent can be connected with being non-learning.(cf. Figure 1)

Classification of input-output systems according to learning, intelligence and beeing biological or not biological
Classification of input-output systems according to learning, intelligence and being biological or non-biological

While biological systems are always learning and intelligent, one can find non-biological systems of all types: non-learning and non-intelligent, non-intelligent and learning, non-learning and intelligent, and learning and intelligent.

Learning System

To classify a system as a learning system this requires the general ability to change the behavior of this system in time thus that there exists a time-span (t1,t2) after which the behavior as response to  certain critical stimuli has changed compared to the time before. [1] From this requirement it follows, that a learning system is an input-output system with at least one internal state which can change. Thus we have the general assumption:

Def: Learning System (LS)

  1. LS(x) iff
  2. x=<I, O, IS, phi >
  3. φ : I x IS —> IS x O
  4. I := Input
  5. O := Output
  6. IS := Internal states

Some x is a learning system (LS) if it is a structure containing sets for input (I), Output (O), as well as internal states (IS). These sets are operated by a behavior function φ which maps inputs and actual internal states to output as well as back to internal states. The set of possible learning functions is infinite.

Intelligent System

The term ‘intelligent’ and ‘intelligence’ is until now not standardized. This means that everybody is using it at little bit arbitrarily.

In this text we take the basic idea of a scientific usage of the term ‘intelligence’ from experimental psychology, which has developed clearly defined operational concepts since the end of the 19. Century which have been proved as quite stable in their empirical applications. [2a,b,c] 

The central idea of the psychological concept of the usage of the term ‘intelligence’ is to associate the usage of the term ‘intelligence’ with observable behavior of those actors, which shall be classified according defined methods of measurement.

In the case of experimental psychology the actors have been biological systems, mainly humans, in the first years of the research school children of certain ages. Because nobody did know what ‘intelligence’ means ‘as such’ one agreed to accept the observable behavior of children in certain task environments as ‘manifestations’ of a ‘presupposed unknown intelligence’. Thus the ability of children to solve defined tasks in a certain defined manner became a norm for what is called ‘intelligence’. Solving the tasks in a certain time with less than a certain amount of errors was used as a ‘baseline’ and all behavior deviating from the baseline was ‘better’ or ‘poorer’.

Thus the ‘content’ of the ‘meaning’ of the term ‘intelligence’ has been delegated to historical patterns of behavior which were common in a certain time-span in a certain geographical and cultural region.

While these behavior patterns can change during the course of time the general method of measurement is invariant.

In the time since then experimental psychology has modified and elaborated this first concept in some directions.

One direction is the modification of the kind of tasks which are used for the tests. With regard to the cultural context one has modified the content, thereby looking to find such kinds of task which seem to be ‘invariant’ with regard to the presupposed intelligence factor. This is an ongoing process.

The other direction is the focus on the actors as such. Because biological systems like humans change the development of their intelligence with age one has tried to find out ‘typical tasks for every age’. This too is an ongoing process.

This history of experimental psychology gives very interesting examples how one can approach the problem of the usage and the measurement of some X which we call ‘intelligence’.

In the context of an AAI-approach we have not only biological systems, but also non-biological systems. Thus most of the elaborated parameters of psychology for human actors are not general enough.

One possible strategy to generalize the intelligence-paradigm of experimental psychology could be to ‘free’ the selection of task sets from the narrow human cultures of the past and require only ‘clearly defined task sets with defined interfaces and defined contexts’. All these tasks sets can be arranged either in one super-set or in a parameterized field of sets. The sum of all these sets defines then a space of possible behavior and associated with this a space of possible measurable intelligence.

A task has then to be given as an actor story according to the AAI-paradigm. Such a specified actor story allows the formal definition of a complexity measure which can be used to measure the ‘amount of intelligence necessary to solve such a task’.

With such a more general and extendable approach to the measurement of observable intelligence one can compare all kinds of systems with each other. With such an approach one can further show objectively, where biological and non-biological systems differ generally, where they are similar, and to which extend they differ with regard to concrete circumstances.

Measuring Intelligence by Actor Stories

Presupposing actor stories (AS) (ideally formalized as mathematical graphs) on can define a first operational general measurement of intelligence.

Def: Task-Intelligence of a task τ (TInt(τ))

    1. Every defined task τ represents a graph g with one shortest path pmin(τ)= π_{min} from a start node to a goal node.
    2. Every such shortest path π_{min} has a certain number of nodes path-nodes(π_{min})=ν.
    3. The number of solved nodes (ν_{solved}) can become related against the total number of nodes ν as ν_{solved}/ν. We take TInt(τ)= ν_{solved}/ν. It follows that TInt(τ) is between 0 and 1: 0 ≤ TInt(τ)≤ 1.
    4. To every task  a maximal duration Δ_{max} is attached; all nodes which are solved within this maximal duration time Δ_{max} are declared as ‘solved’, all the others as ‘un-solved’.

The usual case will require more than one task to be realized. Thus we introduce the concept of a task field (TF).

Def: Task-Field of type x (TF_{x})
Def: Task-Field Intelligence (TFInt)

A task-field TF of type x includes a finite set of individual tasks like TF_{x} = { τ{x.1}, τ{x.2}, … , τ{x.n} } with n ≥ 2. The sum of all individual task intelligence values TInt(τ{x.i}) has to be normalized to 1, i.e. (TInt(τ{x.1}) + TInt(τ{x.2}) + … + TInt(τ{x.n}))/ n (with 0 in the nominator not allowed). Thus the value of the intelligence of a task field of type x TFInt(TF_{x}) is again in the domain of [0,1].

Because the different tasks in a task field TF can be of different difficulty it should be possible to introduce some weighting for the individual task intelligence values. This should not change the general mechanism.

Def: Combined Task-Fields (TF)

In face of the huge variety of possible task fields in this world it can make sens to introduce more general layers by grouping task fields of different types together to larger combined fields, like TF_{x,…,z} = TF_{x} ∪ TF_{y} ∪ … ∪ TF_{z}. The task field intelligence TFInt of such combined task fields would be computed as before.

Def: Omega Task-Field at time t (TF_{ω}(t))

The most comprehensive assembly of such combinations shall here be called the Omega-Task-Field at time t TF_{ω}(t). This indicates the known maximum of intelligence measurements at that point of time.

Measurement Comments

With these assumptions the term intelligence will be restricted to clearly defined domains either to an individual task, to a task-field of type x, or to some grouped task-fields or being related to the actual omega task-field. In every such domain the intelligence value is in the realm of [0,1] or written as some value between 0 or 100%.

Independent of the type of an actor — biological or not — one can measure the intelligence of such an actor with the same domains of defined tasks. As a result one can easily compare all known actors with regard to such defined task domains.

Because the acting actors can be quite different by their input-output capabilities it follows that every actor has to organize some interface which enables him to use the defined task. There are no special restrictions to the format of such an interface, but there is one requirement which has to be observed strictly: the interface as such is not allowed to do any kind of computation beyond providing only the necessary input from the task domain or to provide the necessary output to the domain. Only then are the different tests able to reveal some difference between the different actors.

If the tests show differences between certain types of actors with regard to a certain task or a task-field then this is a chance to develop smart assistive interfaces which can help the actor in question to overcome his weakness compared to the other type of actor. Thus this kind of measuring intelligence can be a strong supporter for a better world in the future.

Another consequence of the differing intelligence values can be to look to the inner structure of an actor with weaker values and asking how one could improve his capabilities. This can be done e.g. by different kinds of training or by improving his system structures.

COMMENTS

[1] Sara J.Shettleworth, Biological Approaches to the Study of Learning, pp.185 – 219, in: N.J.Mackintosh (Ed.), Animal Learning and Cognition, Academic Press, San Diego, New York, London et.al., 1994

[2a] Ernest R.Hilgard, Rita L.Atkinson, Richard C.Atkinson, Introduction to Psychology, Harcourt Brace Jovanovic, Inc., Psychology, 7th ed., New York, San Diego, Chicago et.al, 1979

[2b] Detlef H.Rost, Intelligenz. Fakten und Mythen, Belz Verlag, Weinheim – Basel, 2009

[2c] Detlef H.Rost, Handbuch Intelligenz, Beltz Verlag, Weinheim – Basel, 2013