Category Archives: matter

WHAT IS LIFE? … If life is ‘More,’ ‘much more’ …

Author: Gerd Doeben-Henisch

Changelog: Febr 9, 2025 – Febr 9, 2025

Email: info@uffmm.org

TRANSLATION: The following text is a translation from a German version into English. For the translation I am using the software @chatGPT4o with manual modifications.

CONTENT TREE

This text is part of the TOPIC Philosophy of Science.

CONTEXT


This is a direct continuation of the preceding texts

  1.  “WHAT IS LIFE? WHAT ROLE DO WE PLAY? IST THERE A FUTURE?”
  2.  “WHAT IS LIFE? … DEMOCRACY – CITIZENS”
  3. WHAT IS LIFE? … PHILOSOPHY OF LIFE

INTRODUCTION

In the preceding texts, the ‘framework’ has been outlined within which the following texts on the topic “What is life? …” will unfold. A special position is taken by the text on ‘philosophy,’ as it highlights the ‘perspective’ in which we find ourselves when we begin to think about ourselves and the surrounding world—and then also to ‘write’ about it. As a reminder of the philosophical perspective, here is the last section as a quote:

“Ultimately, ‘philosophy’ is a ‘total phenomenon’ that manifests itself in the interplay of many people in everyday life, is experienceable, and can only take shape here, in process form. ‘Truth,’ as the ‘hard core’ of any reality-related thinking, can therefore always be found only as a ‘part’ of a process in which the active interconnections significantly contribute to the ‘truth of a matter.’ Truth is therefore never ‘self-evident,’ never ‘simple,’ never ‘free of cost’; truth is a ‘precious substance’ that requires every effort to be ‘gained,’ and its state is a ‘fleeting’ one, as the ‘world’ within which truth can be ‘worked out’ continuously changes as a world. A major factor in this constant change is life itself: the ‘existence of life’ is only possible within an ‘ongoing process’ in which ‘energy’ can make ‘emergent images’ appear—images that are not created for ‘rest’ but for a ‘becoming,’ whose ultimate goal still appears in many ways ‘open’: Life can indeed—partially—destroy itself or—partially—empower itself. Somewhere in the midst of this, we find ourselves. The current year ‘2025’ is actually of little significance in this regard.”

WHAT IS LIFE? … If life is ‘More,’ ‘much more’ …

In the first text of this project, “What is Life,” much has already been said under the label ‘EARTH@WORK. Cradle of Humankind’—in principle, everything that can and must be said about a ‘new perspective’ on the ‘phenomenon of life’ in light of modern scientific and philosophical insights. As a reminder, here is the text:

“The existence [of planet Earth] was in fact the prerequisite for biological life as we know it today to have developed the way we have come to understand it. Only in recent years have we begun to grasp how the known ‘biological life’ (Nature 2) could have ‘evolved’ from ‘non-biological life’ (Nature 1). Upon deeper analysis, one can recognize not only the ‘commonality’ in the material used but also the ‘novel extensions’ that distinguish the ‘biological’ from the ‘non-biological.’ Instead of turning this ‘novelty’ into an opposition, as human thought has traditionally done (e.g., ‘matter’ versus ‘spirit,’ ‘matter’ versus ‘mind’), one can also understand it as a ‘manifestation’ of something ‘more fundamental,’ as an ‘emergence’ of new properties that, in turn, point to characteristics inherent in the ‘foundation of everything’—namely, in ‘energy’—which only become apparent when increasingly complex structures are formed. This novel interpretation is inspired by findings from modern physics, particularly quantum physics in conjunction with astrophysics. All of this suggests that Einstein’s classical equation (1905) e=mc² should be interpreted more broadly than has been customary so far (abbreviated: Plus(e=mc²)).”

This brief text will now be further expanded to make more visible the drama hinted at by the convergence of many new insights. Some may find these perspectives ‘threatening,’ while others may see them as the ‘long-awaited liberation’ from ‘false images’ that have so far rather ‘obscured’ our real possible future.

Different Contexts

If we see an ‘apple’ in isolation, this apple, with its shapes and colors, appears somehow ‘indeterminate’ by itself. But if we ‘experience’ that an apple can be ‘eaten,’ taste it, feel its effect on our body, then the apple becomes ‘part of a context.’ And if we also happen to ‘know’ something about its composition and its possible effects on our body, then the ‘image of experience’ expands into an ‘image of knowledge,’ forming a ‘context of experience and knowledge’ within us—one that pulls the apple out of its ‘initial indeterminacy.’ As part of such a context, the apple is ‘more’ than before.

The same applies to a ‘chair’: on its own, it has a shape, colors, and surface characteristics, but nothing more. If we experience that this chair is placed in a ‘room’ along with other ‘pieces of furniture,’ that we can ‘sit on a chair,’ that we can move it within the room, then an experienced image of a larger whole emerges—one in which the chair is a part with specific properties that distinguish it from other pieces of furniture. If we then also know that furniture appears in ‘rooms,’ which are parts of ‘houses,’ another rather complex ‘context of experience and knowledge’ forms within us—again making the individual chair ‘more’ than before.

We can apply this kind of thinking to many objects in everyday life. In fact, there is no single object that exists entirely on its own. This is particularly evident in ‘biological objects’ such as animals, plants, and insects.

Let’s take ourselves—humans—as an example. If we let our gaze wander from the spot where each of us is right now, across the entire country, the whole continent, even the entire sphere of our planet, we find that today (2025), humans are almost everywhere. In the standard form of men and women, there is hardly an environment where humans do not live. These environments can be very simple or densely packed with towering buildings, machines, and people in tight spaces. Once we broaden our perspective like this, it becomes clear that we humans are also ‘part of something’: both of the geographical environment we inhabit and of a vast biological community.

In everyday life, we usually only encounter a few others—sometimes a few hundred, in special cases even a few thousand—but through available knowledge, we can infer that we are billions. Again, it is the ‘context of experience and knowledge’ that places us in a larger framework, in which we are clearly ‘part of something greater.’ Here, too, the context represents something ‘more’ compared to ourselves as an individual person, as a single citizen, as a lone human being.

Time, Time Slices, …

If we can experience and think about the things around us—including ourselves—within the ‘format’ of ‘contexts,’ then it is only a small step to noticing the phenomenon of ‘change.’ In the place where we are right now, in the ‘now,’ in the ‘present moment,’ there is no change; everything is as it is. But as soon as the ‘current moment’ is followed by a ‘new moment,’ and then more and more new moments come ‘one after another,’ we inevitably begin to notice ‘changes’: things change, everything in this world changes; there is nothing that does not change!

In ‘individual experience,’ it may happen that, for several moments, we do not ‘perceive anything’ with our eyes, ears, sense of smell, or other senses. This is possible because our body’s sensory organs perceive the world only very roughly. However, with the methods of modern science, which can look ‘infinitely small’ and ‘infinitely large,’ we ‘know’ that, for example, our approximately 37 trillion (10¹²) body cells are highly active at every moment—exchanging ‘messages,’ ‘materials,’ repairing themselves, replacing dead cells with new ones, and so on. Thus, our own body is exposed to a veritable ‘storm of change’ at every moment without us being able to perceive it. The same applies to the realm of ‘microbes,’ the smallest living organisms that we cannot see, yet exist by the billions—not only ‘around us’ but also colonizing our skin and remaining in constant activity. Additionally, the materials that make up the buildings around us are constantly undergoing transformation. Over the years, these materials ‘age’ to the point where they can no longer fulfill their intended function; bridges, for example, can collapse—as we have unfortunately witnessed.

In general, we can only speak of ‘change’ if we can distinguish a ‘before’ and an ‘after’ and compare the many properties of a ‘moment before’ with those of a ‘moment after.’ In the realm of our ‘sensory perception,’ there is always only a ‘now’—no ‘before’ and ‘after.’ However, through the function of ‘memory’ working together with the ability to ‘store’ current events, our ‘brain’ possesses the remarkable ability to ‘quasi-store’ moments to a certain extent. Additionally, it can compare ‘various stored moments’ with a current sensory perception based on specific criteria. If there are ‘differences’ between the ‘current sensory perception’ and the previously ‘stored moments,’ our brain ‘notifies us’—we ‘notice’ the change.

This phenomenon of ‘perceived change’ forms the basis for our ‘experience of time.’ Humans have always relied on ‘external events’ to help categorize perceived changes within a broader framework (day-night cycles, seasons, various star constellations, timekeeping devices like various ‘clocks’ … supported by time records and, later, calendars). However, the ability to experience change remains fundamental to us.

Reflecting on all of this, one can formulate the concept of a ‘time slice’: If we imagine a ‘time segment’—which can be of any length (nanoseconds, seconds, hours, years, …)—and consider all locations on our planet, along with everything present in those locations, as a single ‘state,’ then repeating this process for each subsequent time segment creates a ‘sequence’ or ‘series’ of ‘time slices.’ Within this framework, every change occurring anywhere within a state manifests with its ‘effects’ in one of the following time slices. Depending on the ‘thickness of the time slice,’ these effects appear in the ‘immediately following slice’ or much later. In this model, nothing is lost. Depending on its ‘granularity,’ the model can be ‘highly precise’ or ‘very coarse.’ For instance, population statistics in a German municipality are only recorded once a year, on the last day of the year. If this data were collected weekly, the individual parameters (births, deaths, immigration, emigration, …) would vary significantly.

In the transition from one time slice to the next, every change has an impact—including everything that every individual person does. However, we must distinguish between immediate effects (e.g., a young person attending school regularly) and ‘long-term outcomes’ (e.g., a school diploma, acquired competencies, …), which do not manifest as direct, observable change events. The acquisition of experiences, knowledge, and skills affects the ‘inner structure’ of a person by building ‘various cognitive structures’ that enable the individual to ‘plan, decide, and act’ in new ways. This internal ‘structural development’ of a person is not directly observable, yet it can significantly influence the ‘quality of behavior.’

Time Slices of Life on Planet Earth

It was already mentioned that the ‘thickness of a time slice’ affects which events can be observed. This is related to the fact that we have come to know many ‘different types of change’ on planet Earth. Processes in the sky and in nature generally seem to take ‘longer,’ whereas the effects of specific mechanical actions occur rather ‘quickly,’ and changes to the Earth’s surface take thousands, many thousands, or even millions of years.

Here, the focus is on the major developmental steps of (biological) life on planet Earth. We ourselves—as Homo sapiens—are part of this development, and it may be interesting to explore whether our ‘participation in the great web of life’ reveals perspectives that we cannot practically perceive in the ‘everyday life’ of an individual, even though these perspectives might be of great significance to each of us.

The selection of ‘key events’ in the development of life on Earth naturally depends heavily on the ‘prior knowledge’ with which one approaches the task. Here, I have selected only those points that are found in nearly all major publications. The given time points, ‘from which’ these events are recognized, are inherently ‘imprecise,’ as both the ‘complexity’ of the events and the challenges of ‘temporal determination’ prevent greater accuracy even today. The following key events have been selected:

  • Molecular Evolution (from ~3.9 billion years ago)
  • Prokaryotic Cells (from ~3.5 billion years ago)
  • Great Oxygenation Event (from ~2.5 billion years ago)
  • Eukaryotic Cells (from ~1.5 billion years ago)
  • Multicellular Life (from ~600 million years ago)
  • Emergence of the Homo Genus (from ~2.5 million years ago)
  • Emergence of Homo sapiens (from ~300,000 years ago)
  • Emergence of Artificial Intelligence (from ~21st century)

I was then interested in calculating the time gaps between these events. For this calculation, only the starting points of the key events were used, as no precise date can be reliably determined for their later progression. The following table was derived:

  • Molecular Evolution to Prokaryotic Cells: 400 million years
  • Prokaryotic Cells to the Great Oxygenation Event: 1 billion years
  • Great Oxygenation Event to Eukaryotic Cells: 1 billion years
  • Eukaryotic Cells to Multicellular Life: 900 million years
  • Multicellular Life to the Emergence of the Homo Genus: 597.5 million years
  • Homo Genus to Homo sapiens: 2.2 million years
  • Homo sapiens to Artificial Intelligence: 297,900 years

Next, I converted these time intervals into ‘percentage shares of the total time’ of 3.9 billion years. This resulted in the following table:

  • Molecular Evolution to Prokaryotic Cells: 400 million years = 10.26%
  • Prokaryotic Cells to the Great Oxygenation Event: 1 billion years = 25.64%
  • Great Oxygenation Event to Eukaryotic Cells: 1 billion years = 25.64%
  • Eukaryotic Cells to Multicellular Life: 900 million years = 23.08%
  • Multicellular Life to the Emergence of the Homo Genus: 597.5 million years = 15.32%
  • Homo Genus to Homo sapiens: 2.2 million years = 0.056%
  • Homo sapiens to Artificial Intelligence: 297,900 years = 0.0076%

With these numbers, one can examine whether these data points on a timeline reveal any notable characteristics. Of course, purely mathematically, there are many options for what to look for. My initial interest was simply to determine whether there could be a mathematically defined curve that significantly correlates with these data points.

After numerous tests with different estimation functions (see explanations in the appendix), the logistic (S-curve) function emerged as the one that, by its design, best represents the dynamics of the real data regarding the development of biological systems.

For this estimation function, the data points “Molecular Evolution” and “Emergence of AI” were excluded, as they do not directly belong to the development of biological systems in the narrower sense. This resulted in the following data points as the basis for finding an estimation function:

0  Molecular Evolution to Prokaryotes          4.000000e+08 (NOT INCLUDED)
1  Prokaryotes to Great Oxygenation Event      1.000000e+09
2  Oxygenation Event to Eukaryotes             1.000000e+09
3  Eukaryotes to Multicellular Organisms       9.000000e+08
4  Multicellular Organisms to Homo             5.975000e+08
5  Homo to Homo sapiens                        2.200000e+06
6  Homo sapiens to AI                          2.979000e+05 (NOT INCLUDED)

For the selected events, the corresponding cumulative time values were:

0  0.400000
1  1.400000
2  2.400000
3  3.300000
4  3.897500
5  3.899700
6  3.899998

Based on these values, the prediction for the next “significant” event in the development of biological systems resulted in a time of 4.0468 billion years (our present is at 3.899998 billion years). This means that, under a conservative estimate, the next structural event is expected to occur in approximately 146.8 million years. However, it is also not entirely unlikely that it could happen in about 100 million years instead.

The curve reflects the “historical process” that classical biological systems have produced up to Homo sapiens using their previous means. However, with the emergence of the Homo genus—and especially with the life form Homo sapiens—completely new properties come into play. Within the subpopulation of Homo sapiens, there exists a life form that, through its cognitive dimension and new symbolic communication, can generate much faster and more complex foundations for action.

Thus, it cannot be ruled out that the next significant evolutionary event might occur well before 148 million years or even before 100 million years.

This working hypothesis is further reinforced by the fact that Homo sapiens, after approximately 300,000 years, has now developed machines that can be programmed. These machines can already provide substantial assistance in tasks that exceed the cognitive processing capacity of an individual human brain in navigating our complex world.

Although machines, as non-biological systems, lack an intrinsic developmental basis like biological systems, in the format of co-evolution, life on Earth could very likely accelerate its further development with the support of such programmable machines.

Being Human, Responsibility, and Emotions

With the recent context expansion regarding the possible role of humans in the global development process, many interesting perspectives emerge. However, none of them are particularly comfortable for us as humans. Instead, they are rather unsettling, as they reveal that our self-sufficiency with ourselves—almost comparable to a form of global narcissism—not only alienates us from ourselves, but also leads us, as a product of the planet’s entire living system, to progressively destroy that very life system in increasingly sensitive ways.

It seems that most people do not realize what they are doing, or, if they do suspect it, they push it aside, because the bigger picture appears too distant from their current individual sense of purpose.

This last point is crucial: How can responsibility for global life be understood by individual human beings, let alone be practically implemented? How are people, who currently live 60–120 years, supposed to concern themselves with a development that extends millions or even more years into the future?

The question of responsibility is further complicated by a structural characteristic of modern Homo sapiens: A fundamental trait of humans is that their cognitive dimension (knowledge, thinking, reasoning…) is almost entirely controlled by a wide range of emotions. Even in the year 2025, there are an enormous number of worldviews embedded in people’s minds that have little or nothing to do with reality, yet they seem to be emotionally cemented.

The handling of emotions appears to be a major blind spot:

  • Where is this truly being trained?
  • Where is it being comprehensively researched and integrated into everyday life?
  • Where is it accessible to everyone?

All these questions ultimately touch on our fundamental self-conception as humans. If we take this new perspective seriously, then we must rethink and deepen our understanding of what it truly means to be human within such a vast all-encompassing process.

And yes, it seems this will not be possible unless we develop ourselves physically and mentally to a much greater extent.

The current ethics, with its strict “prohibition on human transformation,” could, in light of the enormous challenges we face, lead to the exact opposite of its intended goal: Not the preservation of humanity, but rather its destruction.

It is becoming evident that “better technology” may only emerge if life itself, and in particular, we humans, undergo dramatic further development.

End of the Dualism ‘Non-Biological’ vs. ‘Biological’?

Up to this point in our considerations, we have spoken in the conventional way when discussing “life” (biological systems) and, separately, the Earth system with all its “non-biological” components.

This distinction between “biological” and “non-biological” is deeply embedded in the consciousness of at least European culture and all those cultures that have been strongly influenced by it.

Naturally, it is no coincidence that the distinction between “living matter” (biological systems) and “non-living matter” was recognized and used very early on. Ultimately, this was because “living matter” exhibited properties that could not be observed in “non-living matter.” This distinction has remained in place to this day.

Equipped with today’s knowledge, however, we can not only question this ancient dualism—we can actually overcome it.

The starting point for this conceptual bridge can be found on the biological side, in the fact that the first simple cells, the prokaryotes, are made up of molecules, which in turn consist of atoms, which in turn consist of… and so on. This hierarchy of components has no lower limit.

What is clear, however, is that a prokaryotic cell, the earliest form of life on planet Earth, is—in terms of its building material—entirely composed of the same material as all non-biological systems. This material is ultimately the universal building block from which the entire universe is made.

This is illustrated in the following image:

For non-living matter, Einstein (1905) formulated the equation e = mc², demonstrating that there is a specific equivalence between the mass m of an observable material and the theoretical concept of energy e (which is not directly observable). If a certain amount of energy is applied to a certain mass, accelerating it to a specific velocity, mass and energy become interchangeable. This means that one can derive mass from energy e, and conversely, extract energy e from mass m.

This formula has proven valid to this day.

But what does this equation mean for matter in a biological state? Biological structures do not need to be accelerated in order to exist biologically. However, in addition to the energy contained in their material components, they must continuously absorb energy to construct, maintain, and modify their specialized material structures. Additionally, biological matter has the ability to self-replicate.

Within this self-replication, a semiotic process takes place—one that later, in the symbolic communication of highly complex organisms, particularly in Homo sapiens, became the foundation of an entirely new and highly efficient communication system between biological entities.

The Semiotic Structure of Life

The semiotic structure in the context of reproduction can be (simplified) as follows:

  • One type of molecule (M1) interacts with another molecule (M2) as if the elements of M1 were control commands for M2.
  • Through this interaction, M2 triggers chemical processes, which in turn lead to the construction of new molecules (M3).
  • The elements of M1, which act like control commands, behave similarly to “signs” in semiotic theory.
  • The molecules M3, produced by M2, can be understood semiotically as the “meaning” of M1—while M2 represents the “meaning relationship” between M1 and M3.

Not only the human brain operates with such semiotic structures, but every modern computer possesses them as well. This suggests that it may represent a universal structure.

Does Biological Matter Reveal Hidden Properties of Energy?

If we accept these considerations, then biological matter appears to differ from non-biological matter in the following aspects:

  • Biological matter possesses the ability to arrange non-biological matter in such a way that functional relationships emerge between individual non-biological elements (atoms, molecules).
  • These relationships can be interpreted as semiotic structures: Non-biological elements function “in context” (!) as “signs”, as “dynamic meaning relationships”, and as “meanings” themselves.

This raises an important question:
To what extent should the “additional properties” exhibited by biological matter be understood not only as “emergent properties” but also as manifestations of fundamental properties of energy itself?

Since energy e itself cannot be directly observed, only its effects can be studied. This leaves science with a choice:

  1. It can continue to adhere to the traditional perspective derived from Einstein’s 1905 formula e = mc²—but this means accepting that the most complex properties of the universe remain unexplained.
  2. Or, science can expand its perspective to include non-living matter in the form of biological systems, thereby integrating biological processes into the study of fundamental physics.

Biological systems cannot be explained without energy. However, their threefold structure

  • Matter as “objects,”
  • Matter as a “meta-level,”
  • Matter as an “actor”

suggests that energy itself may possess far more internal properties than previously assumed.

Is this reluctance to reconsider energy’s role merely the result of a “false intellectual pride”? A refusal to admit that “in matter itself,” something confronts us that is far more than just “non-living matter”?

And yet, the observer—the knower—is exactly that: “matter in the form of biological systems” with properties that far exceed anything physics has been willing to account for so far.

And what about emotions?

  • Throughout this discussion, emotions have barely been mentioned.
  • What if energy is also responsible for this complex domain?

Maybe we all—philosophers, scientists, and beyond—need to go back to the start.
Maybe we need to learn to tell the story of life on this planet and the true meaning of being human in a completely new way.

After all, we have nothing to lose.
All our previous narratives are far from adequate.
And the potential future is, without a doubt, far more exciting, fascinating, and rich than anything that has been told so far…

APPENDIX

With the support of ChatGPT-4o, I tested a wide range of estimation functions (e.g., power function, inverted power function, exponential function, hyperbolic function, Gompertz function, logistic function, summed power function, each with different variations). As a result, the logistic (S-curve) function proved to be the one that best fit the real data values and allowed for a conservative estimate for the future, which appears reasonably plausible and could be slightly refined if necessary. However, given the many open parameters for the future, a conservative estimate seems to be the best approach: a certain direction can be recognized, but there remains room for unexpected events.

The following Python program was executed using the development environment Python 3.12.3 64-bit with Qt 5.15.13 and PyQt5 5.15.10 on Linux 6.8.0-52-generic (x86_64). (For Spyder, see: Spyder-IDE.org)

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 10 07:25:38 2025

@author: gerd (supported by chatGPT4o)
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# Daten für die Tabelle
data = {
    "Phase": [
        "Molekulare Evolution zu Prokaryoten",
        "Prokaryoten zum Großen Sauerstoffereignis",
        "Sauerstoffereignis zu Eukaryoten",
        "Eukaryoten zu Vielzellern",
        "Vielzeller zu Homo",
        "Homo zu Homo sapiens",
        "Homo sapiens zu KI"
    ],
    "Dauer (Jahre)": [
        400e6,
        1e9,
        1e9,
        900e6,
        597.5e6,
        2.2e6,
        297900
    ]
}

# Gesamtzeit der Entwicklung des Lebens (ca. 3,9 Mrd. Jahre)
total_time = 3.9e9

# DataFrame erstellen
df = pd.DataFrame(data)

# Berechnung des prozentualen Anteils
df["% Anteil an Gesamtzeit"] = (df["Dauer (Jahre)"] / total_time) * 100

# Berechnung der kumulativen Zeit
df["Kumulative Zeit (Mrd. Jahre)"] = (df["Dauer (Jahre)"].cumsum()) / 1e9

# Extrahieren der relevanten kumulativen Zeitintervalle (Differenzen der biologischen Phasen)
relevant_intervals = df["Kumulative Zeit (Mrd. Jahre)"].iloc[1:6].diff().dropna().values

# Definieren der Zeitindices für die relevanten Intervalle
interval_steps = np.arange(len(relevant_intervals))



# Sicherstellen, dass x_cumulative_fit korrekt definiert ist
x_cumulative_fit = np.arange(1, 6)  # Index für biologische Phasen 1 bis 5
y_cumulative_fit = df["Kumulative Zeit (Mrd. Jahre)"].iloc[1:6].values  # Die zugehörigen Zeiten

# Logistische Funktion (Sigmoid-Funktion) definieren
def logistic_fit(x, L, x0, k):
    return L / (1 + np.exp(-k * (x - x0)))  # Standardisierte S-Kurve

# Curve Fitting für die kumulierte Zeitreihe mit der logistischen Funktion
params_logistic, _ = curve_fit(
    logistic_fit,
    x_cumulative_fit,
    y_cumulative_fit,
    p0=[max(y_cumulative_fit), np.median(x_cumulative_fit), 1],  # Startwerte
    maxfev=2000  # Mehr Iterationen für stabilere Konvergenz
)

# Prognose des nächsten kumulierten Zeitpunkts mit der logistischen Funktion
predicted_cumulative_logistic = logistic_fit(len(x_cumulative_fit) + 1, *params_logistic)

# Fit-Kurve für die Visualisierung der logistischen Anpassung
x_fit_time_logistic = np.linspace(1, len(x_cumulative_fit) + 1, 100)
y_fit_time_logistic = logistic_fit(x_fit_time_logistic, *params_logistic)

# Visualisierung der logistischen Anpassung an die kumulierte Zeitreihe
plt.figure(figsize=(10, 6))
plt.scatter(x_cumulative_fit, y_cumulative_fit, color='blue', label="Real Data Points")
plt.plot(x_fit_time_logistic, y_fit_time_logistic, 'r-', label="Logistic Fit (S-Curve)")
plt.axvline(len(x_cumulative_fit) + 1, color='r', linestyle='--', label="Next Forecast Point")
plt.scatter(len(x_cumulative_fit) + 1, predicted_cumulative_logistic, color='red', label=f"Forecast: {predicted_cumulative_logistic:.3f} Bn Years")

# Titel und Achsenbeschriftungen
plt.title("Logistic (S-Curve) Fit on Cumulative Evolutionary Time")
plt.xlabel("Evolutionary Phase Index")
plt.ylabel("Cumulative Time (Billion Years)")
plt.legend()
plt.grid(True)
plt.show()

# Neues t_next basierend auf der logistischen Anpassung
predicted_cumulative_logistic

Out[109]: 4.04682980616636 (Prognosewert)

ABSTRACT MORAL IN A FINITE and CHANGING WORLD

(June 20, 2023 – June 22, 2023)

(This text is a translation from the German blog of the author. The translation is supported by the deepL Software)

CONTEXT

The meaning of and adherence to moral values in the context of everyday actions has always been a source of tension, debate, and tangible conflict.

This text will briefly illuminate why this is so, and why it will probably never be different as long as we humans are the way we are.

FINITE-INFINITE WORLD

In this text it is assumed that the reality in which we ‘find’ ourselves from childhood is a ‘finite’ world. By this is meant that no phenomenon we encounter in this world – ourselves included – is ‘infinite’. In other words, all resources we encounter are ‘finite’. Even ‘solar energy’, which is considered ‘renewable’ in today’s parlance, is ‘finite’, although this finiteness outlasts the lifetimes of many generations of humans.

But this ‘finiteness’ is no contradiction to the fact that our finite world is continuously in a ‘process of change’ fed from many sides. An ‘itself-self-changing finiteness’ is with it, a something which in and in itself somehow ‘points beyond itself’! The ‘roots’ of this ‘immanent changeability’ are to a large extent perhaps still unclear, but the ‘effects’ of the ‘immanent changeability’ indicate that the respective ‘concrete finite’ is not the decisive thing; the ‘respective concrete finite’ is rather a kind of ‘indicator’ for an ‘immanent change cause’ which ‘manifests itself’ by means of concrete finites in change. The ‘forms of concrete manifestations of change’ can therefore perhaps be a kind of ‘expression’ of something that ‘works immanently behind’.

In physics there is the pair of terms ‘energy’ and ‘mass’, the latter as synonym for ‘matter’. Atomic physics and quantum mechanics have taught us that the different ‘manifestations of mass/matter’ can only be a ‘state form of energy’. The everywhere and always assumed ‘energy’ is that ‘enabling factor’, which can ‘manifest’ itself in all the known forms of matter. ‘Changing-matter’ can then be understood as a form of ‘information’ about the ‘enabling energy’.

If one sets what physics has found out so far about ‘energy’ as that form of ‘infinity’ which is accessible to us via the experiential world, then the various ‘manifestations of energy’ in diverse ‘forms of matter’ are forms of concrete finites, which, however, are ultimately not really finite in the context of infinite energy. All known material finites are only ‘transitions’ in a nearly infinite space of possible finites, which is ultimately grounded in ‘infinite energy’. Whether there is another ‘infinity’ ‘beside’ or ‘behind’ or ‘qualitatively again quite different to’ the ‘experienceable infinity’ is thus completely open.”[1]

EVERYDAY EXPERIENCES

Our normal life context is what we now call ‘everyday life’: a bundle of regular processes, often associated with characteristic behavioral roles. This includes the experience of having a ‘finite body’; that ‘processes take time in real terms’; that each process is characterized by its own ‘typical resource consumption’; that ‘all resources are finite’ (although there can be different time scales here (see the example with solar energy)).

But also here: the ’embeddedness’ of all resources and their consumption in a comprehensive variability makes ‘snapshots’ out of all data, which have their ‘truth’ not only ‘in the moment’, but in the ‘totality of the sequence’! In itself ‘small changes’ in the everyday life can, if they last, assume sizes and achieve effects which change a ‘known everyday life’ so far that long known ‘views’ and ‘long practiced behaviors’ are ‘no longer correct’ sometime: in that case the format of one’s own thinking and behavior can come into increasing contradiction with the experiential world. Then the point has come where the immanent infinity ‘manifests itself’ in the everyday finiteness and ‘demonstrates’ to us that the ‘imagined cosmos in our head’ is just not the ‘true cosmos’. In the end this immanent infinity is ‘truer’ than the ‘apparent finiteness’.

HOMO SAPIENS (WE)

Beside the life-free material processes in this finite world there are since approx. 3.5 billion years the manifestations, which we call ‘life’, and very late – quasi ‘just now’ – showed up in the billions of life forms one, which we call ‘Homo sapiens’. That is us.

The today’s knowledge of the ‘way’, which life has ‘taken’ in these 3.5 billion years, was and is only possible, because science has learned to understand the ‘seemingly finite’ as ‘snapshot’ of an ongoing process of change, which shows its ‘truth’ only in the ‘totality of the individual moments’. That we as human beings, as the ‘latecomers’ in this life-creation-process’, have the ability to ‘recognize’ successive ‘moments’ ‘individually’ as well as ‘in sequence’, is due to the special nature of the ‘brain’ in the ‘body’ and the way in which our body ‘interacts’ with the surrounding world. So, we don’t know about the ‘existence of an immanent infinity’ ‘directly’, but only ‘indirectly’ through the ‘processes in the brain’ that can identify, store, process and ‘arrange’ moments in possible sequences in a ‘neuronally programmed way’. So: our brain enables us on the basis of a given neuronal and physical structure to ‘construct’ an ‘image/model’ of a possible immanent infinity, which we assume to ‘represent’ the ‘events around us’ reasonably well.

THINKING

One characteristic attributed to Homo Sapiens is called ‘thinking’; a term which until today is described only vaguely and very variously by different sciences. From another Homo Sapiens we learn about his thinking only by his way of ‘behaving’, and a special case of it is ‘linguistic communication’.

Linguistic communication is characterized by the fact that it basically works with ‘abstract concepts’, to which as such no single object in the real world directly corresponds (‘cup’, ‘house’, ‘dog’, ‘tree’, ‘water’ etc.). Instead, the human brain assigns ‘completely automatically’ (‘unconsciously’!) most different concrete perceptions to one or the other abstract concept in such a way that a human A can agree with a human B whether one assigns this concrete phenomenon there in front to the abstract concept ‘cup’, ‘house’, ‘dog’, ‘tree’, or ‘water’. At some point in everyday life, person A knows which concrete phenomena can be meant when person B asks him whether he has a ‘cup of tea’, or whether the ‘tree’ carries apples etc.

This empirically proven ‘automatic formation’ of abstract concepts by our brain is not only based on a single moment, but these automatic construction processes work with the ‘perceptual sequences’ of finite moments ’embedded in changes’, which the brain itself also automatically ‘creates’. ‘Change as such’ is insofar not a ‘typical object’ of perception, but is the ‘result of a process’ taking place in the brain, which constructs ‘sequences of single perceptions’, and these ‘calculated sequences’ enter as ‘elements’ into the formation of ‘abstract concepts’: a ‘house’ is from this point of view not a ‘static concept’, but a concept, which can comprise many single properties, but which is ‘dynamically generated’ as a ‘concept’, so that ‘new elements’ can be added or ‘existing elements’ may be ‘taken away’ again.

MODEL: WORLD AS A PROCESS

(The words are from the German text)

Although there is no universally accepted comprehensive theory of human thought to date, there are many different models (everyday term for the more correct term ‘theories’) that attempt to approximate important aspects of human thought.

The preceding image shows the outlines of a minimally simple model to our thinking.

This model assumes that the surrounding world – with ourselves as components of that world – is to be understood as a ‘process’ in which, at a chosen ‘point in time’, one can describe in an idealized way all the ‘observable phenomena’ that are important to the observer at that point in time. This description of a ‘section of the world’ is here called ‘situation description’ at time t or simply ‘situation’ at t.

Then one needs a ‘knowledge about possible changes’ of elements of the situation description in the way (simplified): ‘If X is element of situation description at t, then for a subsequent situation at t either X is deleted or replaced by a new X*’. There may be several alternatives for deletion or replacement with different probabilities. Such ‘descriptions of changes’ are here simplified called ‘change rules’.

Additionally, as part of the model, there is a ‘game instruction’ (classically: ‘inference term’), which explains when and how to apply a change rule to a given situation Sit at t in such a way that at the subsequent time t+1, there is a situation Sit* in which the changes have been made that the change rule describes.

Normally, there is more than one change rule that can be applied simultaneously with the others. This is also part of the game instructions.

This minimal model can and must be seen against the background of continuous change.

For this structure of knowledge it is assumed that one can describe ‘situations’, possible changes of such a situation, and that one can have a concept how to apply descriptions of recognized possible changes to a given situation.

With the recognition of an immanent infinity manifested in many concrete finite situations, it is immediately clear that the set of assumed descriptions of change should correspond with the observable changes, otherwise the theory has little practical use. Likewise, of course, it is important that the assumed situation descriptions correspond with the observable world. Fulfilling the correspondence requirements or checking that they are true is anything but trivial.

ABSTRACT – REAL – INDETERMINATE

To these ‘correspondence requirements’ here some additional considerations, in which the view of the everyday perspective comes up.

It is to be noted that a ‘model’ is not the environment itself, but only a ‘symbolic description’ of a section of the environment from the point of view and with the understanding of a human ‘author’! To which properties of the environment a description refers, only the author himself knows, who ‘links’ the chosen ‘symbols’ (text or language) ‘in his head’ with certain properties of the environment, whereby these properties of the environment must also be represented ‘in the head’, quasi ‘knowledge images’ of ‘perception events’, which have been triggered by the environmental properties. These ‘knowledge images in the head’ are ‘real’ for the respective head; compared to the environment, however, they are basically only ‘fictitious’; unless there is currently a connection between current fictitious ‘images in the head’ and the ‘current perceptions’ of ‘environmental events’, which makes the ‘concrete elements of perception’ appear as ‘elements of the fictitious images’. Then the ‘fictitious’ pictures would be ‘fictitious and real’.

Due to the ‘memory’, whose ‘contents’ are more or less ‘unconscious’ in the ‘normal state’, we can however ‘remember’ that certain ‘fictitious pictures’ were once ‘fictitious and real’ in the past. This can lead to a tendency in everyday life to ascribe a ‘presumed reality’ to fictional images that were once ‘real’ in the past, even in the current present. This tendency is probably of high practical importance in everyday life. In many cases these ‘assumptions’ also work. However, this ‘spontaneous-for-real-holding’ can often be off the mark; a common source of error.

The ‘spontaneous-for-real-holding’ can be disadvantageous for many reasons. For example, the fictional images (as inescapably abstract images) may in themselves be only ‘partially appropriate’. The context of the application may have changed. In general, the environment is ‘in flux’: facts that were given yesterday may be different today.

The reasons for the persistent changes are different. Besides such changes, which we could recognize by our experience as an ‘identifiable pattern’, there are also changes, which we could not assign to a pattern yet; these can have a ‘random character’ for us. Finally there are also the different ‘forms of life’, which are basically ‘not determined’ by their system structure in spite of all ‘partial determinateness’ (one can also call this ‘immanent freedom’). The behavior of these life forms can be contrary to all other recognized patterns. Furthermore, life forms behave only partially ‘uniformly’, although everyday structures with their ‘rules of behavior’ – and many other factors – can ‘push’ life forms with their behavior into a certain direction.

If one remembers at this point again the preceding thoughts about the ‘immanent infinity’ and the view that the single, finite moments are only understandable as ‘part of a process’, whose ‘logic’ is not decoded to a large extent until today, then it is clear, that any kind of ‘modeling’ within the comprehensive change processes can only have a preliminary approximation character, especially since it is aggravated by the fact that the human actors are not only ‘passively receiving’, but at the same time always also ‘actively acting’, and thereby they influence the change process by their actions! These human influences result from the same immanent infinity as those which cause all other changes. The people (like the whole life) are thus inevitably real ‘co-creative’ …. with all the responsibilities which result from it.

MORALITY ABOVE ALL

What exactly one has to understand by ‘morality’, one has to read out of many hundreds – or even more – different texts. Every time – and even every region in this world – has developed different versions.

In this text it is assumed that with ‘moral’ such ‘views’ are meant, which should contribute to the fact that an individual person (or a group or …) in questions of the ‘decision’ of the kind “Should I rather do A or B?” should get ‘hints’, how this question can be answered ‘best’.

If one remembers at this point what was said before about that form of thinking which allows ‘prognoses’ (thinking in explicit ‘models’ or ‘theories’), then there should be an ‘evaluation’ of the ‘possible continuations’ independent of a current ‘situation description’ and independent of the possible ‘knowledge of change’. So there must be ‘besides’ the description of a situation as it ‘is’ at least a ‘second level’ (a ‘meta-level’), which can ‘talk about’ the elements of the ‘object-level’ in such a way that e.g. it can be said that an ‘element A’ from the object-level is ‘good’ or ‘bad’ or ‘neutral’ or with a certain gradual ‘tuning’ ‘good’ or ‘bad’ or ‘neutral’ at the meta-level. This can also concern several elements or whole subsets of the object level. This can be done. But for it to be ‘rationally acceptable’, these valuations would have to be linked to ‘some form of motivation’ as to ‘why’ this valuation should be accepted. Without such a ‘motivation of evaluations’ such an evaluation would appear as ‘pure arbitrariness’.

At this point the ‘air’ becomes quite ‘thin’: in the history so far no convincing model for a moral justification became known, which is in the end not dependent from the decision of humans to set certain rules as ‘valid for all’ (family, village, tribe, …). Often the justifications can still be located in the concrete ‘circumstances of life’, just as often the concrete circumstances of life ‘recede into the background’ in the course of time and instead abstract concepts are introduced, which one endows with a ‘normative power’, which elude a more concrete analysis. Rational access is then hardly possible, if at all.

In a time like in the year 2023, in which the available knowledge is sufficient to be able to recognize the interdependencies of literally everybody from everybody, in addition the change dynamics, which can threaten with the components ‘global warming’ the ‘sustainable existence of life on earth’ substantially, ‘abstractly set normative terms’ appear not only ‘out of time’, no, they are highly dangerous, since they can substantially hinder the preservation of life in the further future.

META-MORAL (Philosophy)

The question then arises whether this ‘rational black hole’ of ‘justification-free normative concepts’ marks the end of human thinking or whether thinking should instead just begin here?

Traditionally, ‘philosophy’ understands itself as that attitude of thinking, in which every ‘given’ – including any kind of normative concepts – can be made an ‘object of thinking’. And just the philosophical thinking has produced exactly this result in millennia of struggle: there is no point in thinking, from which all ought/all evaluating can be derived ‘just like that’.

In the space of philosophical thinking, on the meta-moral level, it is possible to ‘thematize’ more and more aspects of our situation as ‘mankind’ in a dynamic environment (with man himself as part of this environment), to ‘name’ them, to place them in a ‘potential relations’, to make ‘thinking experiments’ about ‘possible developments’, but this philosophical meta-moral knowledge is completely transparent and always identifiable. The inferences about why something seems ‘better’ than something else are always ’embedded’, ‘related’. The demands for an ‘autonomous morality’, for an ‘absolute morality’ besides philosophical thinking appear ‘groundless’, ‘arbitrary’, ‘alien’ to the ‘matter’ against this background. A rational justification is not possible.

A ‘rationally unknowable’ may exist, exists even inescapably, but this rationally unknowable is our sheer existence, the actual real occurrence, for which so far there is no rational ‘explanation’, more precisely: not yet. But this is not a ‘free pass’ for irrationality. In ‘irrationality’ everything disappears, even the ‘rationally unrecognizable’, and this belongs to the most important ‘facts’ in the world of life.

COMMENTS

[1] The different forms of ‘infinity’, which have been introduced into mathematics with the works of Georg Cantor and have been intensively further investigated, have nothing to do with the experienceable finiteness/ infinity described in the text: https://en.wikipedia.org/wiki/Georg_Cantor . However, if one wants to ‘describe’ the ‘experience’ of real finiteness/ infinity, then one will possibly want to fall back on descriptive means of mathematics. But it is not a foregone conclusion whether the mathematical concepts ‘harmonize’ with the empirical experience standing to the matter.