ENGINEERING AND SOCIETY: The Role of Preferences

ISSN 2567-6458, 4.May 2019
Author: Gerd Doeben-Henisch


This suggests that a symbiosis between creative humans and computing algorithms is an attractive pairing. For this we have to re-invent our official  learning processes in schools and universities to train the next generation of humans in a more inspired and creative usage of algorithms in a game-like learning processes.


The overall context is given by the description of the Actor-Actor Interaction (AAI) paradigm as a whole.  In this text the special relationship between engineering and the surrounding society is in the focus. And within this very broad and rich relationship the main interest lies in the ethical dimension here understood as those preferences of a society which are more supported than others. It is assumed that such preferences manifesting themselves  in real actions within a space of many other options are pointing to hidden values which guide the decisions of the members of a society. Thus values are hypothetical constructs based on observable actions within a cognitively assumed space of possible alternatives. These cognitively represented possibilities are usually only given in a mixture of explicitly stated symbolic statements and different unconscious factors which are influencing the decisions which are causing the observable actions.

These assumptions represent  until today not a common opinion and are not condensed in some theoretical text. Nevertheless I am using these assumptions here because they help to shed some light on the rather complex process of finding a real solution to a stated problem which is rooted in the cognitive space of the participants of the engineering process. To work with these assumptions in concrete development processes can support a further clarification of all these concepts.



The relationship between an engineering process and the preferences of a society
The relationship between an engineering process and the preferences of a society

As assumed in the AAI paradigm the engineering process is that process which connects the  event of  stating a problem combined with a first vision of a solution with a final concrete working solution.

The main characteristic of such an engineering process is the dual character of a continuous interaction between the cognitive space of all participants of the process with real world objects, actions, and processes. The real world as such is a lose collection of real things, to some extend connected by regularities inherent in natural things, but the visions of possible states, possible different connections, possible new processes is bound to the cognitive space of biological actors, especially to humans as exemplars of the homo sapiens species.

Thus it is a major factor of training, learning, and education in general to see how the real world can be mapped into some cognitive structures, how the cognitive structures can be transformed by cognitive operations into new structures and how these new cognitive structures can be re-mapped into the real world of bodies.

Within the cognitive dimension exists nearly infinite sets of possible alternatives, which all indicate possible states of a world, whose feasibility is more or less convincing. Limited by time and resources it is usually not possible to explore all these cognitively tapped spaces whether and how they work, what are possible side effects etc.


Somehow by nature, somehow by past experience biological system — like the home sapiens — have developed   cultural procedures to induce preferences how one selects possible options, which one should be selected, under which circumstances and with even more constraints. In some situations these preferences can be helpful, in others they can  hide possibilities which afterwards can be  re-detected as being very valuable.

Thus every engineering process which starts  a transformation process from some cognitively given point of view to a new cognitively point of view with a following up translation into some real thing is sharing its cognitive space with possible preferences of  the cognitive space of the surrounding society.

It is an open case whether the engineers as the experts have an experimental, creative attitude to explore without dogmatic constraints the   possible cognitive spaces to find new solutions which can improve life or not. If one assumes that there exist no absolute preferences on account of the substantially limit knowledge of mankind at every point of time and inferring from this fact the necessity to extend an actual knowledge further to enable the mastering of an open unknown future then the engineers will try to explore seriously all possibilities without constraints to extend the power of engineering deeper into the heart of the known as well as unknown universe.


At the start one has only a rough description of the problem and a rough vision of a wanted solution which gives some direction for the search of an optimal solution. This direction represents also a kind of a preference what is wanted as the outcome of the process.

On account of the inherent duality of human thinking and communication embracing the cognitive space as well as the realm of real things which both are connected by complex mappings realized by the brain which operates  nearly completely unconscious a long process of concrete real and cognitive actions is necessary to materialize cognitive realities within a  communication process. Main modes of materialization are the usage of symbolic languages, paintings (diagrams), physical models, algorithms for computation and simulations, and especially gaming (in several different modes).

As everybody can know  these communication processes are not simple, can be a source of  confusions, and the coordination of different brains with different cognitive spaces as well as different layouts of unconscious factors  is a difficult and very demanding endeavor.

The communication mode gaming is of a special interest here  because it is one of the oldest and most natural modes to learn but in the official education processes in schools and  universities (and in companies) it was until recently not part of the official curricula. But it is the only mode where one can exercise the dimensions of preferences explicitly in combination with an exploring process and — if one wants — with the explicit social dimension of having more than one brain involved.

In the last about 50 – 100 years the term project has gained more and more acceptance and indeed the organization of projects resembles a game but it is usually handled as a hierarchical, constraints-driven process where creativity and concurrent developing (= gaming) is not a main topic. Even if companies allow concurrent development teams these teams are cognitively separated and the implicit cognitive structures are black boxes which can not be evaluated as such.

In the presupposed AAI paradigm here the open creative space has a high priority to increase the chance for innovation. Innovation is the most valuable property in face of an unknown future!

While the open space for a real creativity has to be executed in all the mentioned modes of communication the final gaming mode is of special importance.  To enable a gaming process one has explicitly to define explicit win-lose states. This  objectifies values/ preferences hidden   in the cognitive space before. Such an  objectification makes things transparent, enables more rationality and allows the explicit testing of these defined win-lose states as feasible or not. Only tested hypothesis represent tested empirical knowledge. And because in a gaming mode whole groups or even all members of a social network can participate in a  learning process of the functioning and possible outcome of a presented solution everybody can be included.  This implies a common sharing of experience and knowledge which simplifies the communication and therefore the coordination of the different brains with their unconsciousness a lot.


Testing a proposed solution is another expression for measuring the solution. Measuring is understood here as a basic comparison between the target to be measured (here the proposed solution) and the before agreed norm which shall be used as point of reference for the comparison.

But what can be a before agreed norm?

Some aspects can be mentioned here:

  1. First of all there is the proposed solution as such, which is here a proposal for a possible assistive actor in an assumed environment for some intended executive actors which has to fulfill some job (task).
  2. Part of this proposed solution are given constraints and non-functional requirements.
  3. Part of this proposed solution are some preferences as win-lose states which have to be reached.
  4. Another difficult to define factor are the executive actors if they are biological systems. Biological systems with their basic built in ability to act free, to be learning systems, and this associated with a not-definable large unconscious realm.

Given the explicit preferences constrained by many assumptions one can test only, whether the invited test persons understood as possible instances of the  intended executive actors are able to fulfill the defined task(s) in some predefined amount of time within an allowed threshold of making errors with an expected percentage of solved sub-tasks together with a sufficient subjective satisfaction with the whole process.

But because biological executive actors are learning systems they  will behave in different repeated  tests differently, they can furthermore change their motivations and   their interests, they can change their emotional commitment, and because of their   built-in basic freedom to act there can be no 100% probability that they will act at time t as they have acted all the time before.

Thus for all kinds of jobs where the process is more or less fixed, where nothing new  will happen, the participation of biological executive actors in such a process is questionable. It seems (hypothesis), that biological executing actors are better placed  in jobs where there is some minimal rate of curiosity, of innovation, and of creativity combined with learning.

If this hypothesis is empirically sound (as it seems), then all jobs where human persons are involved should have more the character of games then something else.

It is an interesting side note that the actual research in robotics under the label of developmental robotics is struck by the problem how one can make robots continuously learning following interesting preferences. Given a preference an algorithm can work — under certain circumstances — often better than a human person to find an optimal solution, but lacking such a preference the algorithm is lost. And actually there exists not the faintest idea how algorithms should acquire that kind of preferences which are interesting and important for an unknown future.

On the contrary, humans are known to be creative, innovative, detecting new preferences etc. but they have only limited capacities to explore these creative findings until some telling endpoint.

This suggests that a symbiosis between creative humans and computing algorithms is an attractive pairing. For this we have to re-invent our official  learning processes in schools and universities to train the next generation of humans in a more inspired and creative usage of algorithms in a game-like learning processes.