
KOMEGA REQUIREMENTS No.1

Basic Application Scenario
∗

Gerd Doeben-Henisch
gerd@doeben-henisch

in cooperation with the INM KOMeGA-Teams

July-25, 2020

Abstract

As described in the uffmm eJournal (URL: https://www.uffmm.org/)
the wider context of this software project is a generative theory of cultural
anthropology [GCA] which is an extension of the engineering theory called
Distributed Actor-Actor Interaction [DAAI]. The more detailed considera-
tions to the GCA theory are described in the section Case Studies of the
uffmm eJournal. There is also a section about Python co-learning – mainly
dealing with python programming – and a section about a web-server with
Dragon. This document will be part of the Case Studies section.

1 Basic Application Scenario

Before starting any kind of programming one has to consider, which application
scenario is the context of the software and what are the detailed functional and
non-functional requirements which have to be fulfilled to match the intended
case. Figure 1 gives a first starting point for the intended application scenario.

Main Actors: The main actors in the intended application scenario are some
experts working as a group with the common intention to solve a given problem
P (a task, a question, ...).

∗Copyright 2020 by eJournal uffmm.org, ISSN 2567-6458, Email: info@uffmm.org, Publi-
cation date: July-25, 2020

1



Figure 1: Overview application scenario base-case, version 1

How to Proceed: At the beginning of the process every expert Ai (with
’i’ as an index in the range of the number ’n’ of experts) has its own experi-
ence, therein embedded the individual knowledge. These experiences are usually
mostly unconscious. Thus it is needed to start a process of common commu-
nication to activate as much experience as possible from the unconsciousness
which is related to the problem P in question.

Target: This activation process of available knowledge reaches its first end if
the experts could write down two texts in everyday language L0:

1. A description of at least one static state S which is a typical part of the
intended problem P .

2. A collection of rules representing a set of known possible changes X
related to this static state as well as – in some cases – a collection of
rules representing a set of new possible changes enabling new static states
related to the problem P .

These two texts are close to the understanding of the experts measured in
the light of the used everyday language L0. But for to use a computer to support
the thinking of the experts one needs a sufficient formal language Lf which can
be processed by the computer. To prevent a deep semantic gap between the

2



text of the experts and the formal text for the computer one needs a formal
language Lf which fulfills at least the following requirements:

1. The used formal language Lf for the computer must be readable and
understandable for every speaker-hearer of the used everyday language
without a special training.

2. It must be possible to define a mapping (translation) τ from the text in
everyday language L0 to the text written in a formal language Lf , written
as τ : L0 7−→ Lf .

Translation τ : It is assumed here that a subset Lε∗ of the set-theoretical
language Lε in its full form is sufficient for this task.1 Thus the translation
requirement reduces to the requirement to construct a mapping τ from the
everyday language L0 to a defined subset of the set-theoretical language Lε∗,
written as

τ : L0 7−→ Lε∗ (1)

To make things a little bit more convenient one can define a hierarchy of
subsets of the everyday language L0.1 ⊂ L0.2 ⊂ ... ⊂ L0 in a way that one
defines the mapping τ first for the smallest subset L0.1, then for the next, and
so on. The final target should be to map a subset of the everyday language to
the set theoretical subset as large as possible.

Simulator σ: If the static state description S as well as the set of change rules
X has successfully been translated in texts written in the reduced set-theoretical
language Lε∗ then these texts can be processed by the simulator as follows: take
the set of change rules X and apply these to a given static state description
S in a way that (i) either nothing will change in the new state S′ or (ii) some
old facts will be deleted before the next state S′ or (iii) some new facts will be
created for the next state S′. Finally a new state description S′ is given which
results from the schema S′ = S −Deleted+ Created.

Re-Translation τ−1 :
To make the understanding for the experts more convenient an additional

translation has to be done:

τ−1 : Lε∗ 7−→ L0 (2)

1The set-theoretical language Lε is the main language for modern mathematics and is an
instance of the general logic language LPL.

3



Thus we have a re-translation from a formal language to an everyday lan-
guage. As soon as the new follow-up state S′ has been composed the follow-up
state will replace the old state S and the new state S′ will become the new
actual state S. To allow afterwards some evaluation the whole sequence of
computed states can and will be stored as a history H.

4


