Comment to Source Code 'vw4.py’

Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

August 19, 2019

1 The Problem and the Solution Vision

In this post there are two goals: (i) The one is the continuation of learning to
use the programming language python, the other (ii) is the usage of the Actor-
Actor Interaction (AAl) paradigm to describe a problem and its solution.

In the AAI paradigm (see the page https://www.uffmm.org/2019/05/12/
aci-frontpage/) it is assumed that one describe a vision solution by a se-
quence of states connected by changes. A state is a collection of facts which
describe objects with properties and relations between these objects. It is pos-
sible to introduce additionally actor models which describe possible inner states
(IS) of those objects which are actors. Actor objects have inputs (I) from the
environment, outputs (O) to the environment and inner states (IS) which define
a behavior function ¢.

2 The Actor-Actor Stories (AASS)

For this post it has been assumed that there exists a virtual world (VW) which
can interact with a user (U) in some way. Based on this communication the
virtual world will organized its internals states in a way that there are data
structures for a 2-dimensional grid with empty spaces ('), which can be occu-
pied either by obstacles ("O’), food objects (’F’), or by actors (‘A’).

This configuration allows the distinction between two different Actor-Actor
stories depending from two different story levels. At actor actor story level
0 (AAS L0) we have the real user interaction with an interface for the virtual
world. At AAS L-1 we are inside the virtual world where the actor objects are
interacting with the other objects in the 2-dimensional grid world. In every AAS
we can find certain specific changes.

Figure 1 shows a simplified graphical description of two embedded actor-
actor stories. The AAS L0 has basically states with the user as executive actor
USER(eA1) and the virtual world VW(aA1) as an assisting actor. Both are
embedded in a communication relation COM(eA1, aA1) which allows different
kinds of inputs and outputs from each side.

ACTOR-ACTOR STORY L0 and L-1 FOR vw4.py

AASLO

USER(eA1)

COM(eA1, aAl)

IN: MESSAGES from eAl

IS: VW-DATA

OUT: MESSAGE to aAl

BEHAVIOR FCT Phi = Com o Run

Com:IN XIS --->OUT

AAS L-1

SPACE2D(SP) COMBUFFER(CBF)

STOPMOVE(0,A)

IN: MESSAGES FROM CBF

FREE-SPACE() PARTOF('_",SP)

IS: A-DATA

OBSTACLE(O) PARTOF(O,SP)

CANEAT(A,F)
FOOD(F) PARTOF(F,SP) CANMOVE(A,SP)

OUT: MESSAGES TO CBF

BEHAVIOR FCT Phi: IN x IS ---> OUT

ACTOR(A) PARTOF(A,SP) CANLEAVE(A,SP)

COM(A,CBF)

Figure 1: Overview of two actor-actor stories at level 0 and level -1

3 The Actor Models (AMs)

To understand the interactions between the real user USER(eA1) and the vir-
tual world as actor VW(aA1) one needs at one hand some understanding of the
real user, and some understanding of the virtual world as actor. In case of the
virtual world this can be enabled by an explicit actor model (AM) of the virtual
world as actor. This can be done by describing which kinds of inputs the virtual
world actor can receive from the real user and which kinds of outputs the virtual
world actor can produce for the real user. Additionally one can describe the in-
ternal states of the virtual world actor. In case of the internal states we can
recognize a 2-dimensional space model organized as a n*n grid whose cells
can be occupied by obstacles, food, and actors. While the food objects ('F’)
can only change their energy level, the actor objects ('A’) can move around,
can eat and they will thereby change their energy level, either increasing by
eating food or by decreasing moving around.

On level -1 the virtual world manages the changes by receiving input from
the actors for intended eating and moving and has to decide, whether these
actions are possible and if yes, what kind of changes this implies.

In the actual code the explicit communication between virtual world actor
objects and the virtual world manager is not yet explicitly coded. This eill be
extended in the upcoming posts.

4 The Python Code

The source code can be found on this page: https://www.uffmm.org/2019/
08/19/starting-with-python3-the-very-beginning-part-9/

Two different files can be distinguished: the main program vw4.py and many
additional functions collected in the import file vwmanager.py. This second file
will be automatically imported by the file vw4.py during run time.

4.1 Main Program vw4.py

The main program asks the user some questions about some parameters
which will determine the layout of the virtual world.

1. The object objL contains some global properties for the food objects and
the actor objects of the virtual world. In that moment, when concrete food
and actor objects will be activated in the 2-dimensional grid of the virtual
world these global properties will be added to these objects.

2. The object say indicates whether the program shall show the user a max-
imal amount of information about the process or a minimal amount. A
maximal amount will usually only be interesting during the development
of the program.

3. The object m encodes the n umber of rows and columns of the 2D-grid.
The rows are representing the y-axis from above (=0) to below (m-1). The
columns representing the x-axis from left (=0) to right (m-1).

4. The object mx represents the 2D-grid.

5. The 0lO, the olF and the olA objects represent respectively the lists of
the obstacles, the list of the food objects, as well as the list of the actor
objects as they have been randomly be assigned to the 2D grid.

6. The percentage of objects ask in the beginning is at this point only ap-
proximately, because all the asked objects will be randomly be distributed
and the later generated objects can overwrite those, which are already at-
tached to a cell in the 2D grid. Therefore a final computation of the real
distribution will be shown at the end of the object generation phase.

7. Another important object is the CYC object which represents the number
of wanted cycles. Then a world clock WCLCK will be started to count the
number of cycles which have been run so far. This clock can be used to
inform the user about the time of the virtual world.

8. With the objects stepMode and cont the user can decide whether he can
follow the run step by step or continuously without interruptions.

9. With the expression len(olA) one asks for the actual length of the list of
all actor objects. If an actor object looses too much energy then it can
'die’ and then it will be removed from the 2D-grid. Thus if the length of

10.

the olA list is below 1 then all actor objects have been removed and the
simulation will be stopped although the wanted number of cycles is not
yet fulfilled.

During the main loop different actions are activated and processed to
enable the movement of all actor objects, their eating, and the update of
the energy levels of all objects. As last action of all these it will be checked
whether an actor objects has to be removed from the grid on account of
a possible energy level below 1.

