File komega-v09b.py

Author: G.Doeben-Henisch
First date: September 4, 2020
Last change: 22.0ctober 2020, 12:55 am

W

TOPIC OF NEW CHANGE

After changing the order of Eminus-Eplus to Eplus-Eminus in the X-rules document generation the
simulation mode will be extended to allow multiple files (S or X) to be loaded and unified

m

TR R R

Execution Environment of my local machine:

(venv) gerd@gerd-ub2:~/env/komega/tst$ python3 komega-v01d.py
#

HHHHEHHEHEHHEHHHEHEHE

GITHUB

#

We use a github repository at:

https://github.com/szmt/komega.git

#

I am working from a unix-shell using the following github-commands:
https://git-scm.com/docs/git

TR TR R TR R

BACKGROUND THEORY

#

This code is a translation of a theory described in the blog

https://www.uffmm.org

#

There exists meanwhile additionally a German webpage with a comprehensive text including

epistemology, theory of shared knowledge generation with simulation as well

as assessment of goals within this process:

URL: https://www.cognitiveagent.org/2020/10/02/mensch-mensch-computer-gemeinsam-planen-
und-lernen-erste-notizen/

This German text covers only a subpart of the uffmm.org website

T T R R TR R R R

VIDEOS

#

There exist two videos (EN,DE) explaining the change from the 'complete minimal' version to a
'basic version':

#

m

https://www.uffmm.org/2020/10/17/komega-requirements-from-the-minimal-to-the-basic-version/

m

HEHHBHH R

HMI - CLASS PUBLISH and STORAGE

#

The intended interaction of the user with the system will be realized through an interactive web
page. In this experimental program there is no web page but a normal console. Therefore (proposal
from Tobias Schmitt) we have a special class "Publish' which handles all console input and output
and the other classes interact with this class Publish. In the context of the web server we can then
replace the class Publish by appropriate libraries for HTML web pages.

m

IR R R R IR R R R

ACTOR STORY

#

In the specifications an actor story [AS] has been specified. This AS requires # some basic states
which are dedicated for certain tasks to do:

ACTOR STORY

S1: START

S2: EDIT P and V (Problem and Vision description)
S3: EDIT S (actual state)

S4: EDIT X (change rules)

S5: SIMULATION (Applying X to S)

S6: EVALUATION (After the simulation)

S7: STOP

m

MAIN IDEA

According to the above mentioned actor story the user will be sitting in front of a system interface
[ST] which works first only as a console.

In the beginning the user is placed in a start state S1 showing all options available.

The user can select one of these options and can from start state S1 reach all other states S2-S7.

m

HEHHHRHHHHHH
IMPORTS

HAHH BB
SUPPORTING FUNCTION
#

No isolated funtions yet, only functions as part of classes.

CLASSES
#

For every state there exists one working class to do the job.

import kcv9b as ke #The theory-related classes

HHH BRI B BRI R R
Main Programm
#

HHHH A

Start main loop

#

The loop will work as long as the value of the variable 'loop’ is different to 'N'

loop="Y"
while loop=="Y":

HHHHHHHH
STATE 1 : START

Show available options

Get feedback for selection

Confirm the selection

Move to different states

SHOW ALL AVAILABLE OPTIONS
kc.ast.menushow()

Ask back for selection number
message="Enter a Number [1-7] for Menu Option \n'
kc.pub.userinput(message)

Evaluate the selection

opt=kc.pub.opt
kc.ast.badoption(opt)

HHH A R R R A
Call to state Edit Problem P and Vision V

HHHH AR A

STATE 2 : EDIT Pand V

Ask Questions related to P and V

Collect all answers into one problem-vision document

#

if opt=="2"
Where You are
kc.pub.show(kc.ap)

#Interaction with Problem Class
OVERVIEW ABOUT TOPICS

message="You will be asked to the following topics:\n'
kc.pub.useroutput(message)

kc.app.menushow()

DOCUMENTS SO FAR
kc.app.getpvlist()

ENTER PROBLEM

message="\n Enter a NAME for your problem\n'
kc.pub.userinput(message)

inp=kc.pub.opt

kc.app.getpname(inp)

message="\n Enter your PROBLEM in plain text\n'
kc.pub.userinput(message)

inp=kc.pub.opt

kc.app.getproblem(inp)

message="\n Enter your VISION of a better state in the future in plain text\n'
kc.pub.userinput(message)

inp=kc.pub.opt

kc.app.getvision(inp)

message="\n Enter the NAME of the CITY or REGION you are in\n'
kc.pub.userinput(message)

inp=kc.pub.opt

kc.app.getregion(inp)

message="\n TIME model [From, Until,Cycleunit [Y or M or D or H]]\n'
kc.pub.userinput(message)

inp=kc.pub.opt

kc.app.gettime(inp)

message="\n Which kinds of PERSONS (individuals or roles) are important? Write a
list, comma separated please :\n'

kc.pub.userinput(message)

inp=kc.pub.opt

kc.app.getperson(inp)

HHHEHHEHHHER
Show final document as dictionary

kc.app.problemTotal()

W
Call to state Edit Actual State S

HHHHEHHEHHEHHHHEHE

STATE 3 : EDIT S

Collect single expressions

Collect all expressions into one document describing S

The document S is organized as a set of expressions!
In the DB every S document is associated with a name.

elif opt=="3"
Where You are
kc.pub.show(kc.ass)

Set document S to zero
kc.aas.emptydocs()

Actual list of state descriptions
kc.aas.getslist()

Ask for a document S to be loaded
message="Do You want to load a document S? [Y,N]\n"
kc.pub.userinput(message)
inp=kc.pub.opt
if inp =="Y"
message='Enter the name of the wanted document:\n'
kc.pub.userinput(message)
fname=kc.pub.opt
kc.ass.stateName=fname
HHHEHEHHHHEHEHEH
LOAD
docs=set()
docs=kc.st.d[fname]
message="This is the content of the document:\n'
kc.pub.useroutput(message)
kc.pub.useroutput(str(docs))
kc.aas.stateAll=docs

else:
message='Enter a NAME for the new state description:\n'
kc.pub.userinput(message)
fname=kc.pub.opt
kc.aas.getsname(fname)
Sloop="Y"

while Sloop=="Y"
Interaction with actual state S document
message="Enter an expression for your state description in plain text : \n'
kc.pub.userinput(message)
inp=kc.pub.opt
kc.aas.getexpression(inp)
message="STOP Editing S !=Y', CONTINUE ="'Y" \n"
kc.pub.userinput(message)
inp=kc.pub.opt
Sloop=inp

HHBHHHHHHH
Keeping the document

message="Your final State Description document is now :\n'
kc.pub.useroutput(message)

docs=kc.aas.state All

kc.pub.useroutput(docs)

HHHHH R R R R
STORE DOCUMENT PERMANENTLY

kc.aas.storeSdocument()

#

HHHEHHHHHEHEHEH
Call to state Edit Change Rules X

HHEHHHHHEHEHEH I

STATE 4 : EDIT X

Collect single expressions for change rules

Collect all expressions into one document describing X

#

R R R R IR R R IR R R R

FORMAT OF A RULE WITHOUT ACTOR

#

IF: CONDITION THEN: PROBABILITY - E-MINUS - E-PLUS
IR R R R R R R R R R R R R R
#V0:.1 Expression......[0,1]......1 Expression .1 Expression

#

In the first version we assume the most simple case which is possible!

elif opt=="4"
Where You are
kc.pub.show(kc.ax)

A list of all X-documents so far
kc.axx.getxlist()

Ask for a document X to be loaded
message="Do You want to load a document X? [Y,N]\n"
kc.pub.userinput(message)
fileinp=kc.pub.opt
if fileinp =="Y":
message='Enter the name of the wanted document:\n'
kc.pub.userinput(message)
fname=Kkc.pub.opt
kc.axx.ruleDocName=fname
HHHEHEHHHHEHEHEH
LOAD
kc.axx.getdocx(fname)
message="Your Rules document is as follows :\n'
kc.pub.useroutput(message)
docx=kc.axx.rulesAll
kc.pub.useroutput(docx)
else:
message='Enter the name of the new rules document:\n'

kc.pub.userinput(message)
fname=kc.pub.opt
kc.axx.ruleDocName=fname

Set AllRules to zero
if fileinp !="Y":
kc.axx.AllToZero()

XAllLoop="Y"
while XAllLoop=="Y"

Set Rule to zero
kc.axx.RuleToZero()

Set Condition to zero
kc.axx.CondToZero()

Generate the Condition as a set
XCondLoop="Y"
while XCondLoop=="Y"
message=kc.axx.rcat[0]+' : \n' #Shows CONDITION
kc.pub.userinput(message)
inp=kc.pub.opt
kc.axx.getcond(inp)

message="CONTINUE Editing Condition ="'Y", STOP !="Y" \n"
kc.pub.userinput(message)

inp=kc.pub.opt

XCondLoop=inp

Append Condition to rule
kc.axx.rule.append(kc.axx.cond)

Get the Probability
Set Probability to Zero
kc.axx.ProbToZero()

Generate Probability and Append to rule
message="Enter a probability between 0.0 and 1.0 \n"
kc.pub.userinput(message)

inp=kc.pub.opt

kc.axx.getprob(inp)

Set EPlus to zero
kc.axx.EplusToZero()

Generate the set EPlus

XEPlusLoop="Y"

while XEPlusLoop=="Y"
message=kc.axx.rcat[2]+" : \n' #Shows EPlus
kc.pub.userinput(message)
inp=kc.pub.opt

kc.axx.geteplus(inp)

message="CONTINUE Editing EPlus ="Y', STOP I="Y"' \n"
kc.pub.userinput(message)

inp=kc.pub.opt

XEPlusLoop=inp

Append EPlus to rule
kc.axx.rule.append(kc.axx.eplus)

Set EMinus to zero
kc.axx.EminusToZero()

Generate the set EMinus
XEMinusLoop="Y"
while XEMinusLoop=="Y":
message=kc.axx.rcat[3]+' : \n' #Shows EMinus
kc.pub.userinput(message)
inp=kc.pub.opt
kc.axx.geteminus(inp)
message="CONTINUE Editing EMinus ='Y", STOP !="Y" \n"
kc.pub.userinput(message)
inp=kc.pub.opt
XEMinusLoop=inp

Append EMinus to rule
kc.axx.rule.append(kc.axx.eminus)

Convert the rule into a dictionary
ruledict=dict(zip(kc.axx.rcat, kc.axx.rule))

Add the new rule-dictionary to rulesAll
kc.axx.rulesAll.append(ruledict)

Shwo all rules so far

message="Your Rules document with name '+str(kc.axx.ruleDocName)+' is
now :\n'

kc.pub.useroutput(message)

docx=kc.axx.rulesAll

kc.pub.useroutput(docx)

Asking for Continuation with another rule
message="CONTINUE Editing X ="Y", STOP I="Y" \n"
kc.pub.userinput(message)

inp=kc.pub.opt

XAllLoop=inp

HHHHHHHH
Store the document

kc.axx.storeFinal(docx)

#

IR R IR R R R R R R R e R R R e R R R R
Call to state Simulation SIM

IR R R R R R R

STATE 5 : Run the simulation

PREPARATION

(1) Take a state description S and an appropriate set of change rules X

(either actually edited or from a file)

SIMULATION CYCLE

(2) Select all rules X* whose conditions are fulfilled by S.

(3) For each rule x in X*:

(3.1) Apply the E-Minus part and remove the E-Minus expression from S
(3.2) Apply the E-Plus part and add th e-Plus expressions to S

(3.3) Show the new version of S after applying X* to S

(3.4) If no Stop then repeat from (2)

elif opt=="5"
kc.pub.show(kc.asim)

PREPARATION
(1) Take multiple state description S and an appropriate multiple change
rules X. These will automatically be unified to one document S and X

Ask for documents S to be loaded

kc.st.loadndata()

message="Your State Description document is as follows :\n'
kc.pub.useroutput(message)

kc.assim.s=kc.aas.stateAll

kc.pub.useroutput(kc.assim.s)

Ask for a document X to be loaded

kc.st.loaddatar()

message="Your Rules document is as follows :\n'
kc.pub.useroutput(message)
kc.assim.x=kc.axx.rulesAll
kc.pub.useroutput(kc.assim.x)

SIMULATION CYCLE

s=kc.assim.s
x=kc.assim.x

XSimLoop="Y"

while XSimLoop=="Y"
kc.assim.xapply(s,x)
s=kc.aas.stateAll
message='New set S : \n'
kc.pub.useroutput(message)
kc.pub.useroutput(s)

Asking for Continuatioin with the simulation
message="CONTINUE Simulation ='Y", STOP !="Y" \n"
kc.pub.userinput(message)

inp=kc.pub.opt

XSimLoop=inp

#

B R R R
Call to state Evaluation EV

#

elif opt=="6"
kc.pub.show(kc.aev)

#

HHHH A R R R A
Call to state Stop STP

#

elif opt=="7"
kc.pub.show(kc.astp)

HHHHHHHHHA AR
End of Loop

Clarify how to continue

message="STOP MAIN LOOP !="Y', CONTINUE ="Y" \n"
kc.pub.userinput(message)

inp=kc.pub.opt

loop=inp

HHHHHHHHH AR
TESTS

Simulation mode with unified state descriptions S as well as with

unified rule documents X

(venv) gerd@gerd-ub2:~/env/komega/tst$ python3 komega-v09b.py
1is START

2is EDIT Pand V

3is EDIT S

4 is EDIT X

5 is SIMULATION

6 is EVALUATION

7 is STOP

Enter a Number [1-7] for Menu Option

5

!"You have selected the state :

SIMULATION

Here You can run a simulation SIM to check what happens with your initial state S when the change
rules X will be applied repeatadly on the state S.

Here is the list of all stored state descriptions so far :

['GerdUnil', 'StudentsAB1']

Enter a name for a state description you want to load :
StudentsAB1

Your State Description document is as follows :

{'The students A and B are at the FRA-UAS', 'The students A and B want to ask Gerd some
questions'}

Do You want to load another document (Y,N)? :

Y

Enter a name for a state description you want to load :

GerdUnil

Your State Description document is as follows :

{'Gerd is hungry', "The students A and B are at the FRA-UAS', 'The students A and B want to ask
Gerd some questions', 'Gerd is at the FRA-UAS'}

Do You want to load another document (Y,N)? :

N

Your State Description document is as follows :

{'Gerd is hungry', "The students A and B are at the FRA-UAS', 'The students A and B want to ask
Gerd some questions', 'Gerd is at the FRA-UAS'}
Here is the list of all stored rule documents so far :

['GerdUnil', 'StudentsAB1']

Enter a name for the rule document you want to load :
GerdUnil

Your Rule document is as follows :

[{'CONDITION": {'Gerd is hungry', 'Gerd is at the FRA-UAS'}, 'PROBABILITY": '1.0,
'EFFECT+": {'Gerd wents to the small Greek restaurant around the corner'}, 'EFFECT-": {'none'}},
{'CONDITION": {'Gerd is hungry'}, 'PROBABILITY": '1', 'EFFECT+": {'Gerd wants something to
eat'}, 'EFFECT-": {'none'} }]

Do You want to load another rule document (Y,N)? :

Y

Enter a name for the rule document you want to load :

StudentsAB1

Your Rule document is as follows :

[{'CONDITION'": {'Gerd is hungry', 'Gerd is at the FRA-UAS'}, 'PROBABILITY" '1.0',
'EFFECT+": {'Gerd wents to the small Greek restaurant around the corner'}, 'EFFECT-": {'none'}},
{'CONDITION'": {'Gerd is hungry'}, PROBABILITY": '1', 'EFFECT+": {'Gerd wants something to
eat'}, 'EFFECT-": {'none'}}, {CONDITION'": {'The students A and B want to ask Gerd some
questions', 'Gerd is at the FRA-UAS'}, 'PROBABILITY": '1', 'EFFECT+": {"The students A and B
went to the small Greek restaurant around the corner'}, 'EFFECT-": {'none'} }]

Do You want to load another rule document (Y,N)? :

n

Your Rules document is as follows :

[{'CONDITION'": {'Gerd is hungry', 'Gerd is at the FRA-UAS'}, 'PROBABILITY": '1.0',
'EFFECT+": {'Gerd wents to the small Greek restaurant around the corner'}, 'EFFECT-": {'none'}},
{'CONDITION": {'Gerd is hungry'}, PROBABILITY": '1', 'EFFECT+": {'Gerd wants something to
eat'}, 'EFFECT-": {'none'}}, {{CONDITION'": {'The students A and B want to ask Gerd some
questions', 'Gerd is at the FRA-UAS'}, 'PROBABILITY": '1', 'EFFECT+": {"The students A and B
went to the small Greek restaurant around the corner'}, 'EFFECT-": {'none'} }]

Set S given :

{'Gerd is hungry', "The students A and B are at the FRA-UAS', 'The students A and B want to ask
Gerd some questions', 'Gerd is at the FRA-UAS'}

Actual rule :

{'CONDITION": {'Gerd is hungry', 'Gerd is at the FRA-UAS'}, ' PROBABILITY" '1.0', 'EFFECT+":
{'Gerd wents to the small Greek restaurant around the corner'}, 'EFFECT-": {'none'}}

Set S after Remove :

{'Gerd is hungry', "The students A and B are at the FRA-UAS', 'The students A and B want to ask
Gerd some questions', 'Gerd is at the FRA-UAS'}

Set S after Union :

{'The students A and B are at the FRA-UAS', 'Gerd wents to the small Greek restaurant around the
corner', "'The students A and B want to ask Gerd some questions', 'Gerd is at the FRA-UAS', 'Gerd is
hungry'}

Set S given :

{'The students A and B are at the FRA-UAS', 'Gerd wents to the small Greek restaurant around the
corner', 'The students A and B want to ask Gerd some questions', 'Gerd is at the FRA-UAS', 'Gerd is
hungry'}

Actual rule :

{'CONDITION'": {'Gerd is hungry'}, PROBABILITY": '1', 'EFFECT+": {'Gerd wants something to
eat'}, 'EFFECT-": {'none'}}

Set S after Remove :

{'The students A and B are at the FRA-UAS', 'Gerd wents to the small Greek restaurant around the
corner’, 'The students A and B want to ask Gerd some questions', 'Gerd is at the FRA-UAS', 'Gerd is
hungry'}

Set S after Union :

{'The students A and B are at the FRA-UAS', 'Gerd wants something to eat', 'Gerd wents to the
small Greek restaurant around the corner', "The students A and B want to ask Gerd some questions',
'Gerd is at the FRA-UAS', 'Gerd is hungry'}

Set S given :

{'The students A and B are at the FRA-UAS', 'Gerd wants something to eat’, 'Gerd wents to the
small Greek restaurant around the corner', "The students A and B want to ask Gerd some questions',
'Gerd is at the FRA-UAS', 'Gerd is hungry'}

Actual rule :

{'CONDITION'": {'The students A and B want to ask Gerd some questions', 'Gerd is at the FRA-
UAS'}, 'PROBABILITY": '1', 'EFFECT+": {'The students A and B went to the small Greek
restaurant around the corner'}, 'EFFECT-'": {'none'}}

Set S after Remove :

{'The students A and B are at the FRA-UAS', 'Gerd wants something to eat', 'Gerd wents to the
small Greek restaurant around the corner', "The students A and B want to ask Gerd some questions',
'Gerd is at the FRA-UAS', 'Gerd is hungry'}

Set S after Union :

{'The students A and B are at the FRA-UAS', 'Gerd wants something to eat', 'Gerd wents to the
small Greek restaurant around the corner', "The students A and B want to ask Gerd some questions',

'Gerd is at the FRA-UAS', 'Gerd is hungry', 'The students A and B went to the small Greek
restaurant around the corner'}
New set S :

{'The students A and B are at the FRA-UAS', 'Gerd wants something to eat’, 'Gerd wents to the
small Greek restaurant around the corner’, 'The students A and B want to ask Gerd some questions',
'Gerd is at the FRA-UAS', 'Gerd is hungry', 'The students A and B went to the small Greek
restaurant around the corner'}

CONTINUE Simulation ="Y", STOP !="Y"

n

STOP MAIN LOOP !="Y', CONTINUE ="Y"

n

m

