File komega-v03a.py

Author: G.Doeben-Henisch
First date: September 4, 2020
Last change: 12.September 2020

IR R R R R R R

Execution Environment of my local machine:

(venv) gerd@gerd-ub2:~/env/komega/tst$ python3 komega-v01d.py
#

HHH AR AR

GITHUB

#

We use a github repository at:

https://github.com/szmt/komega.git

#

Im working from a unix-shell using the following github-commands:
https://git-scm.com/docs/git

IR R R R IR R R R

BACKGROUND THEORY

#

This code is a translation of a theory described in the blog

https://www.uffmm.org

#

Last document for the specification of this code:

#
https://www.uffmm.org/2020/09/10/komega-requirements-no-4-version-4-basic-application-
scenario/

m

HHHH AR

ACTOR STORY

#

In the specifications an actor story [AS] has been specified. This AS requires # some basic states
which are dedicated for certain tasks to do:

m

ACTOR STORY

S1: START

S2: EDIT P(roblem description)

S3: EDIT S (actual state)

S4: EDIT X (change rules)

S5: SIMULATION (Applying X to S)

S6: EVALUATION (After the simulation)
S7: STOP

m

MAIN IDEA

According to the above mentioned actor story the user will be sitting in front of a system interface
[ST] which works first only as a console.

In the beginning the user is placed in a start state S1 showing all options available.

The user can select one of these options and can from start state S1 reach all other states S2-S7.

m

HEHHBHHHHHHHHHH
IMPORTS

HAHH BB
SUPPORTING FUNCTION
#

No funtions yet

CLASSES

#

For every state there exists one working class to do the job.

The special class "Publish'’ in this code exists only because the interaction of the user with the
system will happen with an interactive website which uses HTML and javascript. Here in this
experimental environment a simple unix-console is used.

m

import kcv3a as kc

HHHHHEHEHHH R
Main Programm
#

HHHHHHHHHHHH

Start main loop

#

The loop will work as long as the value of the variable 'loop’ is different to 'N'

loop="Y"
while loop!='N":

HAHHARHHA AR R R R
STATE 1 : START

Show available options

Get feedback for selection

Confirm the selection

Distribute to different states

kc.ast.menushow()

Ask back for selection number
opt=input('Enter a Number [1-7] for Menu Option \n")

Evaluate the selection
kc.ast.badoption(opt)

HEHHH R R R
Call to a class instance

#

T T R T
Call to state Edit Problem P

R

STATE 2 : EDIT P

Ask Questions related to P

Collect all answers into one problem document

#

if opt=="2"
Where You are
kc.pub.show(kc.ap)

#Interaction with Problem Class
inp=input('Enter your problem as it is now given in plain text\n')
kc.app.getproblem(inp)

inp=input('"Enter your vision of a better state in the future in plain text\n")
kc.app.getvision(inp)

inp=input('"Enter the name of the city you are in\n")
kc.app.getregion(inp)

inp=input("Time model [From, Until,Cycleunit [Y or M or D or H]]: ")
kc.app.gettime(inp)

inp=input('Which kinds of persons are important? Write a list, comma separated
please : ')
kc.app.getperson(inp)

kc.app.problemTotal()

#

HHBHHHHH
Call to state Edit Actual State S

HHBHHHHHH

STATE 3 : EDIT S

Collect single expressions

Collect all expressions into one document describing S

#

elif opt=="3"
Where You are
kc.pub.show(kc.ass)

Sloop="Y"

while Sloop!="N":

Interaction with actual state S class
inp=input('"Enter an expression for your state description in plain text\n")

kc.aas.getexpression(inp)

Sloop=input("STOP Editing S ='N', CONTINUE !="'N"' \n")

#

HHBHHHHHHHHHHH
Call to state Edit Change Rules X

HHBHHHHHH

STATE 4 : EDIT X

Collect single expressions for change rules

Collect all expressions into one document describing X

#

elif opt=="4"
kc.pub.show(kc.ax)

#

HEBHHH R HHH R R R R R R R
Call to state Simulation SIM

HEHHHH R

STATE 5 : Run the simulation

#

elif opt=="5"
kc.pub.show(kc.asim)

#

B R R R
Call to state Evaluation EV

#

elif opt=="6"
kc.pub.show(kc.aev)

#

HHHH R R R R A
Call to state Stop STP

#

elif opt=="7"
kc.pub.show(kc.astp)

HHHHHHHHHA AR
End of Loop

Clarify how to continue
loop=input("STOP MAIN LOOP ='N', CONTINUE !="'N" \n")

TEST STATE S

(venv) gerd@gerd-ub2:~/env/komega/tst$ python3 komega-v03a.py
is START

is EDITP

is EDIT S

is EDIT X

is SIMULATION

is EVALUATION

is STOP

Enter a Number [1-7] for Menu Option

3

!"You have selected the state EDIT S

Role : "Sedit"

Name : "ass"

Enter an expression for your state description in plain text
This is expression 1

Feedback Your last expression :

This is expression 1

Feedback Your document S so far :

['This is expression 1']

STOP Editing S ='N', CONTINUE !="N'

a

Enter an expression for your state description in plain text
This is two

Feedback Your last expression :

This is two

Feedback Your document S so far :

['This is expression 1', "This is two']

STOP Editing S ='N', CONTINUE !="N'

a

Enter an expression for your state description in plain text
Wowh, it works

Feedback Your last expression :

Wowh, it works

Feedback Your document S so far :

['This is expression 1', 'This is two', "Wowh, it works']
STOP Editing S ='N', CONTINUE !="N'

N

STOP MAIN LOOP ='N', CONTINUE !="N'

a

NOOUTR WN -

is START
is EDIT P
is EDIT S
is EDIT X
is SIMULATION
is EVALUATION

AUk WN -
[
wn

7 is STOP
Enter a Number [1-7] for Menu Option

7

!'You have selected the state STOP

Role : "STOP"

Name : "astp"

STOP MAIN LOOP = 'N', CONTINUE !="'N'
N

(venv) gerd@gerd-ub2:~/env/komega/tst$

L

File kcv3a.py

Author: G.Doeben-Henisch
First date: September 6, 2020
Last date: September 12, 2020

HEHH R
CLASS DEFINITIONS

class Start:
def __init__(self):
self.menulist = ['START','EDIT P','EDIT S', 'EDIT
X','SIMULATION'EVALUATION','STOP']

def menushow(self):
i=0 # Counter for menu-loop
for state in self.menulist:
=i+l
print(i,' is ',state)

def badoption(self,opt):

if int(opt)<1 or int(opt)>7:
print("!!'You have selected a bad option')

if int(opt)>0 and int(opt)<8:
print("!!'You have selected the state',self.menulist[int(opt)-1])

T T
class Actor:
def __init__(self,role,name):
self.role = role
self.name = name

HAHH R

class Publish():

def show(self,other):
print('Role : "%s"'%other.role)
print('Name : "%s"'%other.name)

HRHH BB R
CLASS PROBLEM

m

MAIN IDEA

A main window W1 with a menu showing all possible questions to be
answered.

(a) Describe the problem P: What is given and what is the intended future state?

(b) Describe the intended real part of the world (space).

(c) Describe the time model T : which time period, which cycles.

(d) Which kinds of actors are seen as being important for the problem and its future?
(e) Some other assumptions.

class Problem(Actor):

def getproblem(self,inp):
self.problemNow = inp
print('"Feedback Problem Now :\n',self.problemNow)

def getvision(self,inp):
self.problemFuture = inp
print('"Feedback Problem Future :\n',self.problemFuture)

def getregion(self,inp):
self.problemRegion = inp
print('Feedback Problem Region :\n',self.problemRegion)

def gettime(self,inp):
self.problemTime = inp
self.problemTM = self.problemTime.split(',")
print('Feedback Problem TimeModel :\n',self.problemTM)

def getperson(self,inp):
self.problemPerson = inp
self.problemPRS = self.problemPerson.split(’,")
print('"Feedback Problem Persons :\n',self.problemPRS)

def problemTotal(self):
self.problemAll =[]
self.problemAll.append(self.problemNow)
self.problemAll.append(self.problemFuture)
self.problemAll.append(self.problemRegion)
self.problemAll.append(self.problemTime)
self.problemAll.append(self.problemPerson)

print('Feedback Problem All :\n',self.problemAll)

IR R R R R R R R IR e R R R e R R e R e R R
CLASS S(tate Description)

IDEA:

This state should allow in the final version the editing of the texts S and X in parallel. Additionally
one should be able to call from within this state(s) the simulation mode to test whether the actual
texts are working.

FOR NOW:
In this first experimental version one has to work either with the stae S or with the state X
separatedly. Simulation would be a follow up state.

TASK:
Input all data which are necessary for the S-state (including sectioning
and extended texts with details)

ACTORS:
Human experts.

SYSTEM INTERFACE:
A main window W1 offering the editing of a text consisting of individual
statements. Every statement can be edited separately and repeatedly.

ACTIONS:
Select either a given statement for editing or edit a new statement or
stop.

IMPLEMENTATION:
Using the list-construct of python to collect expressions, because lists are ordered and mutable and
allow many intersting operations.

class AState(Actor):

def __init__(self):
self.stateAll =[]

def getexpression(self,inp):
self.expression = inp
self.stateAll.append(inp)
print('"Feedback Your last expression :\n',self.expression)
print('"Feedback Your document S so far :\n',self.state All)

HHH I A
CLASS INSTANCES
ast=Start()

ap=Actor("Pedit","ap")
app=Problem("PPedit","app")

ass=Actor('Sedit','ass")
aas=AState()
ax=Actor('Xedit','ax")
asim=Actor('SIM','asim")
aev=Actor('EVAL','aev")
astp=Actor('STOP','astp")

pub=Publish()

