
Review of Nancy Leveson

Are you sure your software will not kill anyone?
A Review from the Point of View of the DAAI Paradigm

∗

Gerd Doeben-Henisch
doeben@fb2.fra-uas.de

Frankfurt University of Applied Sciences
Nibelungenplatz 1

D-60318 Frankfurt am Main

April 2, 2020

Abstract

In an article in the ACM Communications from February 2020 Nancy
Leveson describes in a short and concise way the problem of testing sys-
tems by their descriptions only.1 These observations will be taken into
account here to check whether and how the DAAI paradigm can deal with
these problems.

1 Leveson’s View of Save and Reliable Systems

When Leveson speaks about technical systems during their missions she dis-
tinguishes clearly between the physical and the software dimension. Software
as implemented software has been transformed into physical states inside the
physical system, and these physical states behave according to an implicit logic
encoded in a physical set of states representing the software.

During mission the implemented software receives physical signals from the
physical system, is processing these signals according to some implemented
logic, and then eventually sends some other physical signals back into the phys-
ical system. From a logical point of view consists the physical system in mission
thus as a synthesis of two physical components: the physical machinery re-
ceiving signals from the physical environment by sensors, generating events by
some actuators and processing sensor inputs and actuator outputs by another

∗Copyright 2019-2020 by eJournal uffmm.org, ISSN 2567-6458, Publication date: April-2,
2020

1See Leveson [Lev20]

1



Figure 1: Graphical interpretation of Leveson’s ideas

embedded physical system which corresponds in its structure to something what
computer scientists call a computer2

In the ordinary case of a non-learning system3 is the implemented logic of the
computer-like structure inside the mission system independent of the real-world
inputs and outputs. The observable behavior of the mission system in the envi-
ronment is connected to the non-observable behavior of the embedded software.

On account of this decoupling of software induced behavior φsw and envi-
ronment induced behavior φenv it can happen, that the mission system causes
failures although the software induced behavior φsw is completely correct com-
pared to the assumptions giving as requirements for the design of the software.
The transcendental logic behind this paradoxical phenomenon of a conflict be-
tween the intention encoded in software and events caused by the physical
behavior of the mission system in the environment reflects a substantial differ-
ence between the physical environment as it is and the physical environment as
it is modeled in the cognitive machinery of the experts, the engineers.

This fundamental difference between the real world as it is and the real

2Ideally equivalent to the mathematical concept of a Turing machine.
3A qualification not explicitly used by Nancy Leveson.

2



world as transformed into a software system based on assumptions about the
real world is not only effective during the construction of the intended mission
system. As Leveson points out it can be effective during the mission too. This
happens when a human actor is part of the behavior of the mission system as
far as the human actor is part of the control function. The human actor as
executing actor while interacting with the mission system as assistive actor is
controlling his/ her/ x observable behavior in the environment – with the mis-
sion system as part of the environment – by models Mcog within his/ her/ x
cognitive machinery. This means that the perceptions of the human actor are
interpreted by his/ her/ x models Mcog. If these models are in disagreement
with the environment as it is then a human actor can cause a human behavior
φhum which induces in the mission system signals which will cause a behavior
φenv of the mission system which causes failures too.

From this follows that the safety or reliability of any distinguishable part of
a mission system does not tell anything about the safety or reliability of the
whole system. From the point of engineering – including software engineering
– the correctness of a system as such can be a complete failure as soon as the
whole system will be deployed in the environment as it is. According to Leveson
this points to a meta-dimension beyond the system as such: technical systems
today are indeed technical systems embedded in a dynamic environment entan-
gled with socio-cultural factors resulting in complex systems of complex systems.

2 The DAAI View of Leveson’s View

The interesting question here is whether these interesting observations of Leve-
son can be handled by the DAAI paradigm.

Following the process as described until now within the DAAI paradigm then
one can identify the following phases of the DAAI process, which seem to be
relevant for the question:

1. Problem and Vision: The DAAI process starts with the generation of a
problem and a vision statement. The usual authors for these statements
are the stakeholders (which can be everybody). Therefore the DAAI pro-
cess depends in its root from the world view of certain persons which by
some reasons – conscious as well as unconscious ones – qualify a certain
situation as not optimal characterizing a problem and as something de-
sirable characterizing a vision. The DAAI process as such does not judge
about the reasonableness of these qualifications. Indeed the assumptions
encoded in the problem and vision statements can be completely non-
sense; the DAAI process as such will not investigate this.

3



2. Analysis: During the DAAI analysis following the problem and vision
statement the acting DAAI experts will try to analyze all the conditions
which have to be fulfilled to enable task driven processes which allow cer-
tain actors to do some jobs interacting with other actors in some assumed
environment. Inevitably these experts are acting according the world views
– some set of cognitive models – in their brains. Clearly they can change
these world views during their work, but finally whatever will be the out-
come of their analysis, the outcome will correspond to the models which
are active in their cognitive machinery for interpreting their perceptions
and for deducing the details of their analysis. Therefore, if these expert
models in their cognitive machinery are in some sense inadequate com-
pared to the real world as it is, then the results of the analysis can be
inadequate too.

3. Testing: There are many different kinds of tests possible. Basically every
test is a measurement operation comparing something new according to
some pre-defined norm. If the new does sufficiently well match with the
pre-defined norm one usually interprets this as fulfilling the test.

4. Usability test: An often used kind of test is called usability test: one
wants to check whether a defined system as part of a defined process is
good enough that a human user can work in this process in a satisfy-
ing way with regards to a multitude of criteria. In the DAAI paradigm
a distinction is made between the task induced actor requirements [TAR]
and the actor actor induced requirements [AAR]. The TAR can be inferred
from the task description of the analysis and results in a behavior profile of
an ideal actor, an actor which is wanted according to the task description.
It is completely unclear whether such an ideal actor really exists. Calling
for potential real actors can eventually lead to a set of candidates where
every individual candidate has its individual real profile of possible behav-
ior which represents the AAR. Usually there exists a difference between the
TAR and the AAR. For a company the simpler case would be if the AARs
of the candidates would sufficiently match the TAR of the intended pro-
cess. If not, it can be an interesting question whether a candidate is able
to change its actual AARt to a new AARt′ which is sufficiently close to
the TAR. This presupposes that a candidate is able to learn by experience.

5. Usability: not free or free: If the candidate should be an employee
then in some sense the owner of the production process can to a certain
degree dictate the severity of the TAR requiring that every candidate has
to match the TAR sufficiently well otherwise the candidate will not be ac-
cepted. This is the case of a not free testing process. If the process which

4



shall be tested is an optional process as a product or service which has
to be sold to possible customers which can by the product/ service but
must not, than the testing is free: the results of the test can be used to
criticize the actual process leading to some possible improvements. Thus
if the assumptions of the DAAI experts leading to a certain format of the
task processes are somehow deviant from the reality of possible customer
behaviors then a free usability test can help to detect wrong assumptions
and can therefore principally enable some improvements. If the usability
testing is not free then companies can produce bad production processes
compared to the abilities of real people without being challenged to im-
prove these.

6. Testing More: While the usual usability test offers some chance to im-
prove a task process4 it is completely unclear how other possible wrong
assumptions which are already part of the problem and vision statements
can be detected and in some sense being improved. Although Nancy Leve-
son does not characterize exactly where in a possible engineering process
wrong assumptions can be introduced, but one can easily imagine that the
problem and vision statements represent a vast space of possible wrong
assumptions. And, not to forget, the experts themselves, are not free from
wrong world views whose wrongness as such is not visible. Not knowing
something or knowing it in the wrong way is usually not easily detectable.
This points to a fundamental problem of using knowledge in a society:
the wide spread acceptance of being correct appears in this systems engi-
neering context as very dangerous! Being correct is only partially a good
strategy to cope with an unknown future.

References

[Lev20] N.G. Leveson. Are you sure your software will not kill any-
one? Communications of the ACM, 63:25 – 28, 2020.
https://doi.org/10.1145/3376127.

4But not necessarily if the criteria used during the test are inadequate!

5


